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METHODOLOGY

QPHAR: quantitative pharmacophore 
activity relationship: method and validation
Stefan M. Kohlbacher, Thierry Langer and Thomas Seidel*   

Abstract 

QSAR methods are widely applied in the drug discovery process, both in the hit‐to‐lead and lead optimization phase, 
as well as in the drug-approval process. Most QSAR algorithms are limited to using molecules as input and disregard 
pharmacophores or pharmacophoric features entirely. However, due to the high level of abstraction, pharmacophore 
representations provide some advantageous properties for building quantitative SAR models. The abstract depiction 
of molecular interactions avoids a bias towards overrepresented functional groups in small datasets. Furthermore, 
a well‐crafted quantitative pharmacophore model can generalise to underrepresented or even missing molecular 
features in the training set by using pharmacophoric interaction patterns only. This paper presents a novel method to 
construct quantitative pharmacophore models and demonstrates its applicability and robustness on more than 250 
diverse datasets. fivefold cross-validation on these datasets with default settings yielded an average RMSE of 0.62, with 
an average standard deviation of 0.18. Additional cross-validation studies on datasets with 15–20 training samples 
showed that robust quantitative pharmacophore models could be obtained. These low requirements for dataset sizes 
render quantitative pharmacophores a viable go-tomethod for medicinal chemists, especially in the lead-optimisation 
stage of drug discovery projects.
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Introduction
Quantitative structure–activity relationship (QSAR) 
studies were first introduced by Hansch et al. [1] in 1962 
and have been growing in popularity ever since. Start-
ing with simple correlations studies of chemical and bio-
logical properties, such as logP and Ki values, QSAR has 
evolved into a sophisticated method applying complex 
machine-learning (ML) models [2] on vast amounts of 
chemical data [3], often using more than a few thousand 
descriptors. QSAR models are not only useful for inter-
nal assistance in the drug discovery process, but highly 
validated and robust models have even been built by the 
FDA to assist the drug-approval process [4].

Over the years, QSAR has been influenced heavily by 
advanced machine learning [2] and other data processing 
systems, which effectively allows the researcher to extract 
more complex relationships from their data. With the use 
of more capable models, more complex input data can be 
processed. Countless descriptors or fingerprints [5] have 
been derived from 2D molecular structures but do not 
take into account spatial information and molecular con-
formation. Spatial information becomes even more criti-
cal when dealing with stereoisomers [6].

The popular QSAR modelling algorithm CoMFA [7], 
developed in the 80  s, uses 3D conformations of mol-
ecules as input, aligns them to each other, and then cre-
ates a predictive model from the molecules’ calculated 
steric and electrostatic interaction fields. The concept 
has gained wide popularity but never extended to differ-
ent input domains than molecules. The method PHASE 
[8] proposed by Schrödinger [9] has taken this approach 
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a step further. In addition to, or instead of calculating 
electrostatic interaction fields of the molecules, it is pos-
sible to generate pharmacophore fields from the input 
molecules. The same ML-algorithm as used in CoMFA, 
PLS (partial least squares), is then applied to create a pre-
dictive quantitative model. At the time, this has been a 
novelty since pharmacophores have only been used for 
qualitative virtual screening studies. Using pharmacoph-
ore fields derived from functional groups for quantitative 
modelling extends the CoMFA concept, using abstract 
3D information of molecules for QSAR. Nevertheless, 
these pharmacophore fields are derived from molecules 
and a pure quantitative algorithm applied on pharmaco-
phores has never been presented before.

Using pharmacophores as input in QSAR studies has sev-
eral advantages: due to the abstract nature of pharmacoph-
ores, they are less influenced by small spatial perturbations 
of molecular features characteristic for such interactions. 
For example, bioisosteres are often highly similar in their 
interaction profile. They might cover, however, entirely 
different functional groups and substructures. Building 
a QSAR model on such data inevitably introduces a bias 
towards the predominant bioisosteric form occurring in 
the dataset. Pharmacophores, on the other hand, trans-
form different functional groups with the same interaction 
profile into an abstract chemical feature representation 
associated with a particular non-bonding interaction type, 
such as a π-stacking interaction or H-Bond donor/acceptor 
interaction. This generalisation makes quantitative models 
more robust and less dependent on the dataset being used. 
Primarily in biological assays, robust predictive models are 
essential to avoid modelling the experimental noise [10].

Virtual screening takes advantage of pharmacophores’ 
abstract nature to achieve an effect known as “scaffold-
hopping” [11]. Here, pharmacophores help to overcome a 
structural molecular bias by only considering the interac-
tion patterns but not the molecular structures. A carefully 
constructed quantitative pharmacophore model will build 
on these advantages and the scaffold-hopping ability to har-
ness its strengths. Besides abstracting molecular structures, 
pharmacophores also abstract the exact steric location and 
orientation of interactions by introducing tolerance ranges. 
Losing information on the precise position of possible 
interactions might not be desired with highly conserved 
protein targets. In general, however, generalisation is con-
sidered positive and avoids overfitted models.

Pharmacophore modelling is often used in combination 
with virtual screening to find novel hits. Deciding on the 
best pharmacophore model for virtual screening runs is 
often a tedious process relying on a large dataset of mostly 
artificially generated decoys and some truly active com-
pounds. In addition to requiring large amounts of data, 
this evaluation process relies on the binary-classification 

of molecules into active and inactive ones. Molecules with 
similar activity values close to the cut-off are classified dif-
ferently, although they demonstrate a quite similar experi-
mental behaviour.

A quantitative pharmacophore model would be able 
to score other pharmacophore models and assign an esti-
mated non-binary activity to these pharmacophores. The 
(biological) activity of pharmacophores can be interpreted 
as the expected activity of molecules matching such a 
pharmacophore. In the context of virtual screening, it is 
expected that the scored pharmacophore will retrieve mol-
ecules from a database with similar activity values. There-
fore, the quantitative pharmacophore model can be easily 
applied as a ranking method to prioritise pharmacophore 
models generated by a researcher.

Despite the possible advantages hardly any research was 
done on quantitative pharmacophores and related meth-
ods. In contrast, QSAR applied on molecular structures 
has fostered plenty of research and a google-scholar search 
for the query “quantitative structure–activity relationships” 
yields close to 5 million results. Nevertheless, two commer-
cially available tools have been released which are able to 
relate pharmacophores quantitatively to biological activity 
or other specified properties.

PHASE is a commercially available tool implemented in 
Maestro [9]. Besides pharmacophore perception, it allows 
for quantitative rationalisation of activity data based on 3D 
pharmacophore fields obtained from a set of ligands. Phar-
macophores are created for each aligned ligand, whereas 
the alignment is not done automatically and needs to be 
considered by the user. The aligned pharmacophores are 
placed into a vectorised box, each voxel containing infor-
mation about the value of the pharmacophore fields in that 
location. The box is used as input for a PLS-algorithm to 
regress the pharmacophore fields against a set of activity 
values. As output, the user gets a model displaying favour-
able as well as unfavourable regions contributing to the 
activity values. Additionally, the activity of new ligands can 
be predicted by feeding them to the model after alignment.

Even though PHASE provides one of two available QSAR 
methods for pharmacophores, it still relies on molecules as 
input for alignment and model building. Due to this short-
coming, apo-site derived pharmacophores or pharmaco-
phores obtained from ligand-based modelling can only 
be predicted via workarounds. Therefore, pharmacoph-
ore QSAR within PHASE is similar to atom-based QSAR, 
except that an additional step for calculating the pharmaco-
phore fields is carried out.

The second available method for pharmacophore QSAR 
is the Hypogen [12] algorithm implemented in the Cata-
lyst program, which now is part of BioVia’s [13] Discov-
ery Studio [14]. The Hypogen algorithm works utterly 
different from the PHASE algorithm, directly operating on 
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pharmacophore features instead of using grids as a proxy. 
First, a subset of the most active compounds is chosen. All 
possible pharmacophore hypotheses from the two most 
active compounds are enumerated and must fit a minimum 
subset of the remaining compounds in the most active sub-
set to be considered by the algorithm. From this generated 
set of pharmacophore hypotheses, the ones matching a 
group of inactive compounds are removed in a follow-up 
phase. In a third final phase, small perturbations are intro-
duced to the remaining hypotheses, which are then scored 
based on the RMSE of predictions against the training set. 
The Hypogen refine algorithm extends this method by add-
ing exclusion volumes and introducing another term in the 
loss function.

In contrast to PHASE, Hypogen is operating directly on 
pharmacophores without the need to provide the underly-
ing molecules. However, a drawback of this method is still 
that it builds the quantitative models from a selected subset 
of highly active compounds. Even though refinement con-
siders less-active compounds, we would expect predictions 
for pharmacophores obtained from less active molecules 
to be worse due to missing domain knowledge. After the 
model-building is done, no single quantitative model is 
selected, but a set of possible solutions is provided to the 
user, adding some ambiguity about the model’s quality.

Having in mind the potential advantages of a quantitative 
method that is based on pure pharmacophoric representa-
tions, we developed and herein present a novel approach 
for the generation of quantitative pharmacophore models. 
Based on a small dataset of molecules and/or pharmaco-
phores, the proposed algorithm will first find a consensus 
pharmacophore (merged-pharmacophore) from all training 
samples. The input pharmacophores, or pharmacophores 
generated from the input molecules, will then be aligned 
to the merged-pharmacophore. For each aligned pharma-
cophore, information regarding its position relative to the 
merged-pharmacophore is extracted. This information is 
then used as input to a simple machine learning algorithm 
which derives a quantitative relationship of the merged-
pharmacophores’ features with biological activities.

Methods
Datasets
Phase dataset
The dataset previously published by Debnath [15] et al. in 
2002 was used as a benchmark datasets against the PHASE 
algorithm. Compounds were obtained in SMILES format, 
which served as input for the generation of 3D conforma-
tions. Conformations were generated using iConfGen [16] 
provided by LigandScout [17]. For all parameters default 
settings were used, and the maximum number of output 
conformations was set to 25. Training and test data were 
split according to the published results by Dixon et al. [8]. 

Molecule number 67 was removed from the dataset due to 
missing experimental activity data.

ChEMBL datasets
Datasets obtained from ChEMBL were used for cross-
validation and assessment of the model’s robustness. The 
23 most popular QSAR targets (Table  3), according to 
a list published by Cortés-Ciriano [18], were chosen for 
validation studies. The ChEMBL database was queried 
with the UniProtId of these 23 targets using the chembl-
webresource-client [19]. Biological activity  data (’stand-
ard_value’), in the following referred to as activity, was 
obtained for each compound and filtered by the following 
parameters:

•	 standard_type: ‘IC50’ or ‘Ki’.
•	 standard_units: ‘nM’.
•	 standard_relation: ‘ = ’.
•	 assay_type: ‘B’.
•	 target_organism: ‘Homo Sapiens’.

Activity readouts from biological assays depend heavily 
on the assay conditions and the environment. Due to the 
high experimental noise and the resulting inability to com-
bine various assays, the datasets were separated by their 
‘assay_chembl_id’. This resulted in datasets of ~ 20 to ~ 100 
molecules.

The assay datasets were cleaned in a post-processing 
step to ensure the data was qualified for QSAR modelling. 
Datasets with less than three log-units difference between 
the minimum and maximum activity value were dismissed. 
Furthermore, to avoid overfitting and bias when training 
the ML models, the assay datasets were filtered by hetero-
geneity. Ideally, compound activities are distributed equally 
over the activity value range. To model data heterogeneity, 
the KL-divergence was calculated against a uniform distri-
bution. The higher the KL values were, the more clustered 
the dataset was found to be. All datasets with KL values 
above a cut-off of 0.75 were discarded. The KL-divergence 
was calculated according to Eq.  (1), whereas P and Q 
denote discrete uniform distributions over activity values 
for a given dataset. P represents the estimated uniform 
distribution of the datasets, Q resembles the reference uni-
form distribution over activity values, a being the minimum 
and b the maximum. P is estimated by binning the activity 
values into N (sample size) bins. Each P(x) is defined by the 
frequency of activity values in each bin x.

The ChEMBL datasets were split into training and vali-
dation data via a fivefold random split. This was done by 

(1)Eq1 : KL(P,Q) =
∑

xǫX
P(x) ∗ log

(

P(x)

Q(x)

)
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applying a stratified K-fold procedure for quantitative data. 
Since stratified K-fold data splitting is usually used on clas-
sification datasets, a workaround was constructed where 
activity data was binned in K, five, classes [20]. In addition, 
a 20–80 split (20% training data, 80% validation data) was 
generated from the datasets as well as the standard 80–20 
split (80% training data, 20% validation data). The 20–80 
split aims to mimic a typical SAR setting experienced by a 
medicinal chemist, where only a limited amount of data is 
usually available. Training folds typically consisted of 10–15 
samples.

For all datasets, 3D conformations were generated using 
LigandScout’s iConfGen. All parameters were left at their 
default values, and the maximum number of generated 
conformations was set to 25.

Baselines
Cross-validation studies were also carried out for two 
baseline methods using all ChEMBL datasets. One base-
line model utilised the number of pharmacophore fea-
tures per molecule as input to train a regression model. 
The second model was trained on physico-chemical 
descriptors of the input molecules. Only a limited num-
ber of descriptors was used due to the small dataset sizes. 
The following seven descriptors were calculated for the 
input molecules: number of H-Bond Donors/Acceptors, 
number of rotatable bonds, molecular weight, number of 
heavy atoms, cLogP [21], TPSA [22].

Additionally, the applicability domain of the baselines 
models was defined by calculating the min/max values 
[23] of the input vectors on the training fold. Test sam-
ples were deemed to be out-of-domain if their input vec-
tors either fell below or exceeded the before determined 
min/max values, respectively.

Machine learning model generation
To ensure a fair comparison, all baseline models were 
trained using the same machine learning algorithm and 
the same set of parameters as for the quantitative phar-
macophores. Cross-validation studies were carried out 
using the random forest algorithm [24] implemented in 
the scikit-learn python package. The parameters ‘n_esti-
mators’ and ‘max_depth’ were set to 10 and 3, respectively. 
The remaining parameters were kept at their defaults. No 
hyperparameter optimisation was performed for cross-vali-
dation studies due to the small datasets. Additional required 
parameters for the quantitative pharmacophores were 
set as follows (also the default parameters): fuzzy = True, 
weightType = distance, mostRigidTemplate = True.

Training the machine learning models of the quantita-
tive pharmacophores on the PHASE dataset employed a 
protocol for hyperparameter optimisation. The following 
QPhAR specific parameters were subject to optimisation:

•	 weightType: [distance, nrOfFeatures, None].
•	 modelType: [random forests, ridge regression, PLS 

regression, PCA + ridge regression, PCA + linear 
regression].

•	 threshold: (1, 1.5, 2).

The parameters of the machine learning models were 
set to their default values, except for the random for-
est algorithm. Here the parameters ‘n_estimators’ and 
‘max_depth’ were optimised by (10, 15, 20) and (2, 3), 
respectively.

Quantitative pharmacophore algorithm
The generation of a quantitative pharmacophore model 
proceeds over five consecutive steps (Figs.  1, 2). At first, 
a template needs to be chosen (Step 1). The selected tem-
plate could either be one of the training samples, such as 
the most rigid molecule, or any other pharmacophore or 
molecule the user deemed relevant. Selecting the template 
is highly important and can make or break the algorithm. 
If a poor template is chosen, the resulting alignment of the 
training samples might yield a quantitative pharmacophore 
model of low quality. In the second step, the training set is 
aligned to the selected template. Once all the samples are 
aligned, the pharmacophore features of the training sam-
ples are clustered (Step 3). In the following post-process-
ing step (Step 4), representative features will be selected 
or generated for each found cluster. Furthermore, clusters 
with non-conclusive information get discarded, and only 
relevant clusters will be kept within the quantitative phar-
macophore model. Finally, the remaining pharmacophore 
features from each cluster are used as input for training a 
regression machine learning model (Step 5).

Template selection
The quantitative pharmacophore algorithm provides two 
options for selecting a template: either a pharmacophore 
is given as input or a set of two molecules. A provided 
pharmacophore will be directly selected as the template. 
If two molecules are given, they will be aligned to each 
other via pharmacophore alignment that also regards the 
conformational flexibility of the molecules. Once the best 
alignment between the two molecules is found, a phar-
macophore will be generated from the first molecule, 
which is then used as the template. A reasonable choice 
as the first molecule is to select the most rigid molecule 
from the training set.

Alignment
Once a template pharmacophore has been selected, the 
remaining training set will be aligned to the template 
using pharmacophore alignment and a greedy optimisa-
tion procedure to select the best fitting conformations. 
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Fig. 1  Schema of generating the quantitative pharmacophore model

Fig. 2  Feature extraction and ML-modeling (Step 5)
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The aligned pharmacophores and their features are 
stored within a single pharmacophore data structure 
(container), creating a merged-pharmacophore-like out-
come. Each pharmacophore feature is associated with 
the activity value of the parent pharmacophore. Directed 
pharmacophore features are converted to undirected 
spherical pharmacophore features due to the noise intro-
duced by directed features. Each pharmacophore feature 
type is collected in a separate container, resulting in six 
distinct containers: hydrophobic (H), aromatic (AR), pos-
itive/negative ionisable (PI, NI), H-Bond donor/acceptor 
(HBD, HBA).

Clustering
A clustering algorithm then processes the collected phar-
macophore features. The minimum distance hierarchi-
cal clustering algorithm is applied, whereas its cutoff 
is being treated as a hyperparameter. The default cutoff 
value is the radius of the pharmacophore features, 1.5 Å. 
A distance matrix containing the calculated euclidean 
distances between all features in the container is used as 
input for the clustering algorithm.

Post‑processing
After successful clustering, two post-processing steps are 
applied. First, representative pharmacophore features 
are selected for each cluster and then clusters with non-
conclusive activity data are removed, keeping only high 
impact pharmacophore features.

Representative feature selection
Ideally, each cluster can be represented by a single fea-
ture. If this is not possible, several features are placed 
to represent the cluster. The representative feature can 
either be one of the existing features in the cluster or be 
the product of merging all features in the cluster. A fea-
ture represents another feature if they overlap, meaning 
their distance is smaller than the radius of these phar-
macophore features. The merged feature then inherits all 
activity values from the features it represents. Addition-
ally, the number of included features is stored. Both these 
properties will be used in the second post-processing 
step.

The following options are considered to find represent-
ative features:

•	 Clusters containing a single feature: the cluster is 
already represented by the feature itself; therefore, no 
further modifications are necessary.

•	 Clusters containing multiple features: at first, each 
feature is probed as a representative feature. If any 
of the features within a cluster overlap with all other 
features, that feature is used as the cluster’s repre-

sentative feature. Otherwise, a new feature is created. 
Three strategies are considered in order to determine 
the location of the new feature:

•	The feature is placed at the centroid of the cluster. 
If all features in the cluster overlap with the new 
feature, they are merged into the new feature and 
their properties assigned to the merged feature.

•	The new feature is placed in the centre of the clus-
ter. The process of the centroid feature is repeated.

•	If all the aforementioned options fail to yield a 
representative pharmacophore feature, multiple 
features will be selected to represent the cluster. 
This process has no clear solution. Therefore, we 
apply a greedy iterative algorithm that maximises 
the number of represented features at each step. 
As long as non-merged features exist, the feature 
overlapping with most other features is selected as 
a representative feature. All properties of merged 
features are assigned to the selected feature. The 
just-merged features are then removed from the 
cluster. This process is repeated until all features in 
the cluster are assigned to a representative feature.

Removing ambiguous features
At this point, the quantitative pharmacophore consists of 
several features, each representing a cluster of pharma-
cophore features from the training set. However, some 
of these features will not add information to the final 
model. This is easy to imagine in the simple case of two 
molecules having the same scaffold but different residues 
and activities. One of the molecules shows high biologi-
cal activity, whereas the other molecule is not active. A 
merged-pharmacophore will contain features represent-
ing the scaffold, as well as features representing the dif-
ferent residues. It is clear that the residues’ features can 
explain the activity of these molecules, and the scaffold 
does not contribute any information. This rationale is 
applied to the quantitative pharmacophore. Therefore, 
features containing activity values spanning more than 
half the distance of global maximum and minimum 
activity values are removed. They are considered non-
conclusive regarding their activity and will not con-
tribute relevant information to the quantitative model. 
Furthermore, pharmacophore features encountered only 
once are considered outliers and are removed from the 
quantitative pharmacophore model too due to missing 
validation of the feature’s importance. Finally, a cleaned, 
merged-pharmacophore is obtained, serving as a refer-
ence model in the machine learning procedure.
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ML model and weight selection
Given the training set and the reference merged-pharmaco-
phore, input vectors are generated for each training sample. 
The vector has the size of the number of pharmacophore 
features in the reference pharmacophore. Each entry in the 
vector corresponds to one of the reference pharmacophore 
features. The vector entries are populated by the inverse 
euclidean distances between the features from the refer-
ence pharmacophore and the aligned training sample fea-
tures. If these two features do not overlap, the entry is filled 
with a zero value. It follows that the quantitative pharma-
cophore algorithm does not consider features from training 
samples without corresponding features in the reference 
pharmacophore. This is on purpose and will be explained 
further in the “Applicability domain” section.

Optionally, weights can be added to the input vectors. 
If ‘weightType’ None is chosen, the distance values are 
converted to binary values, 1 for overlapping features, 0 
for non-overlapping features. Specifying no weight type 
will keep the input vector as it is. The third option is to 
weigh the input vector by the number of features. Fea-
tures consisting of a higher number of merged features 
are weighted heavier than features with fewer data.

Once input features are generated for each aligned 
training sample, a regression machine learning model is 
trained on the input vectors and the activity data. The 
type of the machine learning model is a hyperparameter 
of the quantitative pharmacophore algorithm. However, 
it is recommended to use simple algorithms to avoid 
overfitting. A linear regression model, a ridge regression 
model, and a heavily restricted random forest model have 
been applied in this study.

The current version of the algorithm has been imple-
mented in Python using the Chemical Data Processing 
Toolkit [25] (CDPKit) for the representation and pro-
cessing of molecule and pharmacophore data. Machine 
learning models were trained using the scikit-learn pack-
age [26]. The code and all datasets are available at https://​
github.​com/​Stefa​nKohl​bacher/​Quant​Pharm​acoph​ore.

Applicability domain
Applicability domains are an essential part of machine 
learning algorithms [27, 28]. Samples outside the domain 
of the training data cannot be predicted with high confi-
dence. Moreover, the predictions could be random values 
not reflecting the true values at all. Therefore, the applica-
bility domain for quantitative pharmacophore models gets 
defined by two factors. First, suppose a new sample, mol-
ecule or pharmacophore cannot be aligned to the template 
of the quantitative pharmacophore due to missing fea-
tures or dissimilarities. In that case, the sample is deemed 
as out-of-domain and will not be predicted by the model. 
Second, due to the removal of features with non-conclusive 

activity values, some features in the query sample may not 
be matched with the quantitative pharmacophore. Fur-
thermore, features not overlapping with any of the model’s 
features will not contribute information to the input vec-
tor. Even though the model is missing information in such 
cases, these non-overlapping features must not be included 
in the input vector due to missing training data in these 
regions. Therefore, not the entire sample is out-of-domain, 
but only certain features within the sample. Features out-
of-domain are not included during inference.

Results and discussion
The quantitative pharmacophore model is obtained by first 
creating a merged-pharmacophore. Data from the merged-
pharmacophore and the training set is then used to fit a 
machine-learning model. Training of the ML-model is car-
ried out with the same dataset as the merged-pharmaco-
phore was created from. Therefore, the dataset is required 
to have known activity values for each sample. Creating a 
merged-pharmacophore as the underlying model has sev-
eral advantages. For one, it keeps the model explainable 
and straightforward, unlike many other black-box ML algo-
rithms. Second, due to the familiar merged-pharmacoph-
ore concept and representation, the model can quickly be 
adopted by scientists already familiar with such tools. The 
steep learning-curve allows a medicinal chemist to iterate 
through ideas quickly.

As mentioned before, there are only a few tools currently 
available to the scientific community allowing scientists 
to perform QSAR from pharmacophores. Here we do not 
directly compare against these methods since the quanti-
tative method described in this paper expands to domains 
not accessible by previous algorithms. Nevertheless, we 
show that the quantitative pharmacophore performs 
similar to the PHASE algorithm on molecule datasets. 
Furthermore, based on a broad set of commonly used pro-
tein-targets for QSAR, we prove that the method shows 
robust performance over a wide variety of datasets.

PHASE vs. QPhAR
The paper published by Dixon et al. [8] in 2006 describ-
ing the PHASE algorithm compares its method against an 
even earlier published paper [15] using the Hypogen algo-
rithm to predict the activities of a dataset. The quantita-
tive pharmacophore was trained on the same training set, 
20 samples, as described in the paper by Debnath et  al. 
[15]. It was then evaluated on the holdout test set con-
taining 57 molecules (originally 58, but one sample had 
no reported activity value). The reported RMSE and R2 
values on the test set of the PHASE algorithm were 0.822 
and 0.407 (Fig. 3A), respectively. In contrast, the quanti-
tative pharmacophore model could achieve an RMSE of 
0.85 and an R2 of 0.365 (Fig. 3B). These two models are 

https://github.com/StefanKohlbacher/QuantPharmacophore
https://github.com/StefanKohlbacher/QuantPharmacophore
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comparable to each other and are expected to yield simi-
lar results on new datasets. A student t-Test has further 
validated the fact that the models perform on par. The 
student t-Test was performed using scipy’s implementa-
tion for related samples, as is the case here for predictions 
from the same test set. The t-Test resulted in a p-value of 
0.29. Therefore, the null-hypothesis that the two models 
perform differently cannot be rejected. To reject the null-
hypothesis a p-value of at least 0.05 or lower should be 
achieved. Figure 5 shows the mean RMSE values of boot-
strapping the testset for both the PHASE and the QPhAR 
models. The 95% confidence intervals obtained from 
bootstrapping show a significant overlap between the two 
methods (Fig. 5 Appendix). The distribution of prediction 
errors is plotted in Fig. 6 (Appendix) for both models. An 
interesting fact that can be observed is the slightly lower 
median of the quantitative pharmacophore model com-
pared to PHASE. Although, this does not indicate superi-
ority over PHASE due to the previously stated equality of 
the two models. 

However, it is important to keep in mind that both mod-
els were trained and evaluated on molecules, which is not 
the main focus of the method described here. Prediction 
of pharmacophores not obtained from molecules is one of 
the unique strengths of the quantitative pharmacophores. 
Alignment and prediction of such pharmacophores has 
not been possible before and prediction of pharmacoph-
ores with other methods still relied on molecules for align-
ment. Therefore, the method described here does not aim 
to compete against previous algorithms but rather expands 

the toolbox available to researchers while still providing 
similar quality results as state-of-the-art methods.

Cross‑validation
Besides comparing our method against existing meth-
ods, CV was carried out on more than 250 distinct 
datasets to test the quantitative pharmacophores’ gen-
eral applicability across a wide range of datasets. All 
training-validation runs used default parameters to 
gauge the quantitative pharmacophores’ effectiveness 
when used out-of-the box. Simple baseline models were 
built to demonstrate superior behaviour over standard 
methods. As baselines, the number of pharmacophore 
features in the training set was regressed against the 
activity endpoint. Furthermore, a set of simple physico-
chemical properties was calculated and used as a sec-
ond baseline model input. To ensure a fair comparison, 
all baseline models used the same machine learning 
algorithm with default parameters as the quantitative 
pharmacophores. Cross-validation runs were evaluated 
by calculating the mean RMSE and the standard devia-
tion of the RMSE over the five individual runs (Fig. 4). 
Additionally, the applicability domain has been inves-
tigated for the test set samples. Samples deemed out-
of-domain for baseline models were further analysed 
and compared against in-domain predictions from the 
quantitative pharmacophores. No sample was found to 
be out-of-domain for the quantitative pharmacophores.

Mean RMSE values of the CV (80–20 split; Fig.  4A) 
range from 0.20 to 1.27, with an average over all 

Fig. 3  Test set performance of PHASE (A) and the quantitative pharmacophore model (B)
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datasets of 0.62. Generally, an average mean RMSE of 
0.62 over all datasets is perceived as quite good, con-
sidering that lower RMSE values are a strong indica-
tion of modelling the experimental noise in the datasets. 
With that in mind, the small number of datasets with 
mean RMSE values of 0.20 from CV are very likely to 
overfit. On the other hand, the worst RMSE of 1.27 was 
obtained with default parameters and in depth analysis 
and model optimisation are likely to sharply increase 
the model’s performance. Along with mean RMSE 
values, the standard deviation of the model’s CV per-
formance was calculated, which on average, was 0.18 
across the five folds CV. Further emphasis in the analy-
sis was put on the applicability domain. The applicabil-
ity domains for the baselines were defined as described 
in the “Methods” section. The applicability domain for 
the quantitative pharmacophore is defined by a possible 
alignment of the test samples to the model. If no align-
ment with the model can be found, the sample is out-of-
domain. During CV runs, no test samples were found to 

be out-of-domain for the quantitative pharmacophore 
model. However, out of 8520 test samples from all CV 
runs, around 1

/

8 (901) of the test samples were found to 
be out-of-domain for the physico-chemical properties 
baseline and ~ 3% (244) for the pharmacophore features 
baseline. Predictions of these samples were made nev-
ertheless and then further analysed in comparison with 
the quantitative pharmacophores. Our model could 
improve on these predictions in 71%, and 72% of all 
out-of-domain samples for the properties and features 
baseline, respectively. Figure  7 (Appendix) shows the 
number of times the quantitative pharmacophore model 
yielded better predictions than the baselines, when the 
test-samples were found to be out-of-domain. For a 
summary of the quantitative pharmacophores and base-
lines 80–20 CV results see Table 1.

Evaluation of the 20–80 split (Fig. 4B) yielded an aver-
age RMSE of 0.83 over all datasets, with a minimum 
RMSE of 0.41 and a maximum of 1.65. As expected, 
these models’ performance is not as high as the average 

Fig. 4  Aggregated CV performance over > 250 datasets from quantitative pharmacophores and two baseline methods. A Mean RMSE values 
of models in 80–20 split. B Mean RMSE values of models in 20–80 split. C Mean standard deviation of models in 80–20 split. D Mean standard 
deviation of models in 20–80 split
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performance from models trained on the 80–20 split. 
These results agree with the general notion that more 
data will improve a machine learning model’s qual-
ity. However, considering that the training sets con-
tained only 10–15 samples, the model’s performances 
are respectably high. A valid concern often raised with 
such low training set sizes is the potential overfitting of 
the models. Here, we can exclude overfitting since the 
trained models were evaluated on validation sets four 
times larger than the training sets. If models would 
overfit, the performance on the validations sets would 
be considerably worse and therefore not be in agree-
ment with obtained results. Furthermore, the standard 
deviation over all datasets of the 20–80 CV is much 
lower than the 80–20 CV, Fig. 4D, C, respectively. The 
low standard deviation further strengthens the point 
that the models are not overfitting any of the CV splits. 
Nevertheless, the small standard deviation compared to 
the 80–20 split is surprising since smaller datasets are 
expected to increase the model’s performance variance. 
Achieving a smaller variance during CV with smaller 
datasets further boosts confidence in robust quantita-
tive pharmacophores.

As for the 80–20 split, additional analysis was per-
formed for samples classified as out-of-domain. Due 
to the small training sets, considerably more samples 
from the test set were found to be out-of-domain for the 
baseline models as with the 80–20 split. Out of 19,805 
test samples in total, > 23% (4602) were deemed as out-
of-domain for the properties baseline and ~ 7% (1399) 
for the features baseline. No test sample was found to 
be out of domain for the quantitative pharmacophores. 

65% of the time predictions were improved by the quan-
titative pharmacophores (Fig.  8 Appendix). For a sum-
mary of the quantitative pharmacophores and baselines 
20–80 CV results see Table 2. For a list of all target-pro-
teins used in the CV studies see Table 3.

In direct comparison to the baselines, the quantita-
tive pharmacophore model was superior in ~ 9/10 cases 
measured by the RMSE of CV (80–20 split as well as 
20–80 split). In the 80–20 split CV, the quantitative 
pharmacophore could improve the mean RMSE by 34% 
over the pharmacophore features baseline and 27% 
over the physico-chemical properties baseline. Similar 
results can be seen on the 20–80 split, where 20% and 
12% improvement was achieved, respectively.

Conclusion
Pharmacophores are widely applied in a qualitative 
manner for hit identification in virtual screening experi-
ments and hardly any information can be found on the 
quantitative use of pharmacophore models. PHASE and 
Hypogen, only accessible in commercial packages, cur-
rently provide the only two algorithms which allow for 
quantitative insights on pharmacophore models. Target-
ing their drawbacks, such as alignment, the requirement 
of molecules for training, and user-friendliness, we pre-
sent a novel quantitative pharmacophore generation 
algorithm for QSAR studies. The algorithm first creates 
a merged-pharmacophore from a given set of molecules 
and/or pharmacophores. Information obtained from 
aligning the training set to the merged-pharmacophore 
is then used to train a machine-learning model. We per-
formed extensive cross-validation on a large variety of 

Table 1  Results for 80–20 CV of quantitative pharmacophores and baselines

Quantitative pharmacophores Features baseline Properties baseline

RMSE (mean) 0.62 0.95 0.86

RMSE (standard deviation) 0.18 0.24 0.24

RMSE (minimum) 0.2 0.34 0.26

RMSE (maximum) 1.27 1.92 1.61

Samples out of domain 0 244 (2.9%) 901 (10.1%)

Table 2  Results for 20–80 CV of quantitative pharmacophores and baselines

Quantitative pharmacophores Features baseline Properties baseline

RMSE (mean) 0.83 1.04 0.94

RMSE (standard deviation) 0.19 0.25 0.25

RMSE (minimum) 0.41 0.39 0.32

RMSE (maximum) 1.65 2.15 1.86

Samples out of domain 0 1399 (7.1%) 4602 (23.2%)
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datasets and could show that quantitative pharmacoph-
ore models generated by our methods generalise well to 

many different datasets even without performing hyper-
parameter optimisation. The trained models achieved a 
mean RMSE of 0.61 during CV over > 250 datasets. The 
datasets used for CV resemble sizes typically encoun-
tered in SAR settings by medicinal chemists. We could 
also demonstrate the robustness of our algorithm which 
is insensitive to small perturbations during training 

by achieving small variance in RMSE over fivefold CV. 
Furthermore, on more than 90% of datasets, the gener-
ated quantitative pharmacophore models outperformed 

Table 3  Target list used for model validation

Target UniProt ID CHEMBL ID

Alpha-2a adrenergic receptor P08913 CHEMBL1867

Tyrosine-protein kinase ABL P00519 CHEMBL1862

Acetylcholinesterase P22303 CHEMBL220

Androgen receptor P10275 CHEMBL1871

Serine/threonine-protein kinase Aurora-A O14965 CHEMBL4722

Serine/threonine-protein kinase B-raf P15056 CHEMBL5145

Cannabinoid CB1 receptor P21554 CHEMBL218

Carbonic anhydrase II P00918 CHEMBL205

Caspase-3 P42574 CHEMBL2334

Thrombin P00734 CHEMBL204

Cyclooxygenase-1 P23219 CHEMBL221

Cyclooxygenase-2 P35354 CHEMBL230

Dihydrofolate reductase P00374 CHEMBL202

Dopamin D2 receptor P14416 CHEMBL217

Norepinephrine transporter P23975 CHEMBL222

Epidermal growth factor receptor erbB1 P00533 CHEMBL203

Estrogen receptor alpha P03372 CHEMBL206

Glucocorticoid receptor P04150 CHEMBL2034

Glycogen synthase kinase-3 beta P49841 CHEMBL262

HERG Q12809 CHEMBL240

Tyrosine-protein kinase JAK2 O60674 CHEMBL2971

Tyrosine-protein kinase LCK P06239 CHEMBL258

Monoamine oxidase A P21397 CHEMBL1951

Mu opioid receptor P35372 CHEMBL233

Vanilloid receptor Q8NER1 CHEMBL4794

Table 4  Hyperparameters of trained quantitative 
pharmacophore model on datasets from Debnath et al.

Parameter Value

Fuzzy True

Modeltype RandomForest

Threshold 1

Weighttype distance

maxDepth (of ML-Model) 3

nEstimators (of ML-Model) 10

Table 5  Predictions on test set of quantitative pharmacophore 
model

Index pIC50 exp pIC50 pred Index pIC50 exp pIC50 pred

0 5.64 7.13 35 8.57 8.10

1 6.6 6.66 37 7.74 7.02

2 6.07 6.75 38 6 6.78

3 6.43 7.24 42 8.17 7.86

4 6.92 6.94 43 6.3 6.22

5 6.52 6.77 44 5.47 7.71

6 6.56 6.60 45 7.17 6.13

7 7.16 8.11 47 6.36 6.08

8 7.77 7.59 48 8.44 7.06

9 7.72 8.14 49 8.15 8.11

10 6 7.36 52 6.85 8.34

11 5.72 7.70 53 8.23 8.11

12 8.09 6.75 54 5.47 6.28

13 8.21 8.04 55 8.37 8.02

14 7.44 6.33 59 7.82 7.63

15 7.48 6.75 61 8.21 7.70

18 8.39 8.34 62 5.57 6.24

19 6.82 7.01 63 8.5 8.28

20 8 8.11 64 8.21 8.34

21 6.17 8.04 65 5.89 7.18

22 7.36 6.75 66 5.6 6.06

24 8.3 8.08 67 8.37 8.34

25 8.55 7.51 68 6 6.16

26 8.06 6.20 69 6.38 6.55

27 8.28 8.13 70 7.24 6.88

28 5.92 6.22 71 7.85 8.22

30 8.26 8.04 72 8.34 8.28

32 8.17 8.04 76 5.14 6.65

34 5.28 6.16

Table 6  Predictions of quantitative model training set

Index pIC50 exp pIC50 pred Index pIC50 exp pIC50 pred

16 7.82 7.48 46 8.29 7.76

17 7.57 7.25 50 5.41 6.38

23 6.09 5.98 51 6.23 6.46

29 7.70 7.53 56 6.07 6.19

31 8.33 7.46 57 6.00 6.23

33 8.00 7.71 58 6.15 6.47

36 4.51 6.78 60 8.40 8.25

39 5.21 6.10 73 5.59 6.65

40 8.43 8.10 74 8.70 8.42

41 8.42 8.34 75 6.36 6.22
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tested baselines, thus making our method a reasonable 
first approach for any researcher looking to get quanti-
tative SAR insights on his data.

Appendix
For a list of target-proteins used for CV studies  see 
Table 3.

Quantitative pharmacophore model applied 
on the dataset from Debnath et al.
A quantitative pharmacophore model was trained on 
the same dataset as by Dixon et  al. for the PHASE 
algorithm. The hyper-parameters of the best model 
were as follows (Table 4): 

The predictions of the model on the training and 
test set can be found in the following Tables 5 and 6, 
respectively. 

Metadata such as dataset sizes, span of activity 
values, etc. for all datasets used for CV is provided 
in Additional file  1 (CV 20–80 split) and Additional 
file 2 (CV 80–20 split).

PHASE vs QPhAR additional plots
Figures  5  and 6  display the bootstrapped confidence 
intervals as well as the error distributions of the pre-
dictions from the PHASE and QPhAR models.
 

Cross‑validation additional plots
Figures  7  and 8  display the frequency of the quant. 
pharmacophore models outperforming OOD predic-
tions of the baselines. 

Fig. 5  RMSE values of retrospective bootstrapping including 95% 
confidence intervals

Fig. 6  Error distribution of predictions from PHASE and QPhAR

Fig. 7  Number of times QPhAR outperformed baselines for 
out-of-domain (OOD) samples (80–20 cv split)

Fig. 8  Number of times QPhAR outperformed baselines for 
out-of-domain (OOD) samples (20–80 cv split)
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