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MAYGEN: an open‑source chemical structure 
generator for constitutional isomers based 
on the orderly generation principle
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Abstract 

The generation of constitutional isomer chemical spaces has been a subject of cheminformatics since the early 1960s, 
with applications in structure elucidation and elsewhere. In order to perform such a generation efficiently, exhaus-
tively and isomorphism-free, the structure generator needs to ensure the building of canonical graphs already during 
the generation step and not by subsequent filtering. Here we present MAYGEN, an open-source, pure-Java devel-
opment of a constitutional isomer molecular generator. The principles of MAYGEN’s architecture and algorithm are 
outlined and the software is benchmarked in single-threaded mode against the state-of-the-art, but closed-source 
solution MOLGEN, as well as against the best open-source solution PMG. Based on the benchmarking, MAYGEN is on 
average 47 times faster than PMG and on average three times slower than MOLGEN in performance.
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Introduction
Unconstrained isomer generation has received attention 
over the past decades as a means to assess the theoreti-
cally existing chemical space and as a hypothesis gen-
erator. Recently, the works of Jean-Louis Reymond and 
coworkers for the creation of the GDB-11 [1], GDB-13 
[2] and GDB-17 [3] databases, enumerating all possi-
ble molecules with 11, 13, and 17 non-hydrogen atoms, 
respectively, in the molecular formula, have laid out the 
motivations for unconstrained isomer generation and 
the exploitation of its results in sufficient detail. Such 
molecular generation methods can be used as hypothesis 
generators in areas such as computer-assisted structure 
elucidation, but also to answer broader questions such 
as the exact size of a chemical space. Structure genera-
tors that produce constitutional isomers take a molecular 

formula as input, e.g., C10H16O , and enumerate or output 
all possible chemical structures that can be built with the 
given set of atoms in the molecular formula. The history 
of chemical graph generators reaches back to the 1960s 
and started with the DENDRAL project [4]. Their struc-
ture generator, CONGEN [5], was based on the substruc-
tures building blocks and dealt well with the overlapping 
substructures. Another structure generator substruc-
ture building blocks based was Assemble [6]. Chemical 
graph generators are based on mathematical theorems, 
especially the application of algorithmic group theory 
[7] and combinatorial algorithms [8]. MASS was a tool 
for the mathematical analysis of molecular structures 
and constructes molecules by generating their adjacency 
matrices [9] and SMOG [10] was the successor of MASS. 
Adjacency matrices include the edge multiplicity infor-
mation for each atom pair in molecules.

Despite the long history of research on the theoretical 
and practical generation of chemical graphs, the num-
ber of publicly available algorithms and software for this 
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purpose is still limited. The available generators [11] are 
ASSEMBLE [6], COCON [12], DENDRAL [4], LSD [13], 
MOLGEN [14], OMG [15], PMG [16], SENECA [17] 
and SMOG [10]. These generators and more details are 
described in [11]. For several decades, the closed-source, 
commercial structure generator MOLGEN, developed 
in C at the University of Bayreuth, marked the state of 
the art in terms of speed and completeness. Recognising 
the need for an open-source structure generator, Peiron-
cely and colleagues [15] developed the Open Molecule 
Generator (OMG). OMG, however, is orders of magni-
tude slower than MOLGEN. Following OMG, a parallel-
ized structure generator, PMG, was developed based on 
the OMG algorithm. The 452,458 isomers of C10H16O , 
for instance, are generated in only 3 s by MOLGEN 
5.0, whereas MAYGEN 1.4 and PMG take 10 and 45 s, 
respectively. For more benchmarks, see “Results” section 
of the present manuscript.

In this work, we present the development of an open-
source structure generator MAYGEN, a pure-Java con-
stitutional isomer generator based on the principle of 
orderly generation described by Grund et  al. [18]. We 
benchmark our method against the fastest available 
open-source solution PMG as well as against the closed-
source, de facto gold standard MOLGEN. On average, 
MAYGEN is 47 times faster than PMG and three times 
slower than MOLGEN. In an old Arabic saying, “may” 
refers to a drop of water, and we hope that MAYGEN will 
be a good contribution to the field and trigger a surge in 
the development of improved and faster versions eventu-
ally rivalling the best closed-source solutions and thereby 
serving the scientific community. The complete MAY-
GEN code, as well as precompiled binaries, are available 
on GitHub.

Methods
MAYGEN 1.4 generates constitutional isomers of a given 
molecular formula with an orderly graph generation 
algorithm from the field of algorithmic group theory. The 
principles are described in detail in [18]. We summarize 
them as following. A graph with p nodes, 1, 2, 3, . . . , p has 
its symmetry group Sp . This symmetry group includes all 
the permutations of these nodes. However, for the case of 
coloured graphs, the nodes need to be partitioned (Eq. 1), 
in other words, nodes are grouped based on their col-
ours, degrees and edges.

A molecule can be represented as a coloured graph. For 
4 isomers of C8O2H16 (Fig. 1), all atoms are coloured by 
their element types.

(1)� := (�1, �2, . . .) with
∑

i

�i = ni

The atoms of C8O2H16 can be partitioned in three 
groups as following: � = 2, 8, 16 . For the case of this node 
partition, the symmetry group of 26 nodes, S26 , cannot be 
used since the nodes are coloured. In this case, a special 
type of symmetry group is applied, consisting of Young 
subgroups, that are the symmetry groups built based on 
the initial node partition (Eqs. 2 and 3).

In Eq. (2), these two summations give the minimum and 
maximum entries of the integer range. For the partition 
� = 2, 8, 16 , its integer sets are:

{1, 2} ∪ {3, 4, 5, 6, 7, 8, 9, 10} ∪ {11, 12, 13, 14, 15, 16, 17, 18,

19, 20, 21, 22, 23, 24, 25, 26}

This symmetry group S� is the direct product of Young 
subgroups permuting each atom type within its parti-
tion. In the case of C8O2H16 , the symmetry group of S� is 
S{1,2} ∗ S{3,4,5,6,7,8,9,10} ∗ S{11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26} . 
The permutations of these symmetry groups only per-
mute each element type within their groups, such as oxy-
gens, carbons and hydrogens. The Young subgroups are 
then used for the construction of molecules’ automor-
phism groups (Eq. 4). These atom partitions and symme-
try groups are the core part of the MAYGEN canonical 
test.

MAYGEN’s construction of candidate structures consists 
of three distinct recursive tasks. First, the hydrogens are 
distributed to the heavy (i.e. non-hydrogen) atoms of the 
molecular formula. Then, the structures are generated in 
a block-wise manner, and finally, the canonical test avoids 
the generation of duplicate structures in an efficient and 
dynamic manner.

(2)n =
�

i

n�i where n
�
i =







i−1�

j=1

�j + 1, . . . ,

i�

j=1

�j







(3)S� :=
{

π ∈ Sn|∀i : π(n
�
i ) = n�i

}

⊆ Sn

(4)Aut(A) := {π ∈ Sn|Aπ = A} ⊆ Sp

Fig. 1  Four isomers of C8O2H16 . Atoms are coloured by their type

https://github.com/MehmetAzizYirik/MAYGEN
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Molecular formula check and hydrogen distribution
Graph existence check
Before calling the generator functions, there is a pre-
liminary test for input molecular formulae. From graph 
theory, a degree list d can represent a graph with p nodes 
if the sum of all node degrees is equal or greater than 
2 ∗ (p− 1) and if the sum is an even number (Eq. 5) [18].

A graph with p nodes should consist of at least (p− 1) 
edges. Since an edge is connected with two nodes in a 
graph, the sum of its node degrees should be equal to or 
greater than 2 ∗ (p− 1).

Hydrogen distribution
For a given molecular formula, MAYGEN processes 
the hydrogens first and distributes them to all the other 
atoms in all possible ways since a hydrogen atom has a 
valence of 1 and can always have only one neighbour. 
The hydrogen distribution function takes two inputs, the 
atom partition and the number of hydrogens. The hydro-
gens are distributed in ascending order within each parti-
tion in order to avoid duplicates.

After the hydrogen distribution, the initial degrees and 
the initial partition are updated for each hydrogen dis-
tribution. For example, the non-hydrogen atoms from 
the molecular formula C6H6 have the initial respective 
degrees as [4,  4,  4,  4,  4,  4] and the initial partition {6}. 
There are 7 possible hydrogen distributions (Fig.  2) to 
these carbon atoms. After the hydrogen distribution step, 
the new lists of node degrees and partitions are used for 
the structure generation process. With the pre-hydrogen 
distribution, MAYGEN deals with a 6× 6 matrix instead 
of a 12× 12 matrix. The matrix size also has an impact 
on the canonical test since this test depends directly on 

(5)

d = (d1, d2, . . . , dp)

p
∑

i=1

di is even and

p
∑

i=1

di ≥ 2 ∗ (p− 1)

the rows’ permutations. The hydrogen distribution code 
is available in the hydrogenDistributor Java class.

Construction of candidate structures
Once the molecular formula satisfies the graph existence 
criteria, the hydrogen distribution is performed to build a 
list of degrees. MAYGEN then starts the actual construc-
tion of candidate structures for each degree. The struc-
tures are represented by adjacency matrices in which 
each entry represents the edge multiplicity between the 
atom pairs. These matrices are built in a block-wise man-
ner. The algorithm is based on the node degrees that 
correspond to the atom valences. The initial partition of 
the atoms, based on their element symbols, defines the 
blocks of the matrix (Fig. 3).

With p being the number of atoms in the molecular 
formula without the hydrogens, an empty p× p matrix A 
is built. This matrix is filled in descending order starting 

Fig. 2  Illustration of the hydrogen distribution of C6H6 (in yellow) and its effect on the assigned atom valency (in blue) and on the atom partition 
(in red)

Fig. 3  Block-wise representation of a matrix. Here, the matrix is split 
into parts based on the initial node partition with p entries. Image 
adapted from Grund et al. [18]
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with the maximal capacities and this is performed for 
each atom. The maximal capacity of an atom is calculated 
by decrementing its valence. For example, the valence of 
carbon is 4 and its maximal capacity is 3. Due to the diag-
onal symmetry of such matrices, only the upper triangu-
lar part needs to be filled. A canonical test, as described 
below, is performed once a block is filled. In a matrix, a 
block is defined as a number of rows and their transposes 
(i.e. columns). For example, a block between two indices 
1 and 4 means the first 4 rows and the first 4 columns of 
the matrix. It needs to be noted that the canonical tests 
are performed without waiting for the whole matrix to be 
filled, which increases MAYGEN’s efficiency. This is the 
early boundary condition of the block-wise generation 
and avoids the construction of duplicate molecular struc-
tures. When the whole matrix is filled, it is written into 

the output SDF file, if such an option is selected at the 
beginning of the process. The algorithm then modifies 
the same input matrix A until there are no more possi-
ble changes. This is called the “build-and-forget method” 
[18]. The overall algorithm structure is explained in Algo-
rithm 1 [18] and illustrated in Fig. 4.

Keeping the example of C6O2H6 , the initial valence 
vector is v = [4, 4, 4, 4, 4, 4, 2, 2, 1, 1, 1, 1, 1, 1] , where the 
valences of each carbon atom are listed first, then the 
valences of each oxygen atom, and lastly the valences of 
all 6 hydrogen atoms. To optimize the process, the hydro-
gens are avoided in the further construction of the matri-
ces by the hydrogen distribution step. Thus, the initial 
partition is � = {6, 2} and the corresponding matrix is a 
8× 8 matrix (built on 6 carbons and 2 oxygens).

Algorithm 1: MAYGEN algorithm
Input: Molecular formula with p non-hydrogen atoms
Output: SDF file with molecular structures

Step 1: Perform hydrogen distribution
Step 2: First the block index i is set, i = 1; go to step 4.
Step 3: if i = 0 then the procedure stops else go to step 5
Step 4: Maximum filling

Fill the strip A(i) in lexicographic order depending on the valences.
if no more fillings exist then
1 set i = (i− 1)
2 go to step 3

else go to step 6
Step 5: Smaller filling

Fill the strip A(i) in a reverse lexicographic order depending on the valences.
if no more fillings exist then
1 set i = (i− 1)
2 go to step 3

else go to step 6
Step 6: Canonical Test

if A(i) ≥ A(i)π for all π ∈ Aut(A) then A(i) is canonical
if i = p then
(a) canonical matrix is complete
(b) store in output SDF file
(c) go to step 5
else
(a) update Aut(A)
(b) set i = (i+ 1)
(c) go to step 4

else go to step 5
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Canonical test
The canonical test is the crucial part of the MAYGEN 
algorithm. In block-wise orderly structure generation, the 
early canonical testing avoids the construction of many 
duplicates. Overall, the purpose of the canonical test is 

the detection of the maximal matrix with respect to the 
given initial node partition.

(6)A ≥ Aπ ∀π ∈ S�

Fig. 4  MAYGEN flowchart. The input formula includes p non-hydrogen atoms
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In the naive version of the canonical test, the matrix A is 
permuted for all the permutations of Sπ and its maximal-
ity is checked (Eq. 6). In the permuted matrices, Aπ , their 
rows and entries are permuted. The original matrix A is 
compared with all the permuted matrices. Two matri-
ces are compared row by row in a lexicographical order 
(Eq. 7).

In the block-wise orderly generation, only the rows 
within the blocks are compared.

Cycle transpositions
In the canonical test, the size of the symmetry group 
affects the run time of the algorithm. The initial partition 
is updated for each row during the test. Starting with the 
initial partition, with each row, the partitions are refined. 
The refinement process (Eq. 8) is explained below:

For C3O2H4 , the initial partition without hydrogens is 
{3,2}. Thus the partition list for all the rows are:

These partition lists are used for the construction of the 
symmetry groups. By comparing the indices of two con-
secutive partitions, the cycle transpositions of symmetry 
groups are calculated. For partitions �(i−1) and �(i) , the 
number of cycles is the i th entry in the former partition 
�
(i−1)
i  (Eq. 9).

For example, the initial partition is {3, 2} and the refined 
partition for the first row is {1,2,2}. Here the number of 
cycle transpositions is 3 since the first entry of the former 
partition is 3. The cycle transpositions are (1,1), (1,2) and 
(1,3). These cycles are calculated row by row for all the 
partitions. The symmetry group of the molecule is calcu-
lated by the multiplication of all these cycles. The list of 
the partitions and their cycles are listed below:

(7)

A > A′ :⇐⇒ (a1,1, . . . , a1,p, a2,1, . . . , a2,p, ap,1, . . . , ap,p)

> (a′1,1, . . . , a
′
1,p, a

′
2,1, . . . , a

′
2,p, a

′
p,1, . . . , a

′
p,p)

(8)

�
(i) =







(1, ..., 1,
� �� �

i-1

1, �
(i−1)
i − 1, �

(i−1)
i+1 , ...) if �

i−1
i > 1

(1, ..., 1,
� �� �

i-1

1, �
(i−1)
i+1 if �

(i−1)
i = 1

�
0 = {3, 2}

�
1 = {1, 2, 2}

�
2 = {1, 1, 1, 2}

�
3 = {1, 1, 1, 2}

�
4 = {1, 1, 1, 1}

(9)S�i−1 = ∪
�
i−1
i

j=i (i, j)S�i , i = 1, . . . , p− 1

Calculation of automorphisms
In the canonical test, for a candidate matrix the corre-
sponding automorphisms are calculated row by row. For 
the i th row of a matrix, the cycle transpositions ςi,j are 
calculated based on the partitions �(i−1) and �(i) . These 
cycle transpositions are used in the automorphisms 
search. All these cycles are multiplied in DFS manner 
with all the former automorphisms τ of the graph. This 
updated list of permutations are used in the canonical 
test of the matrix. For a graph with p nodes, its list of 
automorphisms until the i th row is:

After the multiplication with all its cycles (Eq.  10), this 
updated list of automorphisms is used in the maximality 
check. If an automorphism is detected, that permutation 
is added to the automorphisms list, Fi . Thus, the auto-
morphisms list is updated for each row until the row is in 
maximal form with respect to its partitions.

Maximality check
For the maximality test of the i th row of a matrix, the 
row is compared with each permutation action in the 
automorphisms list. For each permutation, the original 
matrix A is permuted. Then, the i th rows of the original 
matrix and the permuted one are compared. These two 
rows are compared based on the i th atom partition. For 
an initial matrix A, as shown in Fig. 5a, with its partition 
�
(0) = {5} and the refined partition �(0)′ = {1, 4} , there 

are 5 cycle transpositions. One of these cycles is (1,2). To 
perform the maximality test, its first and second rows are 
compared (Fig. 5a).

In this example, the permutation (1,2) is an automor-
phism of the first row since it maps the row to itself in 
the adjacency matrix. Then this permutation is added to 
the list of automorphisms. However, in the case where 
a mapping with a cycle does not map the row to itself, 
a canonical permutation is needed. For an initial matrix 
B (Fig. 5b) with its initial partition �(0) = {5} , its refined 
partition is �(0)′ = {1, 4} , and there are 5 cycle transposi-
tions for these partition. One of them is (1,2). To perform 
the maximality test, its first and second rows are com-
pared (Fig. 5b).

Different from example A, in matrix B the first and sec-
ond row are not identical after the cycle transpositions, 

�
0 ={3, 2} �

1 = {1, 2, 2} Cycles : (1, 1), (1, 2), (1, 3)

�
1 ={1, 2, 2} �

2 = {1, 1, 1, 2} Cycles : (2, 2), (2, 3)

�
2 ={1, 1, 1, 2} �

3 = {1, 1, 1, 2} Cycles : (3, 3)

�
3 ={1, 1, 1, 2} �

4 = {1, 1, 1, 1} Cycles : (4, 4), (4, 5)

(10)F (i) = {τ ∈ F (i−1)|τ ∗ ς(i,j)} i < j < �
i−1
i
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and a canonical permutation is therefore needed. The 
canonical permutations are searched within the Young 
subgroups built with respect to the refined partition. In 
this example, the refined partition is �(0)′ = {1, 4} . Thus, 
the symmetry group is S{1} ∗ S{2,3,4,5} . For the canonical 
permutation search, only the permutations of the sets {1} 

and {2,3,4,5} are required. For the rows of matrix B, the 
canonical permutation is then (3,5), as depicted in Fig. 5c. 
Thus, (1,2)(3,5) is the automorphism of the first row and 
added to the automorphisms list for further testings.

In general, there are three criteria for updating the 
automorphisms list and for the maximality check:

Fig. 5  Maximality check. a A matrix A is permuted with a cycle transposition. The first and the second rows are identical after the permutation 
action. b A matrix B is permuted with a cycle transposition. The first and the second rows are not identical. c The canonical permutation of matrix B 
is given

1 Procedure: Updating the automorphism list and maximality check

1 If the row i is maximal and equal to the permuted row, the permutation is added to the
automorphism list;

2 If the row i is maximal but not equal to the permuted row, an automorphism is searched in its
Young subgroup
(a) If there is such an automorphism, the permutation is added to the automorphisms list;
(b) Else, the automorphism is ignored and not added to the list.

3 If the original row i is smaller than the permuted matrix, the tested candidate molecule is not
canonical. The canonical test is then terminated.
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In the canonical test, if the row is canonical after test-
ing all the permutations, the partition �(i+1) is built based 
on the i th row’s entries. After filling the entries of the i th 
row, i.e., adding bonds to the i th atom, the atom neigh-
bourhoods are changed. Therefore the partition �(i+1) is 
defined based on the partition �(i) and the i th row entries. 
For matrix A and its refined partition �(0)′ = {1, 4} , its 
partition first is updated with respect to the first row 
entries:

The canonical test continues until the rows are in maxi-
mal form in lexicographic order. The automorphisms and 
partition lists are updated row by row.

Learning from canonical test
In case a molecule cannot pass the canonical test, there 
is still something to learn from the test. In the row by 
row comparison of the canonical test, when a row does 
not pass the test, the entry making it non-canonical is 
detected. As explained in Algorithm  1, if a block is not 
canonical, MAYGEN updates the matrix starting with 
its last entry in the block. However, with the help of the 
non-canonical matrix, the algorithm starts modifying the 
matrix from the entry making the matrix non-canonical. 
For a matrix C with its partition �(0) = {5} and the refined 
partition �(0)′ = {1, 4} , there are 5 cycle transpositions. 
One of these cycles is (1,3). To perform the maximality 

Refined partition �
(0)′ = {1, 4} → A[1] = [0|2, 1, 1, 0]

→ Updated partition �
(1) = {1, 1, 2, 1}

test, its first and third rows are compared as shown in 
Fig. 6.

The permutation π = (2, 4)(3, 5) ∈ S{1} ∗ S{2,3,4,5} 
makes the third row bigger than the first row. Here the 
first entry making the row non-canonical is C[3, 4] in the 
matrix. Then the matrix construction continues with the 
indices [3, 4]. Using the learning from the canonical test, 
all the other non-canonical matrices are skipped.

Connectivity test
The connectivity test of a graph is performed based on 
the neighbourhoods of all its nodes. The connectivity 
test starts with enumerating the nodes and setting this 
as the initial graph enumeration. The enumeration list is 
updated while checking the neighbour lists node by node. 
After detecting neighbours of a node, the labelling of the 
tested node and its neighbours from the graph enumera-
tion list are stored. The minimum value of this set is given 
as the smallest index of the neighbourhood. This smallest 
index value is used for updating the list of graph enumer-
ation. The test is terminated once all the nodes have the 
same label or all the nodes are re-labelled. For example, 
the connectivity test is performed for an isomer of C6H6 
represented by the adjacency matrix A (Fig. 7a) with its 
initial node enumeration (labels) {1, 2, 3, 4, 5, 6} (Table 1).

The matrix A (Fig.  7a) is connected since the small-
est node label for each tested node is 1 and its last node 
enumeration list includes only 1s. Thus there is only 
one component whose smallest index is 1 (Fig.  7b). For 
a disconnected chemical graph represented by the adja-
cency matrix B (Fig. 8a) with its initial node enumeration 
(labels) {1, 2, 3, 4, 5, 6}.

Fig. 6  For a non-canonical matrix, detecting the entry indices makes it non-canonical

Fig. 7  a The adjacency matrix of an isomer of C6H6 . b An isomer of 
C6H6

Table 1  The connectivity test for an isomer of C6H6 represented 
by matrix A (Fig. 7a)

Node index Neighbors Former label Minimum 
label

Enumeration

1 {1,2,3} {1,2,3} 1 {1,1,1,4,5,6}

2 {2,5} {1,5} 1 {1,1,1,4,1,6}

3 {3,4,6} {1,4,6} 1 {1,1,1,1,1,1}
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The matrix B represents a disconnected isomer of 
C6H6 . This molecule has two components (Fig. 8b) with 
the indices ς1 = {1, 2, 5} and ς2 = {3, 4, 6} . The first com-
ponent ς1 is the first component with respect to its atom 
labelling. Here, components are compared with respect 
to their maximum index.

Learning from connectivity test
Similar to “Learning from canonical test”, there is still 
something to learn from the connectivity test if a mol-
ecule is not connected. In MAYGEN, the connectivity 
test is performed when a canonical matrix is complete. If 
a molecule is not connected, it is not stored in the output 

file and its first component needs to be detected. For 
example, the matrix B with Table 2, its first component is 
ς1 = {1, 2, 5} . The maximum index of the first component 
identifies where the graph gets disconnected.

In Algorithm 1, when a matrix is complete and stored 
in the output file, the generation process continues with 
the backward function. Here, the last index of the matrix 
is used as the input. However, with the “learning from 
connectivity test”, the algorithm continues with the last 
entry of the first component. For example, in matrix B, 
the first component is ς1 = {1, 2, 5} and the maximum 
index is 5. Thus, the graph gets disconnected after the 
last entry of the fifth row, B[5, 6] entry of the matrix B. 
All the other modifications on the matrix between its last 
entry [6,  6] and [5,  6] build only disconnected graphs. 
That is why the matrix modification process continues 
with the last entry of the first component. Learning from 
the connectivity test reduces the construction of discon-
nected graphs.

Results
MAYGEN is written purely in Java and hosted on GitHub 
(see section Availability). The full source code, as well as 
pre-compiled binaries, are available for download. The 
code can be executed as follows:

Fig. 8  a The adjacency matrix of an isomer of C6H6 . b A 
disconnected molecule with formula C6H6

Table 2  The connectivity test for an isomer of C6H6 represented 
by matrix B (Fig. 8a)

Node index Neighbors Former label Minimum 
label

Enumeration

1 {1,2,5} {1,2,5} 1 {1,1,3,4,1,6}

2 {2,5} {1} 1 {1,1,3,4,1,6}

3 {3,4,6} {3,4,6} 3 {1,1,3,4,1,6}

4 {4,6} {3} 3 {1,1,3,3,1,3}

5 {5} {1} 1 {1,1,3,3,1,3}

6 {6} {3} 3 {1,1,3,3,1,3}

> java −j a r MAYGEN. j a r

usage : java −j a r MAYGEN. j a r −f <arg> [−v ] [−d <arg>]

Generates molecular structures for a given molecu-
lar formula. The input is a molecular formula string, e.g. 
‘C2OH4’. Besides this formula, the directory is needed to 
be specified for the output file.
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−f ,−−formula <arg> formula ( r equ i r ed )
−v,−−verbose pr in t message
−t ,−−tsvoutput output formula , number o f s t r u c tu r e s
and execut ion time in CSV format
−d,−− f i l e d i r <arg> s t o r e output in g iven f i l e

Table 3  The number of structures and the run times are listed 
for MOLGEN 3.5 and MOLGEN 5.0 with a randomly selected 10 
molecular formulae

The benchmark is performed without the aromaticity check

Formula # Structures MOLGEN 3.5 
runtime (s)

MOLGEN 5.0 
runtime (s)

Ratio of 
runtimes

C10H15N 2,569,697 9 32 3.556

C5HFIN3O 2,737,786 7 38 5.429

C7H9NO2 3,237,132 11 29 2.637

C9H12O2 3,276,662 11 42 3.819

C5H6N2O3 4,513,867 11 40 3.637

C9H7N 2,521,767 6 42 7

C5H2BrClN2O2 5,211,489 9 50 5.556

C8H10O3 3,869,189 13 44 3.385

C7H10O4 1,428,242 5 16 3.2

C7H8O4 2,709,647 9 31 3.445

In order to generate constitutional isomers, the user 
needs to pass a molecular formula with the -f option:

> java −j a r MAYGEN. j a r −f C10H16
MAYGEN i s gene ra t ing i somers o f C10H16 . . .
The number o f s t r u c tu r e s i s : 24938
Time : 1 .590 seconds

Alternatively, users who either want to contribute to 
the development or use the latest source code can clone 
the GitHub repository and build the MAYGEN binary 
using the Maven build environment.

For the purpose of this publication, MAYGEN was 
tested with randomly selected molecular formulae. The 
run times of MAYGEN, MOLGEN and PMG are com-
pared in Table  4. The computational experiments were 
performed in single-threaded mode and without stor-
ing structures in an output file. PMG was tested against 
OMG and confirmed that even in single-threaded mode, 

PMG is faster. We used the latest version of Molgen, V 
5, to be able to benchmark against larger numbers of 
molecular formulae. Molgen 3.5, which is faster than 
Molgen 5, is only available as a Windows GUI application 
and, to the best of our knowledge, cannot be run in batch 
mode. Furthermore, we do not own Windows license of 
Molgen 3.5. We did, however, manually run 10 formulae 
of the test version of Molgen 3.5 against the test version 
of Molgen 5 on the same Windows machine (Table 3).

The comparison showed that Molgen 3.5 is about four 
times faster than Molgen 5 on average for these 10 tests. 
Different from MOLGEN 5.0 [14], PMG generates struc-
tures for additional valences of sulfur (S), phosphorus 
(P) and nitrogen (N) and therefore more molecules than 
MOLGEN or MAYGEN [15]. MOLGEN 5.0 uses the 

default lowest valences for N(3), S(2), and P(3), unless 
a user defines the higher valences. For all the results 
given in Table 4, MAYGEN generated the same number 
of structures as Molgen 5.0. Molgen has an aromaticity 
filter that filters out resonance structures of substituted 
aromatic molecules. This filter was deactivated with the 
-noaromaticity flag to achieve comparability. Since halo-
gens are not defined in PMG, it does not generate struc-
tures with molecular formulae including Cl, F, Br, I.
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For most structures containing all allowed elements, 
MOLGEN was slightly faster than MAYGEN and much 
faster than PMG (Figs.  9, 10); for carbohydrates and 
those containing additional oxygen, MAYGEN’s execu-
tion speed was comparable to that of MOLGEN. Since 
PMG does not generate structures for formulae with hal-
ogens, “N/A” is added to the result table. “> 24 h” is added 
to the result for the formulae for which PMG took longer 
than a day. These results are visualized with spaces in the 
plots (Figs. 9, 10).

Limitations
MAYGEN is currently restricted to generate molecules 
with the lowest valence states of nitrogen, phosphorus 
and sulfur, and all testing and benchmarking was done 
under this boundary condition. This is no principle 

restriction—the algorithm will work with any given 
valence state—but the workflow logic of MAYGEN needs 
to be adapted to compute structures for higher valences 
of these elements.

Future work
Being implemented in pure Java and with its code com-
pletely open, MAYGEN can be easily extended with addi-
tional functionalities and algorithmic improvements. The 
code availability through GitHub invites the scientific 
community to contribute to the further developments of 
MAYGEN. Obvious future work includes performance 
enhancements and the parallelization of the algorithm. 
Future implementations of MAYGEN will be parallel-
ised. The lowest hanging fruit will be exploiting the built-
in parallelism in the Java VM using multiple available 
cores. Here, trivial parallelism can be used by computing 
the isomers of different hydrogen distributions simulta-
neously. With 8 cores in the CPU of the senior author’s 
laptop and 18 cores in individual CPUs on our local 
compute cluster, significant speed gains can be achieved 
through this simple measure. The examples in our results 
Table  4 have between 2 and 74 hydrogen partitions, 
which yields plenty of space for further speed gains. 
Trivial parallelism can be pushed further by recent cloud 
orchestration schemes where containers can be seam-
lessly launched in large clouds, for example using the 
Google Container Engine. Here, the number of parallel 
computations X can be matched to fit the number of par-
titions precisely, leading to an approximate speed gain of 
X, ignoring the container provisioning and result collec-
tion. More elaborate non-trivial parallelisation schemes 
will be needed to push the boundary of computing with 
more heavy atoms in each molecular formula beyond the 
current 15–20 atom limit. The exponential explosion of 
the number of isomers in this region, will only allow for 
very moderate advances though. We also aim to integrate 
MAYGEN into the Chemistry Development Kit (CDK) 
[19] in the near future which will enable an easy integra-
tion of the molecular structure generator in other soft-
ware programmatically. Furthermore, it is desirable that 
MAYGEN can use substructures in its input as building 
blocks, in order to include them as badlists or goodlists 
into the generation and therefore reduce the number of 
candidate structures to generate. This will enable its use 
in systems for computer-assisted structure elucidation 
(CASE) whose aim is to elucidate chemical structures 
from NMR and mass spectral data.

Conclusion
In this manuscript we presented MAYGEN, an open-
source constitutional isomer generator completely writ-
ten in Java. MAYGEN generates constitutional isomer 

Fig. 9  Times for structure generation runs with MOLGEN 5.0, 
MAYGEN and PMG for molecular formulae containing all allowed 
elements (carbon, hydrogen, oxygen, nitrogen, phosphorus, 
sulfur and halogens. The total run times (s) are plotted. For a fairer 
comparison, Fig. 10 shows the per-molecule run times

Fig. 10  Times for structure generation runs with MOLGEN 5.0, 
MAYGEN and PMG for molecular formulae containing all allowed 
elements (carbon, hydrogen, oxygen, nitrogen, phosphorus, sulfur 
and halogens. Since PMG generates additional structures with higher 
oxidation states for N, S and P the run times (ms) for the construction 
of per molecule are plotted
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spaces exhaustively and avoids isomorphic structures 
during the generation using the principles of orderly 
canonical graph generation. We presented extensive test-
ing of MAYGEN against two alternative solutions: MAY-
GEN outperforms the current best open source structure 
generator PMG by orders of magnitude, on average 47 
times faster, and is only marginally slower, on average 
three times, than the fastest current state-of-the-art soft-
ware MOLGEN. We expect MAYGEN to be a starting 
point for further developments in the area of chemical 
structure generation by the open source, open science 
community.
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