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Abstract 

Recent advances in machine learning technologies and their applications have led to the development of diverse 
structure–property relationship models for crucial chemical properties. The solvation free energy is one of them. Here, 
we introduce a novel ML-based solvation model, which calculates the solvation energy from pairwise atomistic inter-
actions. The novelty of the proposed model consists of a simple architecture: two encoding functions extract atomic 
feature vectors from the given chemical structure, while the inner product between the two atomistic feature vectors 
calculates their interactions. The results of 6239 experimental measurements achieve outstanding performance and 
transferability for enlarging training data owing to its solvent-non-specific nature. An analysis of the interaction map 
shows that our model has significant potential for producing group contributions on the solvation energy, which 
indicates that the model provides not only predictions of target properties but also more detailed physicochemical 
insights.
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Introduction
The importance of solvation or hydration mechanisms 
and their accompanying free energy change has rendered 
in silico calculation methods for the solvation energy 
one of the most important applications in computational 
chemistry [3, 7, 12, 13, 15, 16, 18, 19, 21, 23, 33–37, 39, 
40, 43, 44, 50, 52, 54, 57, 58, 65, 67, 71, 73, 79, 81]. Sol-
vation free energy directly influences numerous chemi-
cal properties in condensed phases and plays a dominant 
role in various chemical reactions, such as drug delivery 
[18, 21, 51, 67], organic synthesis [53], electrochemical 
redox reactions [1, 30, 47, 72], etc.

Atomistic computer simulation approaches directly 
provide the microscopic structure of the solvent shell, 
which surrounds solute molecules [12, 21, 27, 36, 
65, 81]. The solvation shell structure offers detailed 

physicochemical information, such as microscopic mech-
anisms on solvation or the interplay between the solvent 
and the solute molecules when using an appropriate force 
field and molecular dynamics parameters. However, the 
explicit solvation methods mentioned above require 
extensive numerical calculations as each individual 
molecular system must be simulated. Practical problems 
in the explicit solvation model restrict its applications to 
simulations of classical molecular mechanics [12, 65, 81] 
or to a limited number of QM/MM approaches [27, 36].

In classical mechanics approaches for macromol-
ecules or calculations for small compounds at the 
quantum-mechanical level, the concept of implicit sol-
vation enables calculation of the solvation free energy 
with feasible time and computational costs when one 
considers a given solvent as a continuous and iso-
tropic medium, whose behavior is described by the 
Poisson–Boltzmann equation [16, 23, 33–35, 39, 40, 
43, 54, 73]. Numerous theoretical advances have been 
made to construct the continuum solvation model, 
which involves parameterized solvent properties: the 
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polarizable continuum model (PCM) [43], the conduc-
tor-like screening model (COSMO) [35] and its varia-
tions [32, 34], generalized Born approximations, such 
as solvation model based on density (SMD) [39] or sol-
vation model 6, 8, 12, etc. (SMx) [16, 40].

The structure–property relationship (SPR) via 
machine learning is rather a novel approach, which 
predicts the solvation free energy from a completely 
different point of view compared to computer simu-
lation approaches with precisely defined theoretical 
backgrounds [11, 74]. Although we may not expect 
to obtain detailed chemical or physical insights other 
than the target property because this is a regression 
analysis in its nature, SPR has demonstrated significant 
potential in terms of transferability and outstanding 
computational efficiency [11, 74, 79]. Recent progress 
in machine learning (ML) techniques [59] and their 
implementation in computational chemistry [8, 79] 
are currently promoting broad applications of SPR in 
numerous chemical studies [1–4, 7, 9, 10, 15, 18, 20, 26, 
28, 29, 50–52, 55, 56, 58, 60–62, 64, 66, 68, 71, 75–78, 
82]. These studies show that ML guarantees faster cal-
culations than computer simulations and more precise 
estimations than traditional SPR estimations; a consid-
erable number of models showed accuracies compara-
ble to ab initio solvation models in the aqueous system 
[79].

Previously, we introduced a novel artificial neural-
network-based ML solvation model called Delfos, which 
predicts free energies of solvation for generic organic 
solvents [37]. The model not only has a significant poten-
tial for showing an accuracy comparable to the state-of-
the-art computational chemistry methods [33, 40], but 
also offers information by which substructures play a 
dominant role in the solvation process. Herein we pro-
pose a novel approach to the ML model for the solvation 
energy estimation called MLSolvA, which is based on 
the group-contribution method. The key idea of the pro-
posed model is the calculation of pairwise atomic inter-
actions by mapping them into inner products of atomic 
feature vectors, while each encoder network for the sol-
vent and the solute extracts such atomic features. We 
believe that the proposed approach presents a powerful 
tool for understanding solvation processes and is capable 
of strengthening various solvation models via computer 
simulations.

The paper is constructed as follows: in “Methods” sec-
tion, we introduce the theoretical background of applied 
ML techniques and the overall architecture of our pro-
posed model. “Results and discussion” section quanti-
fies the model’s prediction performance with 6239 data 
points, mainly focusing on pairwise atomic interactions 
and corresponding group contributions on the solvation 

free energy. “Conclusions” section summarizes and con-
cludes our work.

Methods
Model architecture
In the proposed model, the linear regression task of cal-
culating the solvation free energy between the given 
solvent and solute molecules starts with embedded atom-
istic vector representations [25, 37] of the solvent mole-
cule consisting of xα ’s and the solute molecule consisting 
of yβ’s, where α and β are the atom indices. Then we can 
describe the given molecule as a tensor, which is a collec-
tion (or a sequence) of atomistic vectors: 

 where xα and yβ are the α-th row of X and the β-th row 
of Y , respectively. Here, dimensions of two tensors are 
Ma × D for X and Mb × D for Y , where Ma and Mb are 
the sizes of the given solvent and solute (by heavy atom 
count), and D is the embedding dimension. Then, the 
encoder function learns of their chemical structures and 
extracts feature tensors P for the solvent and Q for the 
solute, 

 Dimensions of P and Q are Ma × N  and Mb × N  , 
respectively. The numbers of rows are invariable because 
the encoder function should preserve the topological 
structure of the given molecule, however, the column 
dimension, D can differ with N, depending on the num-
ber of hidden units of the encoder. Rows of P and Q , pα 
and qβ involve atomistic chemical features of atoms α and 
β , which are directly related to the target property, i.e. the 
solvation free energy in the present work. We calculate 
the un-normalized attention score (or chemical similar-
ity) between the atoms α and β with Luong’s dot-product 
attention [38],

which is an element of Ma ×Mb tensor of atomistic 
interactions, I . Because our target quantity is the free 
energy of solvation, we expect such chemical similarity 
Iαβ to correspond to atomistic interactions between α 
and β , which includes both energetic and entropic con-
tributions. Eventually, the free energy of solvation of the 
given solvent–solute pair, which is the final regression 

(1a)X = {xα} α ∈ {1, . . . ,Ma},

(1b)Y =
{

yβ
}

β ∈ {1, . . . ,Mb},

(2a)P = {pα} = Encoder(X),

(2b)Q =
{

qβ
}

= Encoder(Y).

(3)Iαβ = −pα · qβ ,
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target, is expressed as a simple summation of atomistic 
interactions:

Certainly, one can also calculate the free energies of sol-
vation from two molecular feature vectors, which repre-
sent the solvent properties u and the solute properties v , 
respectively:

The inner-product relation between molecular feature 
vectors u and v has a formal analogy with the solvent-gas 
partition coefficient calculation method via the solvation 
descriptor approach [63, 70]. Figure 1 illustrates an over-
view of the architecture of the proposed ML solvation 
model.

Encoder networks
We chose and compared two different neural network 
models to encode the input molecular structure and 
extract important structural or chemical features that are 
strongly related to solvation behavior. One is the bidirec-
tional language model (BiLM) [49] based on the recur-
rent neural network (RNN), and the other is the graph 
convolutional neural network (GCN) [31] which explic-
itly handles the connectivity (bonding) between atoms 
with the adjacency matrix.

The detailed mathematical expressions of the BiLM, 
which is the first model, are given as follows [49]: 

 In Eq. 6, the right-headed arrow in 
−−→
RNN denotes a for-

ward-directed recurrent unit that propagates from the 
leftmost to the rightmost sequence. The BiLM likewise 
involves a backward-directed recurrent neural network 
( 
←−−
RNN ) and propagates from the rightmost to the left-

most sequence as well. The superscript (i) in hidden lay-
ers H(i) denotes the position at the stacked configuration. 
In the first layer, both forward and backward-directed 
RNN share the pre-trained sequence X as an input, −→
H (0) = ←−

H (0) = X.
Furthermore, more improved versions of RNNs, such 

as the gated recurrent unit (GRU) [14] or the long-short 
term memory (LSTM) [24] are more suitable when we 

(4)�G
◦
sol =

Ma
∑

α=1

Mb
∑

β=1

Iαβ .

(5)�G
◦
sol = u · v =

�

Ma
�

α=1

pα

�

·





Mb
�

β=1

qβ



.

(6a)−→
H (i+1) = −−→

RNN(
−→
H (i)),

(6b)←−
H (i+1) = ←−−

RNN(
←−
H (i)).

consider cumulated numerical errors due to the deep-
structured nature of RNNs [5],

Hidden layers from the forward and backward RNNs are 
then merged into a single sequence, as described in Eq. 7. 
Finally, we obtain the sequence of chemical feature vec-
tors of the α-th atom in the given solvent with weighted 
summation of stacked RNN layers,

where each weighing factor ci is also a trainable parame-
ter. The encoder function for solutes has an identical neu-
ral network architecture, which converts the pre-trained 
solute sequence Y into the feature sequence Q . In addi-
tion, each layer in the encoder must share the same num-
ber of hidden units N due to Eqs. 3, 8.

We consider the graph convolutional neural network 
(GCN), which is one of the most well-known algorithms 
in the chemical applications of neural networks [29, 

(7)H(i) = −→
H (i) +←−

H (i)
.

(8)P =
∑

i

ciH
(i)
,

Fig. 1  Schematic of MLSolvA architecture. Each encoder network 
extracts atomistic feature vectors given pre-trained vector 
representations, and the interaction map calculates pairwise 
atomistic interactions from Luong’s dot-product attention [38]
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31]. The GCN model represents the input molecule as a 
mathematical graph, instead of a simple sequence: each 
node corresponds to the atom, and each edge in the adja-
cency matrix A involves connectivity (or existence of 
bonding) between atoms:

The role of the adjacency matrix in the GCN constrains 
convolution filters to the node itself and its nearest 
neighbors. Equation 10 describes a more detailed math-
ematical expression of the skip-connected GCN [31]:

where D is the degree matrix, W1 and W2 are convolu-
tion filters, b is the bias vector, and σ denotes the acti-
vation function chosen as the hyperbolic tangent in the 
proposed model. The GCN encoder includes the stacked 
structure, and we obtain the feature sequence for each 
molecule in the same manner as described in Eq. 8.

Results and discussion
Computational setup and results
For the training and tests of the proposed neural net-
work, we prepared 6239 experimental measures of free 
energies of solvation for 935 organic solvents and 146 
organic solutes. A total of 642 experimentally measured 
values of the free energy of hydration are collected from 
the FreeSolv database [44, 45], and 5597 data points for 
non-aqueous solvents were collected with the Solv@
TUM database version 1.0 [22, 23]. The compounds in 
the dataset comprise ten different kinds of atoms that 
are common in organic chemistry, viz. hydrogen, carbon, 
oxygen, sulfur, nitrogen, phosphorus, fluorine, chlorine, 
bromine, and iodine. The maximum heavy-atom count 
is 28 for the solute molecules and 18 for the solvent 
molecules.

At the very first stage, we perform the skip-gram pre-
training process for 10,229,472 organic compounds, 
which are collected from the ZINC15 database [69], with 
Gensim 3.8.1 and Mol2Vec skip-gram model to construct 
the 128-dimensional embedding lookup table [25]. A 
total of 634 solutes 120 solvents in the FreeSolv/Solv@
TUM combined dataset appear in the pretraining data-
set. The pretraining process generates atomistic vector 
representations of the heavy atoms in different chemical 
environments distinguished by the Morgan identifiers 
[25, 46]. Although the skip-gram task does not guaran-
tee a significant enhancement of the model’s accuracy, 
we found that the pretrained model yielded more sta-
ble results in terms of RMSE variance (Additional file 1: 
Table S2). For the implementation of the neural network 

(9)H(i+1) = GCN(H(i)
,A).

(10)
GCN(H,A) = σ

(

D−1/2AD−1/2HW1 +HW2 + b
)

,

model, we mainly use TensorFlow 2.5.0 framework [41]. 
Each model has L2 regularization to prevent excessive 
changes on weights and to minimize the variance, and 
uses the RMSprop algorithm for minimization: 

 where Lt is the loss function, chosen as the mean 
squared error (MSE) in this work. Gt denotes a moving 
average of the squared gradient of Lt , and it scales update 
rates of the weight, w. The other parameters play the fol-
lowing roles: η is the initial learning rate, ρ is a discount-
ing factor for the moving average, and ǫ prevents possible 
bursting of 1/

√
Gt  for numerical stability. The selection 

of the optimized model for the target property is realized 
by an extensive Bayesian optimization process for tuning 
model hyperparameters [6] (Additional file 1: Table S1)

We employ five-fold nested cross-validation (CV) to 
evaluate the prediction accuracy of the chosen model. 
Nested CV incorporates two CV loops: the inner loop 
selects the best hyperparameters over the validation set, 
while the outer loop evaluates the model’s final perfor-
mance of prediction. This procedure prevents overlap 
and possible information leakage between the validation 
and test sets [48]. To evaluate the uncertainty of results 
taken from CV tasks, we take averages for all mean errors 
over eight independent nested CV runs, split from dif-
ferent random states. The results for the test run using 
nested CV tasks for the optimized models are shown in 
Fig. 2. We found that the BiLM encoder with LSTM layer 
performs slightly better than the GCN encoder, although 
their differences are not pronounced. The mean unsigned 
prediction error (MUE) for the BiLM/LSTM encoder 
model is 0.19 kcal/mol, while the GCN model results in 
MUE =  0.22 kcal/mol. Both values show that the pro-
posed mechanism works efficiently and guarantees 
excellent prediction accuracies for well-trained chemi-
cal structures. We also perform the same CV proce-
dure using the Direct Message-Passing Neural Network 
(D-MPNN) model [17], which is available at the chem-
prop package [80]. The prediction error of the D-MPNN 
model on the same dataset is MUE  =  0.19 kcal/mol, 
which indicates our proposed model design yields a com-
parable accuracy with the deep-learning model in the 
current state-of-the-art (see Additional file 2 for the raw 
data).

Visualization of chemical similarity
The fundamental idea behind the proposed model is the 
encoder network, which maps complex chemical features 

(11a)Gt = ρGt−1 + (1− ρ)(∇wLt)
2
,

(11b)wt = wt−1 +
η

√
Gt + ǫ

∇wLt ,
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into a vector representation. Because we aim for the free 
energy of solvation as the target property, geometries 
in the vector space must have a strong correlation with 
their solvation properties. We validate this point with 
t-Stochastic Neighbor Embedding (t-SNE) visualizations 
for pre-trained solute vectors y , and encoded molecular 
features v [48, 56]. The dimensions of those vectors must 
be reduced for visualization, because we use 128-dimen-
sional vector representations, which cannot be directly 
drawn into a graph. Figure 3 presents the reduced geom-
etries of y and v  in two-dimensional space, which indi-
cates that the proposed encoder neural network works 
as intended. Color shading depicts the predicted hydra-
tion free energies for 15,432 points, whose structures are 
randomly taken from the ZINC15 [69]; red and blue dots 

correspond to low and high hydration free energy cases, 
respectively. The significant correlation between reduced 
molecular feature vectors and predicted free energy val-
ues indicates how the proposed architecture extracts 
important molecular features and makes the prediction 
from them. Meanwhile, the pre-trained solute vectors 
from the skip-gram embedding model exhibit only weak 
correlations.

Advantage of model: transferability
Because our proposed neural network model is sol-
vent-generic, as it considers both the solvent and solute 
structures as separate inputs, it exhibits a distinct and 
advantageous character when compared to other sol-
vent-specific ML solvation models. Let us consider the 

Fig. 2  a Prediction errors for BiLM and GCN models in kcal/mol, obtained by five-fold nested cross validation results. Results taken from the 
D-MPNN model [17, 80] are also depicted for comparison. b Scatter plot between experimental values and predicted values by the models. Green 
circles depict the BiLM model, while the GCN results are depicted by blue circles

Fig. 3  Two-dimensional visualizations on a pre-trained vector from the skip-gram model 
∑

β yβ and b, c extracted molecular feature vector v for 
15,432 solutes. We reduce the dimensions of each vector using the t-SNE algorithm. The color representation denotes the hydration energy of each 
point
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following possible situation where one wants to predict 
the solvation free energy of a solute compound A in a 
solvent X  , �G

◦
AX . Since the model has been trained with 

varied kinds of solvents and solutes, the training data-
base will likely involve solvation free energy measures for 
A in other different solvents, e.g. �G

◦
AY , �G

◦
AZ , and so 

on. Then the model would have already become aware of 
the structural features of A , which could help the predic-
tion of �G

◦
AX [37]; this mechanism would not happen 

if the model supports only one kind of solvent. There-
fore, one of the largest advantages of our model is that 
we can easily enlarge the dataset for training, even in the 
scenario where we want to predict solvation free ener-
gies for a specific solvent. Figure  4 shows five-fold CV 
results for 642 hydration free energies (FreeSolv) from 
both BiLM and GCN models in two different situations. 
One uses only the FreeSolv [44, 45] database for training 
and tests, whereas the other uses both the FreeSolv and 
the Solv@TUM [22, 23] databases. Although the Solv@

TUM database only involves non-aqueous data points, 
it enhances each model’s accuracy by approximately 
20% (BiLM) to 30% (GCN) in terms of the MUE. These 
results imply that there are possible applications of trans-
fer learning to other solvation-related properties, such 
as aqueous solubilities [18] or octanol–water partition 
coefficients.

However, in some other situations, one may be con-
cerned that the repetitive training for a single compound 
may cause overfitting by the model, and they could 
weaken the predictivity for the structurally new com-
pound, which is considered an extrapolation. We inves-
tigate the model’s predictivity for extrapolation situations 
with a scaffold-based split [20, 37, 42, 77]. Instead of the 
ordinary K-fold CV task with the random and uniform 
split method, the K-means clustering algorithm builds 
each fold with the Molecular ACCess system (MACCS) 
substructural fingerprint [77]. An extreme extrapola-
tion situation can be simulated through CV tasks over 

Fig. 4  a CV-results for FreeSolv hydration energies with two different training datasets. Deep-colored boxes depict CV results with augmented 
dataset with Solv@TUM database. b CV results for two scaffold-based split methods using K-means clustering algorithm
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the folds, which are constructed by the clustering on sol-
vents or solutes. As shown in Fig.  4, the scaffold-based 
split on the solvents shows more degradation of predic-
tion performances than the scaffold-solute-based split 
due to the limited kinds of solvent compounds in the 
dataset, although both results are still within an accept-
able error level, given chemical accuracy of ~  1.0 kcal/
mol (raw data is available in Additional file 2). A consid-
erable part of degradation in the scaffold-solvent-based 
split arises from water solvent due to its unusually dis-
tinct physicochemical nature from other organic solvents 
[37]. Furthermore, the embedding scheme we use gener-
ates a unique Morgan identifier for the oxygen of water 
(864666390), which cannot be recognized or trained from 
the other hydroxyl oxygens such as alcohols (864662311).

Group contributions
Although we showed that the proposed NN model guar-
antees an excellent predictivity for solvation energies of 
various solute and solvent pairs, the main objective of 
the present study is to obtain the solvation free energy 
as the sum of decomposed interatomic interactions, as 
described in Eqs. 3 and 4. To verify the feasibility of the 
model’s solvation energy estimation to decompose into 
group contributions, we define the sum of atomic inter-
actions Iαβ over the solvent indices α as the group contri-
butions of the β-th solute atom:

 Figure  5 shows hydration free energy contributions for 
five small organic solutes with six heavy atoms: n-hexane, 
1-chloropentane, pentaldehyde, 1-aminopentane, and 
benzene. Both the BiLM and the GCN model exhibit 
a similar tendency in group contributions; the model 

(12)Iβ =
∑

α

Iαβ .

estimates that atomic interactions between the solute 
atoms and water increase near the hydrophilic groups. It 
is obvious that each atom in benzene must have identical 
contributions to the free energy; however, the results in 
Fig. 5 clearly show that the BiLM model makes faulty pre-
dictions while the GCN model works well as expected. 
We believe that this malfunctioning of the BiLM model 
originates from the sequential nature of the recurrent 
neural network. Because the RNN considers that the 
input molecule is only a simple sequence of atomic vec-
tors, and there are no explicit statements that involve 
bonding information, the model is not aware of the cyclic 
shape of the input compound [29, 51]. We conclude that 
it is inevitable to use explicitly bound (or connectivity) 
information when constructing a group-contribution 
based ML model, even though the RNN-based model 
provides good predictions in terms of their sum.

Conclusions
We introduced a novel approach for ML-based solva-
tion energy prediction, which exhibits great potential to 
provide physicochemical insight on the solvation pro-
cess. The novelty in our neural network model lies in the 
ability to calculate pairwise atomic interactions from the 
inner products of atomistic feature vectors [38]. This idea 
gives us more straightforward and interpretable infor-
mation on intermolecular interactions between the sol-
ute and solvent molecules, and the model calculates the 
solvation free energy from the group-contribution-based 
prediction.

We quantified the proposed model’s prediction per-
formances for 6293 experimental data points of solva-
tion energies, which were taken from the FreeSolv [44, 
45] and Solv@TUM [22, 23] databases. We found a 
significant geometrical correlation between molecular 

Fig. 5  ML-calculated atomistic group contributions for five small organic compounds with six heavy atoms (excluding the hydrogens). The atom 
index starts from the left-most point of the given molecule and only counts heavy atoms
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feature vectors and predicted properties, which con-
firms that the proposed model successfully extracts 
chemical properties and maps them into vector repre-
sentations. The estimated prediction MUEs from K-fold 
CV are 0.19 kcal/mol for the BiLM encoder and 0.23 
kcal/mol for the GCN model.

The K-fold CV results from the scaffold-based split 
[77] showed that the prediction accuracy decreases by 
three times in extreme extrapolation situations; how-
ever, they nevertheless exhibit moderate performances, 
which was MUE = 0.60 kcal/mol. Moreover, we found 
that the solvent-generic structure of the proposed 
model is appropriate for enlarging the dataset size, i.e. 
experimental data points for a particular solvent are 
transferable to other solvents. We conclude that this 
transferability is the reason for our model’s outstanding 
predictivity [37].

Finally, we examined pairwise atomic interactions 
obtained from the interaction map and found a clear 
tendency between hydrophilic groups and their contri-
butions to the hydration free energy. Such results are 
obtained from a simple, graph-convolution based neu-
ral network instead of deep learning models in the cur-
rent state-of-the-art [20, 62]. Despite the limitation of a 
simple model, the model showed a reliable performance 
with the concept of group contributions approach via 
neural networks. Thus, we expect that the suggested 
concept would have further developments with more 
progressed ML models or applications for molecu-
lar dynamics simulations [12, 13]. We believe that our 
model is capable of providing detailed information on 
the solvation mechanism, as well as the predicted value 
of the target property.
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