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The generation of constitutional isomer chemical spaces has been a subject of cheminformatics since the early 1960s,
with applications in structure elucidation and elsewhere. In order to perform such a generation efficiently, exhaus-
tively and isomorphism-free, the structure generator needs to ensure the building of canonical graphs already during
the generation step and not by subsequent filtering. Here we present MAYGEN, an open-source, pure-Java devel-
opment of a constitutional isomer molecular generator. The principles of MAYGEN's architecture and algorithm are
outlined and the software is benchmarked in single-threaded mode against the state-of-the-art, but closed-source
solution MOLGEN, as well as against the best open-source solution PMG. Based on the benchmarking, MAYGEN is on
average 47 times faster than PMG and on average three times slower than MOLGEN in performance.
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Introduction

Unconstrained isomer generation has received attention
over the past decades as a means to assess the theoreti-
cally existing chemical space and as a hypothesis gen-
erator. Recently, the works of Jean-Louis Reymond and
coworkers for the creation of the GDB-11 [1], GDB-13
[2] and GDB-17 [3] databases, enumerating all possi-
ble molecules with 11, 13, and 17 non-hydrogen atoms,
respectively, in the molecular formula, have laid out the
motivations for unconstrained isomer generation and
the exploitation of its results in sufficient detail. Such
molecular generation methods can be used as hypothesis
generators in areas such as computer-assisted structure
elucidation, but also to answer broader questions such
as the exact size of a chemical space. Structure genera-
tors that produce constitutional isomers take a molecular

*Correspondence: christoph.steinbeck@uni-jena.de
Institute for Inorganic and Analytical Chemistry, Friedrich-Schiller
University, Lessing Strasse 8, 07743 Jena, Germany

B BMC

formula as input, e.g., C10H160, and enumerate or output
all possible chemical structures that can be built with the
given set of atoms in the molecular formula. The history
of chemical graph generators reaches back to the 1960s
and started with the DENDRAL project [4]. Their struc-
ture generator, CONGEN [5], was based on the substruc-
tures building blocks and dealt well with the overlapping
substructures. Another structure generator substruc-
ture building blocks based was Assemble [6]. Chemical
graph generators are based on mathematical theorems,
especially the application of algorithmic group theory
[7] and combinatorial algorithms [8]. MASS was a tool
for the mathematical analysis of molecular structures
and constructes molecules by generating their adjacency
matrices [9] and SMOG [10] was the successor of MASS.
Adjacency matrices include the edge multiplicity infor-
mation for each atom pair in molecules.

Despite the long history of research on the theoretical
and practical generation of chemical graphs, the num-
ber of publicly available algorithms and software for this

©The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material

in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativeco
mmons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/
zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.


http://orcid.org/0000-0001-6966-0814
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13321-021-00529-9&domain=pdf

Yirik et al. J Cheminform (2021) 13:48

purpose is still limited. The available generators [11] are
ASSEMBLE [6], COCON [12], DENDRAL [4], LSD [13],
MOLGEN [14], OMG [15], PMG [16], SENECA [17]
and SMOG [10]. These generators and more details are
described in [11]. For several decades, the closed-source,
commercial structure generator MOLGEN, developed
in C at the University of Bayreuth, marked the state of
the art in terms of speed and completeness. Recognising
the need for an open-source structure generator, Peiron-
cely and colleagues [15] developed the Open Molecule
Generator (OMG). OMG, however, is orders of magni-
tude slower than MOLGEN. Following OMG, a parallel-
ized structure generator, PMG, was developed based on
the OMG algorithm. The 452,458 isomers of CioHi60,
for instance, are generated in only 3 s by MOLGEN
5.0, whereas MAYGEN 1.4 and PMG take 10 and 45 s,
respectively. For more benchmarks, see “Results” section
of the present manuscript.

In this work, we present the development of an open-
source structure generator MAYGEN, a pure-Java con-
stitutional isomer generator based on the principle of
orderly generation described by Grund et al. [18]. We
benchmark our method against the fastest available
open-source solution PMG as well as against the closed-
source, de facto gold standard MOLGEN. On average,
MAYGEN is 47 times faster than PMG and three times
slower than MOLGEN. In an old Arabic saying, “may”
refers to a drop of water, and we hope that MAYGEN will
be a good contribution to the field and trigger a surge in
the development of improved and faster versions eventu-
ally rivalling the best closed-source solutions and thereby
serving the scientific community. The complete MAY-
GEN code, as well as precompiled binaries, are available
on GitHub.

Methods

MAYGEN 1.4 generates constitutional isomers of a given
molecular formula with an orderly graph generation
algorithm from the field of algorithmic group theory. The
principles are described in detail in [18]. We summarize
them as following. A graph with p nodes, 1,2,3,...,p has
its symmetry group S,,. This symmetry group includes all
the permutations of these nodes. However, for the case of
coloured graphs, the nodes need to be partitioned (Eq. 1),
in other words, nodes are grouped based on their col-
ours, degrees and edges.

Ji= (. ) with Y Ji = 1)

A molecule can be represented as a coloured graph. For
4 isomers of CgO2H;¢ (Fig. 1), all atoms are coloured by
their element types.
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Fig. 1 Fourisomers of CgO,His. Atoms are coloured by their type

The atoms of CgOyHjs can be partitioned in three
groups as following: 4 = 2, 8, 16. For the case of this node
partition, the symmetry group of 26 nodes, Sy, cannot be
used since the nodes are coloured. In this case, a special
type of symmetry group is applied, consisting of Young
subgroups, that are the symmetry groups built based on
the initial node partition (Egs. 2 and 3).

i—1 i
n=Unl’1wherenf“= Zij—l-l,...,Z)hj (2)
i j=1 j=1

s; ::{7‘[ € SulVi: w(n}) = n;?} C S, 3)

In Eq. (2), these two summations give the minimum and
maximum entries of the integer range. For the partition
A =2,8,16, its integer sets are:

{1,2}U{3,4,5,6,7,8,9,10} U {11,12,13, 14, 15, 16,17, 18,
19,20, 21,22, 23,24, 25, 26}

This symmetry group S} is the direct product of Young
subgroups permuting each atom type within its parti-
tion. In the case of CgO2Hie, the symmetry group of S is
Si1,2) * 5(3,4,5,6,7,89,10} * S{11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26}
The permutations of these symmetry groups only per-
mute each element type within their groups, such as oxy-
gens, carbons and hydrogens. The Young subgroups are
then used for the construction of molecules’ automor-
phism groups (Eq. 4). These atom partitions and symme-
try groups are the core part of the MAYGEN canonical
test.

Aut(A) :=={m € Sy|lAmn = A} C Sy (4)

MAYGEN's construction of candidate structures consists
of three distinct recursive tasks. First, the hydrogens are
distributed to the heavy (i.e. non-hydrogen) atoms of the
molecular formula. Then, the structures are generated in
a block-wise manner, and finally, the canonical test avoids
the generation of duplicate structures in an efficient and
dynamic manner.


https://github.com/MehmetAzizYirik/MAYGEN
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Molecular formula check and hydrogen distribution

Graph existence check

Before calling the generator functions, there is a pre-
liminary test for input molecular formulae. From graph
theory, a degree list d can represent a graph with p nodes
if the sum of all node degrees is equal or greater than
2 % (p — 1) and if the sum is an even number (Eq. 5) [18].

)4 r
d = (d1,dy,...,dp) Zdiisevenand Zdi >2x(p—1)

i=1 i=1

(5)
A graph with p nodes should consist of at least (p — 1)
edges. Since an edge is connected with two nodes in a
graph, the sum of its node degrees should be equal to or
greater than 2 x (p — 1).

Hydrogen distribution

For a given molecular formula, MAYGEN processes
the hydrogens first and distributes them to all the other
atoms in all possible ways since a hydrogen atom has a
valence of 1 and can always have only one neighbour.
The hydrogen distribution function takes two inputs, the
atom partition and the number of hydrogens. The hydro-
gens are distributed in ascending order within each parti-
tion in order to avoid duplicates.

After the hydrogen distribution, the initial degrees and
the initial partition are updated for each hydrogen dis-
tribution. For example, the non-hydrogen atoms from
the molecular formula C¢Hg have the initial respective
degrees as [4, 4, 4, 4, 4, 4] and the initial partition {6}.
There are 7 possible hydrogen distributions (Fig. 2) to
these carbon atoms. After the hydrogen distribution step,
the new lists of node degrees and partitions are used for
the structure generation process. With the pre-hydrogen
distribution, MAYGEN deals with a 6 x 6 matrix instead
of a 12 x 12 matrix. The matrix size also has an impact
on the canonical test since this test depends directly on
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the rows’ permutations. The hydrogen distribution code
is available in the hydrogenDistributor Java class.

Construction of candidate structures
Once the molecular formula satisfies the graph existence
criteria, the hydrogen distribution is performed to build a
list of degrees. MAYGEN then starts the actual construc-
tion of candidate structures for each degree. The struc-
tures are represented by adjacency matrices in which
each entry represents the edge multiplicity between the
atom pairs. These matrices are built in a block-wise man-
ner. The algorithm is based on the node degrees that
correspond to the atom valences. The initial partition of
the atoms, based on their element symbols, defines the
blocks of the matrix (Fig. 3).

With p being the number of atoms in the molecular
formula without the hydrogens, an empty p x p matrix A
is built. This matrix is filled in descending order starting

A/H

A2

Al

T A A Ay T
Fig. 3 Block-wise representation of a matrix. Here, the matrix is split
into parts based on the initial node partition with p entries. Image
adapted from Grund et al. [18]
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Fig. 2 lllustration of the hydrogen distribution of C6H6 (in yellow) and its effect on the assigned atom valency (in blue) and on the atom partition
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with the maximal capacities and this is performed for
each atom. The maximal capacity of an atom is calculated
by decrementing its valence. For example, the valence of
carbon is 4 and its maximal capacity is 3. Due to the diag-
onal symmetry of such matrices, only the upper triangu-
lar part needs to be filled. A canonical test, as described
below, is performed once a block is filled. In a matrix, a
block is defined as a number of rows and their transposes
(i.e. columns). For example, a block between two indices
1 and 4 means the first 4 rows and the first 4 columns of
the matrix. It needs to be noted that the canonical tests
are performed without waiting for the whole matrix to be
filled, which increases MAYGEN's efficiency. This is the
early boundary condition of the block-wise generation
and avoids the construction of duplicate molecular struc-
tures. When the whole matrix is filled, it is written into
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the output SDF file, if such an option is selected at the
beginning of the process. The algorithm then modifies
the same input matrix A until there are no more possi-
ble changes. This is called the “build-and-forget method”
[18]. The overall algorithm structure is explained in Algo-
rithm 1 [18] and illustrated in Fig. 4.

Keeping the example of CsO2Hg, the initial valence
vector is v = [4,4,4,4,4,4,2,2,1,1,1,1,1, 1], where the
valences of each carbon atom are listed first, then the
valences of each oxygen atom, and lastly the valences of
all 6 hydrogen atoms. To optimize the process, the hydro-
gens are avoided in the further construction of the matri-
ces by the hydrogen distribution step. Thus, the initial
partition is 4 = {6,2} and the corresponding matrix is a
8 x 8 matrix (built on 6 carbons and 2 oxygens).

Algorithm 1: MAYGEN algorithm

Input: Molecular formula with p non-hydrogen atoms

Output: SDF file with molecular structures

Step 1: Perform hydrogen distribution

Step 2: First the block index i is set, ¢ = 1; go to step 4.
Step 3: if i = 0 then the procedure stops else go to step 5

Step 4: Maximum filling

Fill the strip A(7) in lexicographic order depending on the valences.

if no more fillings exist then
1 seti=(t—1)
2 gotostep 3
else go to step 6
Step 5: Smaller filling

Fill the strip A(7) in a reverse lexicographic order depending on the valences.

if no more fillings exist then
1 seti=(i—1)
2 gotostep 3
else go to step 6
Step 6: Canonical Test

if A7) > A(i)w for all m € Aut(A) then A(7) is canonical

if 4 = p then

(a) canonical matrix is complete
(b) store in output SDF file

(c) go to step 5
else

(a) update Aut(A)

(b) seti=(i+1)

(c) go to step 4

else go to step 5
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Fig. 4 MAYGEN flowchart. The input formula includes p non-hydrogen atoms
Canonical test the detection of the maximal matrix with respect to the
The canonical test is the crucial part of the MAYGEN  given initial node partition.
algorithm. In block-wise orderly structure generation, the

g ‘ ’ Aerly ger A>Anr Vm €S, (6)
early canonical testing avoids the construction of many

duplicates. Overall, the purpose of the canonical test is
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In the naive version of the canonical test, the matrix A is
permuted for all the permutations of S,; and its maximal-
ity is checked (Eq. 6). In the permuted matrices, Ay, their
rows and entries are permuted. The original matrix A is
compared with all the permuted matrices. Two matri-
ces are compared row by row in a lexicographical order
(Eq. 7).

!
A>A = (a1,... s ALps 215 - -1 A2ps Ap 1y - - - ,ap,p)
’ ’ / / ’ ’
> (al,l' e A A1 8 Gy ;ﬂp,p)
(7)

In the block-wise orderly generation, only the rows
within the blocks are compared.

Cycle transpositions

In the canonical test, the size of the symmetry group
affects the run time of the algorithm. The initial partition
is updated for each row during the test. Starting with the
initial partition, with each row, the partitions are refined.
The refinement process (Eq. 8) is explained below:

2 (i—1 i—1 . —
1 1,1, 2070 = 1,280, )i A s
20 — i-1 - -
1,.,1,1, 287" if 2P =1
i-1
(8)

For C303Hy, the initial partition without hydrogens is
{3,2}. Thus the partition list for all the rows are:

0 =(3,2)

A =1{1,2,2}
2 =1{1,1,1,2)
22 =1{1,1,1,2}
A =1{1,1,1,1}

These partition lists are used for the construction of the
symmetry groups. By comparing the indices of two con-
secutive partitions, the cycle transpositions of symmetry
groups are calculated. For partitions ¢~V and A%, the
number of cycles is the ith entry in the former partition
2V (Eq. 9).

7i—1
Sy =UL, G )S;ni=1,...,p—1 9)

For example, the initial partition is {3, 2} and the refined
partition for the first row is {1,2,2}. Here the number of
cycle transpositions is 3 since the first entry of the former
partition is 3. The cycle transpositions are (1,1), (1,2) and
(1,3). These cycles are calculated row by row for all the
partitions. The symmetry group of the molecule is calcu-
lated by the multiplication of all these cycles. The list of
the partitions and their cycles are listed below:
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=32} M=(1,2,2) Cycles:(1,1),(1,2),(1,3)
=(1,2,2) 2={1,1,1,2} Cycles: (2,2),(2,3)
22 ={1,1,1,2} 22=1{1,1,1,2} Cycles: (3,3)

22 ={1,1,1,2} 2*={1,1,1,1} Cycles: (4,4),(45)

Calculation of automorphisms

In the canonical test, for a candidate matrix the corre-
sponding automorphisms are calculated row by row. For
the ith row of a matrix, the cycle transpositions ¢;; are
calculated based on the partitions 1¢~Y and ). These
cycle transpositions are used in the automorphisms
search. All these cycles are multiplied in DFS manner
with all the former automorphisms 7 of the graph. This
updated list of permutations are used in the canonical
test of the matrix. For a graph with p nodes, its list of
automorphisms until the ith row is:

FO =(r e Fi V|t gy i<j<iit (10)

After the multiplication with all its cycles (Eq. 10), this
updated list of automorphisms is used in the maximality
check. If an automorphism is detected, that permutation
is added to the automorphisms list, F%. Thus, the auto-
morphisms list is updated for each row until the row is in
maximal form with respect to its partitions.

Maximality check

For the maximality test of the ith row of a matrix, the
row is compared with each permutation action in the
automorphisms list. For each permutation, the original
matrix A is permuted. Then, the ith rows of the original
matrix and the permuted one are compared. These two
rows are compared based on the ith atom partition. For
an initial matrix A, as shown in Fig. 5a, with its partition
J© = (5} and the refined partition 7O = (1,4}, there
are 5 cycle transpositions. One of these cycles is (1,2). To
perform the maximality test, its first and second rows are
compared (Fig. 5a).

In this example, the permutation (1,2) is an automor-
phism of the first row since it maps the row to itself in
the adjacency matrix. Then this permutation is added to
the list of automorphisms. However, in the case where
a mapping with a cycle does not map the row to itself,
a canonical permutation is needed. For an initial matrix
B (Fig. 5b) with its initial partition 1) = {5}, its refined
partition is A" = {1,4}, and there are 5 cycle transposi-
tions for these partition. One of them is (1,2). To perform
the maximality test, its first and second rows are com-
pared (Fig. 5b).

Different from example A, in matrix B the first and sec-
ond row are not identical after the cycle transpositions,
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Comparsanfy 2 1 1 0] 0 2 1 1 0]

2 01 1 0 0 2110
11011 Cycle action on row 11011
111 0 1| CAUTAme 11101
00110 001 1 0
Initial matix Updated matrix

0 _ ] _
Comparisonf(y 9 | 1 () 0 2110
C:-.‘Z 0 011 0 2 011
1 00 1 1 Cycle action on row 1 00 11
11101 — Bll] # B[1] * (1,2) 11101
01110 0 111 0

()
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20011 Cycle action 02011 Permutation 02110
10011 10011 - B[1] = B[1] % (1,2)(3,5) 1 0011
11101 11101 11101
0111 0] 0 1 11 0 01110

Fig. 5 Maximality check.a A matrix A is permuted with a cycle transposition. The first and the second rows are identical after the permutation

action. b A matrix B is permuted with a cycle transposition. The first and the second rows are not identical. ¢ The canonical permutation of matrix B

is given

and a canonical permutation is therefore needed. The
canonical permutations are searched within the Young
subgroups built with respect to the refined partition. In
this example, the refined partition is 20" ={1,4}. Thus,
the symmetry group is Si1) * Sj2,34,5). For the canonical
permutation search, only the permutations of the sets {1}

and {2,3,4,5} are required. For the rows of matrix B, the
canonical permutation is then (3,5), as depicted in Fig. 5c.
Thus, (1,2)(3,5) is the automorphism of the first row and
added to the automorphisms list for further testings.

In general, there are three criteria for updating the
automorphisms list and for the maximality check:

1 Procedure: Updating the automorphism list and maximality check

1 If the row i is maximal and equal to the permuted row, the permutation is added to the

automorphism list;

2 If the row i is maximal but not equal to the permuted row, an automorphism is searched in its

Young subgroup

(a) If there is such an automorphism, the permutation is added to the automorphisms list;
(b) Else, the automorphism is ignored and not added to the list.
3 If the original row i is smaller than the permuted matrix, the tested candidate molecule is not
canonical. The canonical test is then terminated.
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In the canonical test, if the row is canonical after test-
ing all the permutations, the partition A¢+1 is built based
on the ith row’s entries. After filling the entries of the ith
row, i.e., adding bonds to the ith atom, the atom neigh-
bourhoods are changed. Therefore the partition A¢+D is
defined based on the partition A and the ith row entries.
For matrix A and its refined partition 20" — {1,4}, its
partition first is updated with respect to the first row
entries:

Refined partition 2© = {1,4} — A[1] = [0]2,1,1,0]
— Updated partition /Y = {1,1,2,1}

The canonical test continues until the rows are in maxi-
mal form in lexicographic order. The automorphisms and
partition lists are updated row by row.

Learning from canonical test

In case a molecule cannot pass the canonical test, there
is still something to learn from the test. In the row by
row comparison of the canonical test, when a row does
not pass the test, the entry making it non-canonical is
detected. As explained in Algorithm 1, if a block is not
canonical, MAYGEN updates the matrix starting with
its last entry in the block. However, with the help of the
non-canonical matrix, the algorithm starts modifying the
matrix from the entry making the matrix non-canonical.
For a matrix C with its partition (%) = {5} and the refined
partition 20" = (1,4}, there are 5 cycle transpositions.
One of these cycles is (1,3). To perform the maximality

(a) (b)
0 3 10 0 0] H
300010 HE/C\*
100101 2| H
001011 ! Il
010100 N
001100 He

Fig. 7-a The adjacency matrix of a?w isomer of CsHe. b An isomer of

CeHe

test, its first and third rows are compared as shown in
Fig. 6.

The permutation 7 = (2,4)(3,5) € Sq1} * S(2,3,4,5)
makes the third row bigger than the first row. Here the
first entry making the row non-canonical is C[3, 4] in the
matrix. Then the matrix construction continues with the
indices [3, 4]. Using the learning from the canonical test,
all the other non-canonical matrices are skipped.

Connectivity test
The connectivity test of a graph is performed based on
the neighbourhoods of all its nodes. The connectivity
test starts with enumerating the nodes and setting this
as the initial graph enumeration. The enumeration list is
updated while checking the neighbour lists node by node.
After detecting neighbours of a node, the labelling of the
tested node and its neighbours from the graph enumera-
tion list are stored. The minimum value of this set is given
as the smallest index of the neighbourhood. This smallest
index value is used for updating the list of graph enumer-
ation. The test is terminated once all the nodes have the
same label or all the nodes are re-labelled. For example,
the connectivity test is performed for an isomer of C¢Hg
represented by the adjacency matrix A (Fig. 7a) with its
initial node enumeration (labels) {1, 2, 3, 4, 5, 6} (Table 1).
The matrix A (Fig. 7a) is connected since the small-
est node label for each tested node is 1 and its last node
enumeration list includes only 1s. Thus there is only
one component whose smallest index is 1 (Fig. 7b). For
a disconnected chemical graph represented by the adja-
cency matrix B (Fig. 8a) with its initial node enumeration
(labels) {1, 2, 3, 4, 5, 6}.

Table 1 The connectivity test for an isomer of CsHg represented
by matrix A (Fig. 7a)

Nodeindex Neighbors Formerlabel Minimum Enumeration
label
1 {1,2,3} {1,2,3} 1 {1,1,14,56}
{2,5} {1,5} 1 {11,146}
{3,4,6} {1,4,6} 1 ARARAN
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Table 2 The connectivity test for an isomer of CgHg represented
by matrix B (Fig. 8a)

Node index Neighbors Formerlabel Minimum Enumeration
label
1 {1,2,5} {1,2,5} 1 {1,1,34,1,6}
2 2,5 {1} 1 {1,1,34,1,6}
3 (34,6} (34,6} 3 {1,1,34,1,6}
4 4,6} (3} 3 {1,1,33,1,3}
5 {5} {1} 1 {1,1,33,1,3}
6 {6} {3} 3 {1,1,33,1,3}

The matrix B represents a disconnected isomer of
CgHg. This molecule has two components (Fig. 8b) with
the indices ¢; = {1,2,5} and ¢» = {3, 4, 6}. The first com-
ponent ¢ is the first component with respect to its atom
labelling. Here, components are compared with respect
to their maximum index.

Learning from connectivity test

Similar to “Learning from canonical test’, there is still
something to learn from the connectivity test if a mol-
ecule is not connected. In MAYGEN, the connectivity
test is performed when a canonical matrix is complete. If
a molecule is not connected, it is not stored in the output

> java —jar MAYGEN. jar
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file and its first component needs to be detected. For
example, the matrix B with Table 2, its first component is
¢1 = {1,2,5}. The maximum index of the first component
identifies where the graph gets disconnected.

In Algorithm 1, when a matrix is complete and stored
in the output file, the generation process continues with
the backward function. Here, the last index of the matrix
is used as the input. However, with the “learning from
connectivity test’, the algorithm continues with the last
entry of the first component. For example, in matrix B,
the first component is ¢; = {1,2,5} and the maximum
index is 5. Thus, the graph gets disconnected after the
last entry of the fifth row, B[5, 6] entry of the matrix B.
All the other modifications on the matrix between its last
entry [6, 6] and [5, 6] build only disconnected graphs.
That is why the matrix modification process continues
with the last entry of the first component. Learning from
the connectivity test reduces the construction of discon-
nected graphs.

Results

MAYGEN is written purely in Java and hosted on GitHub
(see section Availability). The full source code, as well as
pre-compiled binaries, are available for download. The
code can be executed as follows:

usage: java —jar MAYGEN. jar —f <arg> [-v] [-d <arg>]
Generates molecular structures for a given molecu- @) (b)

lar formula. The input is a molecular formula string, e.g. ‘e

‘C,OH,’ Besides this formula, the directory is needed to 030010 \

be specified for the output file. 300010 . '/CSH"’
000201 I e
002001 ’\
110000 CH,
001100 L

HC’,
Fig. 8 aThe adjacency matrix of an isomer of CgHg. b A
disconnected molecule with formula CeHg
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Table 3 The number of structures and the run times are listed
for MOLGEN 3.5 and MOLGEN 5.0 with a randomly selected 10
molecular formulae

Formula # Structures MOLGEN 3.5 MOLGEN 5.0 Ratio of
runtime (s) runtime(s) runtimes
CioHisN 2,569,697 9 32 3.556
CsHFIN3O 2,737,786 7 38 5429
C7H9NO» 3,237,132 11 29 2637
CoH120; 3,276,662 11 42 3.819
CsHgN,O3 4,513,867 11 40 3.637
CoH7N 2,521,767 6 42 7
CsH,BrCIN,O, 5,211,489 9 50 5556
CgH1003 3,869,189 13 44 3.385
C7H1004 1,428,242 5 16 32
C7HgO4 2,709,647 9 31 3.445

The benchmark is performed without the aromaticity check

—f,——formula <arg>
—v,——verbose
—t,——tsvoutput

and execution time
—d,——filedir <arg>
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PMG is faster. We used the latest version of Molgen, V
5, to be able to benchmark against larger numbers of
molecular formulae. Molgen 3.5, which is faster than
Molgen 5, is only available as a Windows GUI application
and, to the best of our knowledge, cannot be run in batch
mode. Furthermore, we do not own Windows license of
Molgen 3.5. We did, however, manually run 10 formulae
of the test version of Molgen 3.5 against the test version
of Molgen 5 on the same Windows machine (Table 3).
The comparison showed that Molgen 3.5 is about four
times faster than Molgen 5 on average for these 10 tests.
Different from MOLGEN 5.0 [14], PMG generates struc-
tures for additional valences of sulfur (S), phosphorus
(P) and nitrogen (N) and therefore more molecules than
MOLGEN or MAYGEN [15]. MOLGEN 5.0 uses the

output formula ,
in CSV format
store output in given file

formula (required)

print message

number of structures

In order to generate constitutional isomers, the user
needs to pass a molecular formula with the -f option:

> java —jar MAYGEN. jar —f C10H16

MAYGEN is

The number of structures 1is:

Time: 1.590 seconds

generating isomers of C10HI16...

24938

Alternatively, users who either want to contribute to
the development or use the latest source code can clone
the GitHub repository and build the MAYGEN binary
using the Maven build environment.

For the purpose of this publication, MAYGEN was
tested with randomly selected molecular formulae. The
run times of MAYGEN, MOLGEN and PMG are com-
pared in Table 4. The computational experiments were
performed in single-threaded mode and without stor-
ing structures in an output file. PMG was tested against
OMG and confirmed that even in single-threaded mode,

default lowest valences for N(3), S(2), and P(3), unless
a user defines the higher valences. For all the results
given in Table 4, MAYGEN generated the same number
of structures as Molgen 5.0. Molgen has an aromaticity
filter that filters out resonance structures of substituted
aromatic molecules. This filter was deactivated with the
-noaromaticity flag to achieve comparability. Since halo-
gens are not defined in PMG, it does not generate struc-
tures with molecular formulae including Cl, F, Br, I.
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Fig. 9 Times for structure generation runs with MOLGEN 5.0,
MAYGEN and PMG for molecular formulae containing all allowed
elements (carbon, hydrogen, oxygen, nitrogen, phosphorus,
sulfur and halogens. The total run times (s) are plotted. For a fairer
comparison, Fig. 10 shows the per-molecule run times
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Molecular Formulae
Fig. 10 Times for structure generation runs with MOLGEN 5.0,
MAYGEN and PMG for molecular formulae containing all allowed
elements (carbon, hydrogen, oxygen, nitrogen, phosphorus, sulfur
and halogens. Since PMG generates additional structures with higher
oxidation states for N, S and P the run times (ms) for the construction
of per molecule are plotted

For most structures containing all allowed elements,
MOLGEN was slightly faster than MAYGEN and much
faster than PMG (Figs. 9, 10); for carbohydrates and
those containing additional oxygen, MAYGEN’s execu-
tion speed was comparable to that of MOLGEN. Since
PMG does not generate structures for formulae with hal-
ogens, “N/A” is added to the result table. “> 24 h” is added
to the result for the formulae for which PMG took longer
than a day. These results are visualized with spaces in the
plots (Figs. 9, 10).

Limitations

MAYGEN is currently restricted to generate molecules
with the lowest valence states of nitrogen, phosphorus
and sulfur, and all testing and benchmarking was done
under this boundary condition. This is no principle
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restriction—the algorithm will work with any given
valence state—but the workflow logic of MAYGEN needs
to be adapted to compute structures for higher valences
of these elements.

Future work

Being implemented in pure Java and with its code com-
pletely open, MAYGEN can be easily extended with addi-
tional functionalities and algorithmic improvements. The
code availability through GitHub invites the scientific
community to contribute to the further developments of
MAYGEN. Obvious future work includes performance
enhancements and the parallelization of the algorithm.
Future implementations of MAYGEN will be parallel-
ised. The lowest hanging fruit will be exploiting the built-
in parallelism in the Java VM using multiple available
cores. Here, trivial parallelism can be used by computing
the isomers of different hydrogen distributions simulta-
neously. With 8 cores in the CPU of the senior author’s
laptop and 18 cores in individual CPUs on our local
compute cluster, significant speed gains can be achieved
through this simple measure. The examples in our results
Table 4 have between 2 and 74 hydrogen partitions,
which yields plenty of space for further speed gains.
Trivial parallelism can be pushed further by recent cloud
orchestration schemes where containers can be seam-
lessly launched in large clouds, for example using the
Google Container Engine. Here, the number of parallel
computations X can be matched to fit the number of par-
titions precisely, leading to an approximate speed gain of
X, ignoring the container provisioning and result collec-
tion. More elaborate non-trivial parallelisation schemes
will be needed to push the boundary of computing with
more heavy atoms in each molecular formula beyond the
current 15-20 atom limit. The exponential explosion of
the number of isomers in this region, will only allow for
very moderate advances though. We also aim to integrate
MAYGEN into the Chemistry Development Kit (CDK)
[19] in the near future which will enable an easy integra-
tion of the molecular structure generator in other soft-
ware programmatically. Furthermore, it is desirable that
MAYGEN can use substructures in its input as building
blocks, in order to include them as badlists or goodlists
into the generation and therefore reduce the number of
candidate structures to generate. This will enable its use
in systems for computer-assisted structure elucidation
(CASE) whose aim is to elucidate chemical structures
from NMR and mass spectral data.

Conclusion

In this manuscript we presented MAYGEN, an open-
source constitutional isomer generator completely writ-
ten in Java. MAYGEN generates constitutional isomer
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spaces exhaustively and avoids isomorphic structures
during the generation using the principles of orderly
canonical graph generation. We presented extensive test-
ing of MAYGEN against two alternative solutions: MAY-
GEN outperforms the current best open source structure
generator PMG by orders of magnitude, on average 47
times faster, and is only marginally slower, on average
three times, than the fastest current state-of-the-art soft-
ware MOLGEN. We expect MAYGEN to be a starting
point for further developments in the area of chemical
structure generation by the open source, open science
community.
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