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Abstract 

Background:  Non-target screening consists in searching a sample for all present substances, suspected or unknown, 
with very little prior knowledge about the sample. This approach has been introduced more than a decade ago in the 
field of water analysis, together with dedicated compound identification tools, but is still very scarce for indoor and 
atmospheric trace gas measurements, despite the clear need for a better understanding of the atmospheric trace gas 
composition. For a systematic detection of emerging trace gases in the atmosphere, a new and powerful analytical 
method is gas chromatography (GC) of preconcentrated samples, followed by electron ionisation, high resolution 
mass spectrometry (EI-HRMS). In this work, we present data analysis tools to enable automated fragment formula 
annotation for unknown compounds measured by GC-EI-HRMS.

Results:  Based on co-eluting mass/charge fragments, we developed an innovative data analysis method to reliably 
reconstruct the chemical formulae of the fragments, using efficient combinatorics and graph theory. The method 
does not require the presence of the molecular ion, which is absent in ∼40% of EI spectra. Our method has been 
trained and validated on >50 halocarbons and hydrocarbons, with 3–20 atoms and molar masses of 30–330 g mol−1 , 
measured with a mass resolution of approx. 3500. For >90% of the compounds, more than 90% of the annotated frag-
ment formulae are correct. Cases of wrong identification can be attributed to the scarcity of detected fragments per 
compound or the lack of isotopic constraint (no minor isotopocule detected).

Conclusions:  Our method enables to reconstruct most probable chemical formulae independently from spectral 
databases. Therefore, it demonstrates the suitability of EI-HRMS data for non-target analysis and paves the way for the 
identification of substances for which no EI mass spectrum is registered in databases. We illustrate the performances 
of our method for atmospheric trace gases and suggest that it may be well suited for many other types of samples. 
The L-GPL licenced Python code is released under the name ALPINAC for ALgorithmic Process for Identification of 
Non-targeted Atmospheric Compounds.
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Background
Non-target screening (NTS) is an emerging approach 
for analysing environmental samples, with potentially 
revolutionary outcomes. NTS aims to detect, identify 
and quantify substances that are unknown in a sample, 
with no or very little a priori knowledge. This approach 
contrasts with the more established target or suspect 
approaches, where a sample is screened only for com-
pounds already known or suspected to be present.

So far, NTS has been developed mostly in the fields of 
drinking water monitoring, food and soil analysis, foren-
sics and metabolomics [e.g.,  1–5], with human health 
or economic interests as the major underlying motiva-
tion. Yet, for the analysis of trace compounds in ambi-
ent or indoor air, only very limited NTS-related research 
has been done (e.g., the discovery of the greenhouse gas 
SF5CF3 [6, 7]), despite the need for a better understand-
ing of the composition of the air. To look for emerg-
ing gases relevant for climate or air quality, suspect 
approaches are still nearly exclusively used [8–10].

NTS requires to measure properties that are specific 
for one given compound. In practice this is usually 
achieved by chromatographic time separation of the 
compounds. Further, the type of molecule ionisation 
and the mass range and mass accuracy are particularly 
relevant for NTS.

Originally, NTS was developed for medium to large 
molecules, therefore using soft ionisation such as chem-
ical ionisation (CI) or electrospray ionisation (ESI), 
producing only a few relatively large fragments. As the 
molecular ion (entire molecule without one electron) is 
normally present and detected with soft ionisation, it is 
possible to reconstruct the chemical formula (i.e., the 
atomic assemblage, without any structural information) 
of the compound. To elucidate its structure, additional 
fragmentation and detection is required. Most (semi-)
automated identification software packages were devel-
oped for CI or ESI so far  [11–15] or tandem MS [16, 
17].

In contrast, atmospheric trace gases consist of rela-
tively small molecules which are best ionised by the 
hard electron ionisation (EI) technique. This causes a 
fragmentation cascade, producing many relatively small 
fragments; the resulting mass spectra contain valuable 
structural information but often lack the molecular ion 
[e.g.,  18 Chap. 6]. Consequently, the identification of 
the original molecule becomes highly challenging. To 
circumvent this, specific instrumental source tuning 

may enhance the detectability of the molecular ion [19]. 
Alternatively, measurements could be repeated using 
soft ionisation, such as chemical ionisation, field des-
orption or field ionisation, but such a combined analyt-
ical approach is expensive and time consuming.

A well-established approach to identify a compound 
based on its assemblage of masses measured by EI-MS or 
EI-HRMS, under the absence of the molecular ion, is to 
perform a mass spectrum library search. Indeed, EI ioni-
sation has been standardised already before the 90’s and 
produces reproducible mass spectra [e.g.,  18  Chap.  5]. 
One of the best known EI libraries is the NIST/EPA/NIH 
Mass Spectral Library, with more than 250’000 experi-
mental spectra, including approx. 140 spectra for C1 
molecules [20]. However, only known and analysed com-
pounds are present in these libraries, and identification 
results are therefore biased towards these compounds. 
Unknown emerging pollutant cannot be found by such 
library search.

For unknown compounds absent from spectral librar-
ies, the identification challenge remains twofold: to 
identify the chemical formula of the molecular ion (also 
known as molecular formula annotation) and, in a sec-
ond step, to identify its structure. Methods exist to iden-
tify the formula of the molecular ion in case it is present 
(e.g., [21]). Previous attempts have been made to predict 
the mass of the absent molecular ion [22] and thereby its 
molecular formula [23]. However, these last methods do 
not make use of high resolution mass data now available. 
Alternatively, classifiers have been developed to predict 
to which class(es) the unknown compound may belong 
[e.g., 24, 25, 26, 27].

Once candidate molecular ions have been generated, 
and potential classes identified, structure-generation pro-
grams (e.g., commercial software MOLGEN-MS [28, 29], 
open-source software OMG [30]) followed by fragmen-
tation programs (e.g., QCEIMS [31, 32], CFM-ID [33], 
MetFrag [14], MOLGEN-MS [34, 35], and references 
therein) can be used to produce candidate mass spectra 
otherwise absent from libraries. In addition, when chro-
matographic information is available, it can be compared 
with retention indices if available or with a retention pre-
diction for candidate compounds [e.g. 14, 35].

While high resolution mass spectrometers have 
been used for at least 30 years, and may provide suf-
ficient information for broad, non-target screening 
approaches, recent developments have made this tech-
nology accessible to a larger number of laboratories. In 
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the early 2000s, fast response, large coverage and high 
accuracy mass analyser, such as Orbitrap and time-of-
flight (TOF) mass spectrometers, were introduced for 
water analysis, but only recently, first approaches have 
been made to use these powerful detectors also for 
organic atmospheric trace gases [36, 37]. Due to the 
challenge of identifying compounds, EI-HRMS are cur-
rently used as large mass-range coverage target or sus-
pect screening instruments [e.g., 38, 39] but only rarely 
as NTS instruments. For state-of-the art EI-HRMS, 
there is currently a huge divide between what it can 
deliver in terms of sample coverage, throughput and 
mass resolution, compared to what identification tools 
can provide.

In this article, we present a workflow to reconstruct 
the chemical formula of fragments produced by the 
fragmentation of a precursor molecule in GC-EI-
TOFMS. In addition, we develop a ranking method to 
identify most probable solutions and the reconstructed 
fragments that are most similar to the molecular ion. 
We evaluate our method by quantification of the cor-
rect results, on a training set of molecules and on an 
additional validation set. The entire method is written 
in Python and publicly available under the name ALPI-
NAC (for ALgorithmic Process for Identification of 
Non-targeted Atmospheric Compounds, see "Availabil-
ity of data and materials" section). While Python may 
not be the fastest programming language (compared to 
e.g. C++), it is now widely used in teaching computer 
science, including to students in environmental sci-
ences and chemistry, and we hope this work will there-
fore be accessible to a large public.

Experimental data
Training data set
To develop our methodology, we use known com-
pounds routinely measured within the Advanced Global 
Atmospheric Gases Experiment (AGAGE) network [40], 
reported in Table 1. Most of the substances are halocar-
bons, i.e. molecules made of a carbon chain, with halogen 
atoms, and are present in the atmosphere as trace gases. 
Structures include saturated and unsaturated chains and 
the presence of rings.

Within AGAGE, the chromatographic and mass spec-
trometric properties are obtained by measuring diluted 
aliquots of a pure compound [41–44] (identification at 
Level 1 according to the classification for non-target 
analysis introduced by Schymanski et  al. [45]). Subse-
quently, an unbroken chain of calibration from the pre-
pared synthetic primary standards to measurements on 
our instrument ensures that the correct compounds are 
measured, with the correct quantification [46].

Validation data set
To validate the model after its training phase, we use a set 
of potentially emerging compounds, listed in Table 2. We 
prepared a qualitative standard containing 18 new hydro-
fluorocarbons (HFCs), listed under the Kigali Amend-
ment to the Montreal Protocol [47]. The use of these 
substances will be progressively restricted in the coming 
years. Developing the capacity to check for their presence 
in the air, and their future molar fraction decrease, is part 
of supporting the application of the Kigali Amendment. 
The preparation of the qualitative standard is described 
in the Additional file 1. In addition, we use three hydro-
floroolefins (HFOs) newly detected in air [8], which are 
replacing the HFCs in applications such as foam blowing 
and refrigeration [e.g., 48]: HFO-1234yf, HFO-1234ze(E) 
and HCFO-1233zd(E). We use already available stand-
ards prepared for these HFOs [8, 44]. Finally, we use two 
halogenated substances of high boiling point, which are 
potential emerging contaminants, which were identified 
and measured at Empa during a specific campaign [49].

For both the training and the validation set, the correct 
identification of compounds containing the monoisotopic 
elements fluorine and iodine may be challenging. Indeed 
for low abundance peaks, the absence of isotopocule may 
be due to a mono-isotopic element or to a non detected 
isotopocule, containing e.g. nitrogen or oxygen isotopes.

Measurement by GC‑EI‑TOFMS
Since the 80s, specific instrumentation has been devel-
oped to tackle the challenges of measuring atmospheric 
halogenated trace gases: pre-concentration of the gases 
of interest, often present only at picomole per mole lev-
els, chromatographic separation of substances of boil-
ing points as low as −128◦C , and precise measurements 
to allow detection of annual trends [40, and references 
therein].

Our measurement system is very similar to earlier 
setups [43, 46]. In brief, it starts with a preconcentra-
tion trap, refrigerated at approx. −150◦C using a Stir-
ling engine, able to concentrate trace gases from up to 
six litres of gas (atmospheric air or reference gas mix-
ture). Stepwise thawing of the trap eliminates the most 
abundant air constituents, carbon dioxide and meth-
ane, and any remaining oxygen or nitrogen, that would 
otherwise saturate the detector. Remaining compounds 
are separated by a gas chromatograph (GC), equipped 
with a Gaspro pre- and main column (5  m and 60  m, 
respectively, 0.32  mm inner diameter, Agilent), ion-
ised and detected by a time-of-flight detector (H-TOF, 
Tofwerk AG, Thun, Switzerland). The detector is set 
to measure fragments with masses from 24 m/z (mass 
to charge ratio) to 300  m/z. Masses below 24  m/z are 
prevented from hitting the detector, to avoid saturation 
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by potential water contamination. The mass resolu-
tion is approximately 3000 below m/z of 50 and up to 
4000 above m/z of 100. The raw intensity data at each 
time-of-flight and each time bin are saved in a file of 
format hdf5 [50], which constitutes the used raw data. 
The total analysis time for one sample is 70  min, with 
40  min of preconcentration and stepwise thawing, 

followed by 30  min of gas chromatography and detec-
tion by TOFMS.

Intensity data, defined as the number of ions that hit 
the detector at a certain time, are recorded along two 
axes, the time-of-flight axis (later converted to a mass 
axis) and the retention time (RT) axis. While the signal 
along the RT axis reflects the separation of molecules by 

Table 1  Known compounds used as training set

These 36 substances are routinely measured within the AGAGE network [40]. Identification and quantification of these compounds have been done by [41–44]. 
Present chemical elements are: H, C, N, O, F, S, Cl, Br and I. These are the chemical elements used as input for the knapsack algorithm. SMILES codes can be found in the 
Additional file 1. The corresponding latex document is the Additional file 6

Compound Chemical name Chemical formula Monoisotopic molecular 
mass Da

CAS number

C2H6 Ethane C2H6 30.04695 74-84-0

C3H8 Propane C3H8 44.06260 74-98-6

CH3Cl Chloromethane CH3Cl 49.99233 74-87-3

COS Carbonyl sulphide COS 59.96699 463-58-1

NF3 Nitrogen trifluoride NF3 70.99828 7783-54-2

Benzene Benzene C6H6 78.04695 71-43-2

CH2Cl2 Dichloromethane CH2Cl2 83.95336 75-09-2

HCFC-22 Chlorodifluoromethane HCF2Cl 85.97348 75-45-6

CF4 Tetrafluoromethane CF4 87.99361 75-73-0

Toluene Toluene C7H8 92.06260 108-88-3

CH3Br Bromomethane CH3Br 93.94181 74-83-9

HCFC-142b 1-chloro-1,1-difluoroethane H3C2F2Cl 99.98913 75-68-3

SO2F2 Sulfuryl difluoride SO2F2 101.95871 2699-79-8

CFC-13 Chlorotrifluoromethane CF3Cl 103.96406 75-72-9

HCFC-141b 1,1-dichloro-1-fluoroethane H3C2FCl2 115.95958 1717-00-6

CHCl3 Chloroform CHCl3 117.91438 67-66-3

CFC-12 Dichlorodifluoromethane CF2Cl2 119.93451 75-71-8

C2HCl3 1,1,2-trichloroethene C2HCl3 129.91438 79-01-6

CFC-11 Trichlorofluoromethane CFCl3 135.90496 75-69-4

HCFC-124 2-chloro-1,1,1,2-tetrafluoroethane HC2F4Cl 135.97029 2837-89-0

PFC-116 Perfluoroethane C2F6 137.99042 76-16-4

CH3I Iodomethane CH3I 141.92795 74-88-4

SF6 Sulfur hexafluoride SF6 145.96249 2551-62-4

Halon-1301 Bromo(trifluoro)methane CF3Br 147.91355 75-63-8

CCl4 Tetrachloromethane CCl4 151.87541 56-23-5

CFC-115 1-chloro-1,1,2,2,2-pentafluoroethane C2F5Cl 153.96087 76-15-3

C2Cl4 1,1,2,2-tetrachloroethene C2Cl4 163.87541 127-18-4

Halon-1211 Bromochlorodifluoromethane CF2ClBr 163.88400 353-59-3

CFC-114 1,2-dichloro-1,1,2,2-tetrafluoroethane C2F4Cl2 169.93132 76-14-2

CH2Br2 Dibromomethane CH2Br2 171.85233 74-95-3

CFC-113 1,1,2-trichloro-1,2,2-trifluoroethane C2F3Cl3 185.90177 76-13-1

PFC-218 Perfluoropropane C3F8 187.98723 76-19-7

SF5CF3 Pentafluoro(trifluoromethyl)sulfur SF5CF3 195.95930 373-80-8

PFC-c318 Octafluorocyclobutane C4F8 199.98723 115-25-3

Halon-2402 1,2-dibromo-1,1,2,2-tetrafluoroethane C2F4Br2 257.83029 124-73-2

C6F14 Perfluorohexane C6F14 337.97764 355-42-0
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the GC, the signal along the mass axis reflects the frag-
mentation pattern of the molecules measured by EI-MS. 
One fragmented, detected molecule can be visualised as 
a mountain ridge, producing a variety of mass peaks with 
various intensities, all aligned perpendicular to the time 
axis. First, peaks are detected and fitted along the mass 
axis, and afterwards along the RT axis.

Along the time-of-flight axis, at each time bin, peaks are 
fitted using a pseudo-Voigt function (Additional file  1). 
The obtained time-of-flight centres of the peaks are then 
converted to masses, using the mass calibration function 
(Additional file 1). We assume that all masses have been 
ionised just once. This produces a set of 20 to 30 centres of 
mass values with associated RT and intensity, from which 
the mean and standard deviation are computed, weighted 
by intensity. For each detected peak, the mass uncertainty 
( umass ) is the Euclidean distance of the calibration uncer-
tainty ( u calibration , see Additional file 1) and the measured 
standard deviation ( umeasurement):

This umass is computed using a coverage factor of 2.5 to 
constrain the range of possible masses for the knapsack 
algorithm described below. This corresponds approxi-
mately to a 98.5% confidence interval. The resulting, 
expanded mass uncertainty is on average ≈  6 mDa or 
≈ 70 ppm.

Along the RT axis, data are saved with a frequency of 
six points per second (6  Hz). Usually, chromatography 
peaks last for a minimum of 4 s, producing 20–30 points 
per peak in the RT domain. The observed peak shape 
along the time axis is typical for gas chromatography and 
is fitted using the equation proposed by Pap et  al. [51], 
that in our case fits well the observed tailing. When com-
puting ratio of intensities, the obtained isotopic pattern 
accuracy ranges from 1 to 5 %, depending on peak inten-
sities, and is on average 2.0 %. This value mostly reflects 
the precision of the entire measurement system. Finally, 
co-eluting mass peaks are grouped together.

Routine quality control of instrumental performance 
includes measuring blanks to check for potential contam-
inants coming from the measurement setup itself, drifts 
in retention time due to column ageing or water contami-
nation, and stability of intensity ratios of mass fragments 
belonging to the same compound.

Method for automated fragment formula 
identification
Method overview
The output after peak fitting and mass calibration is a 
dataset of mass/charge ratio (m/z), each with intensity 
(in V) and uncertainty (in ppm), at a precise retention 

(1)umass = 2.5

√

u2calibration + u2measurement

time (in seconds). Co-eluting peaks may correspond 
to chemical fragments of a unique molecule, or a 
small number of distinct molecules. They are therefore 
grouped into one time slot of approx. 2  s width to be 
treated together by the identification algorithm. We 
consider each time slot separately.

The overview of our method is depicted in Fig. 1. The 
general approach is to consider separately each group 
of co-eluting fragments, and to reconstruct the chemi-
cal formula of each fragment based on two types of 
information:

•	 From the experimental data produced by GC-EI-
TOF analysis, we use the measured mass and meas-
ured signal intensity of each peak. For the meas-
ured masses, the uncertainty (Eq.  (1)) is computed 
following metrology principles (Fig.  1, yellow box 
Input). It is known that using mass information 
only is not enough to correctly reconstruct chemi-
cal formulae, even at <1 ppm accuracy [52];

•	 Therefore, we combine these experimental data 
with chemical information that is universal, i.e. true 
for any given molecule: exact mass and valence of 
chemical elements, known environmental stable 
isotopic abundances (Fig. 1, two mauve boxes).

In practice, the identification method combines algo-
rithms for two purposes: (i) algorithms that enumer-
ate solutions in an exhaustive way, according to given 
constrains (Fig.  1, steps 1 and 3); (ii) algorithms that 
eliminate unlikely solutions, based on other constraints 
(Fig. 1, steps 2, 7, 8 and 9).

The developed workflow is as follows (steps are num-
bered as in Fig. 1): 

Step 1:	To start, possible atom assemblages matching the 
measured masses, within uncertainty, are exhaus-
tively generated. This step usually produces a large 
number of possible chemical formulae;

Step 2:	all generated formulae are organised in a pseudo-
fragmentation graph. This step relies on the speci-
ficity of EI-MS, producing many various fragments 
from the same precursor ion molecule. The irrelevant 
or unlikely formulae are discarded;

Step 3:	isotopocules (i.e. molecules having the same type 
and number of atoms, but where at least one atom is 
a different isotope) are generated;

Step 4:	for each set of isotopocules, the isotopic pattern 
of fragments (theoretical intensity profile) along the 
mass axis is generated. The optimum contribution to 
the measured profile, of each set separately, is com-
puted;
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Fig. 1  Overview of the method for automated identification of fragment formulae. Orange box (top): input measured data. Two mauve boxes (left): 
input chemical data [56]. Yellow boxes are steps done just once. Steps 1 to 4: steps of initialisation. Green boxes, steps 5 to 8: steps repeated until a 
certain fraction of the measured signal has been reconstructed, here 95%. Steps 9 and 10, yellow box: final steps, done just once. Blue box: output 
data, list of most likely fragments together with associated likelihood and ranking
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Step 5:	using a specifically designed likelihood estimator, 
all candidate chemical formulae are set out in order 
of preference, number one being the most likely, and 
the last one being the least likely;

Step 6:	This ordering enables the selection of the most 
likely candidate(s);

Step 7:	the intensity of each isotopocule set is optimised 
by comparison to the measured mass profile, using a 
machine learning technique. This is by far the com-
putationally most costly step. Isotopocule series char-
acterised by a total intensity below a given threshold, 
usually, the instrumental limit of detection (LOD), 
are eliminated.

Step 8:	The pseudo-fragmentation tree is updated, and 
the optimisation procedure resumes at Step 5, until 
a predefined fraction of the measured signal is repro-
duced.

Step 9:	All remaining, not optimised candidate chemi-
cal formulae are deleted. The remaining candidates 
constitute the final list of most likely correct chemical 
formulae. Each measured mass may have zero, one or 
several assigned chemical formulae.

Step 10:	 The last step is a tentative reconstruc-
tion of the molecular ion(s). Most likely molecular 
ion(s) are generated based on the largest fragments 
from the graph and they are set out in order accord-
ing to their computed likelihood value.

Each step of the method is explained in details hereaf-
ter. In the Additional file 1, Sect. 6, we give a numerical 
example with the mass spectrum that will turn out to 
correspond to CCl4.

Step 1: Generating fragment formulae: the knapsack 
algorithm
The aim of the knapsack step is to recover all chemical 
formulae that could correspond to each detected frag-
ment, given its mass and uncertainty, and excluding all 
other chemical formulae that would not fulfil the crite-
ria of measured mass and uncertainty. This knapsack step 
produces the correct chemical formulae, usually along 
with many other incorrect formulae. The aim of subse-
quent steps will be to eliminate the incorrect formulae 
using additional constrains.

We use combinatorics to generate the chemical formu-
lae of candidate fragments, for each mass detected in a 
spectrum. In particular, we develop a variant of the knap-
sack algorithm [53, 54], dedicated to our setting, which 
will be described below.

The knapsack algorithm in combinatorics
Combinatorics are mathematical algorithms of fast and 
exhaustive enumeration, and the knapsack problem is a 
well-known topic in this area (see e.g. the handbook on 
algorithms [55]). The problem is usually stated as fol-
lows: given a knapsack of maximum available capacity 
(e.g. mass), and a set of items each of a specific capac-
ity, find subset(s) of items that can fit into the knapsack, 
while optimising some other quantity (usually maxi-
mizing the total price of the items). In our setting, the 
knapsack is a fragment of given mass (within the uncer-
tainty range), and the items are atoms of exact given 
mass. We are interested in enumerating all possible 
combinations of atoms so that the sum of their masses 
fits the measured fragment mass within the uncertainty 
margin. An unbounded number of each atom is avail-
able i.e.  each atom type can be used multiple times, 
this is also known as the unbounded knapsack problem. 
Contrary to the classical problem in combinatorics, 
we do not optimise another parameter. Instead, we are 
interested in listing all possibilities. In this work, we 
design an algorithm for a fast and exhaustive enumera-
tion of all the solutions to the knapsack problem.

The inputs of our dedicated knapsack algorithm are 
the measured masses of the fragments with uncertain-
ties, and a list of masses of elements that are expected 
to form the fragments. Because the exhaustive list of 
solutions grows exponentially with the number of ele-
ments, we will introduce different techniques to avoid 
as early as possible enumerating wrong chemical for-
mulae, while still being exhaustive.

Targeted mass with uncertainty
This section describes the basic algorithm to enumerate 
all the possibilities. The target mass, which is one meas-
ured mass, is denoted by m; the set of item masses, 
which are the exact masses of chemical elements 
(IUPAC: [56]), is made of I distinct positive values mi , 
labelled m0 to mI−1 , sorted in increasing order, that is, 
mi < mi+1 for all i. We do not consider uncertainties 
of the atomic masses, which are negligible compared 
to the TOF analytical mass uncertainties. A solution 
of a knapsack problem is encoded as a vector of posi-
tive integers [a0, a1, . . . , aI−1] where ai is the number 
of items of mass mi ; it is 0 if the item i is not in the 
solution. Algorithms 1, 2 (in pseudo-code) describe the 
basic recursive enumeration. An iterative (non-recur-
sive) function is also possible but we implemented a 
recursive function. 
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1  H, 2 H, C, 13 C, N, 15 N, O, 17 O, 18 O, F, S, 33 S, 34 S, Cl, 36 S, 37Cl, Br, 81Br, I.
2  B, Si, P and noble gases are also supported by ALPINAC and can be 
added to the list of chemical elements to use if needed.

Only the most abundant isotope of each element used 
as input
We consider nine elements (H, C, N, O, F, S, Cl, Br, I) with 
their stable isotopes (if any), making a list of 19 different 
exact masses1 that can be combined to form a molecule 
(we omit the elements that are rarely found in volatile 
atmospheric trace gases, such as Si, P and metals2). The 
electron ionisation fragmentation produces isotopocule 
fragments. For example for the molecule CCl4 , we may 
observe CCl4 made of only abundant isotopes ( 12 C or C 
in short notation, 35 Cl or Cl in short notation), and iso-
topocules containing 13 C and 37 Cl (see the complete list 
of isotopocules provided in Fig. 3 and in the Additional 
file 1: Table S8).

To reduce the enumeration of the knapsack, the input is 
limited to the mass of the most abundant isotope of each 

element (e.g.  C of mass 12.000000 g mol−1 for carbon, Cl 
of mass 34.96885271 g mol−1 for chlorine), making a list 
of 9 exact masses to be used for the enumeration, instead 
of 19. For relatively small molecules, the fragment made 
of only abundant isotopes has usually the highest inten-
sity (or second highest, Fig. 3), hence producing a much 
smaller mass uncertainty than for the other isotopocules. 
The target mass range is thinner, reducing the knapsack 
enumeration. By doing so, we obtain possible solutions 
with the knapsack only for some of the most abundant 
fragments. Once a fragment made of abundant isotopes 
is generated by the knapsack, we later enumerate all its 
isotopocules containing minor isotopes, in Step 3 (Fig. 1). 
This is further explained in  "Step 4: Computing the opti-
mum contribution for each isotopocule set individually" 
section.
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Optimisation of the knapsack enumeration: double 
bond equivalent (DBE) criterion with meet‑in‑the‑middle 
optimisation algorithm
Not all sets of atoms form a valid chemical formula. 
Indeed, each atom allows a maximum number of chemi-
cal bonds with other atoms, according to its valence. This 
can be expressed using the double bond equivalent (DBE), 
or sum of number of rings and double bonds in a given 
chemical formula. The DBE is computed with  [§6.4.4 
Eq. (6.9) 18]

where Vi is the valence of element i and Ni is the number 
of atoms of element i in the chemical formula. For EI-MS, 
since we expect no cluster formation in the ionisation 
source, the minimum valence for a chemical formula is 
0. We do not set any maximum valence value. For the 
sulphur element, where multiple valences are possible, 
we chose the maximum value (6), according to one of the 
golden rules for identification [57].

Of all chemical formulae matching the considered mass 
domain, only a fraction are chemically valid. This means 
that to reduce the enumeration time of the knapsack, 
one strategy is to avoid enumerating chemical formulae 
with a negative DBE value. We explain hereafter how we 
implement this.

In the early 80’s, cryptologists3 formulated a meet-in-
the-middle strategy to speed-up the enumeration of all 
solutions of a knapsack problem [53]. The key-ingredient 
is to partition the candidate items in two sets. Applying 
this strategy to our topic, one enumerates all possibilities 
made of items of the first set and whose mass is smaller or 
equal to the target mass. The possibilities are ordered by 
increasing mass. Meanwhile, one does the same with the 
items of the second set. The two sets are chosen so that 
the respective running-time of the two enumerations are 

(2)DBE = 1+ 0.5×

imax
∑

i

Ni(Vi − 2)

Fig. 2  Directed acyclic pseudo-fragmentation graph obtained in Step 2, with all the candidate fragments (nodes) from the knapsack algorithm for 
CCl4 . One observes 23 nodes, with 2 leaves (or smallest possible fragments, in light green), 15 maximal fragments (in orange and yellow), of which 4 
have no children and are therefore singletons (in yellow). The latter are eliminated in Step 2

Fig. 3  isotopocules of CCl4 with mass and relative intensity w.r.t. CCl4 . 
The abundant formula CCl4 has one isotopocule CCl3[37Cl] of relative 
intensity greater than one (1.279504). See Table S8 in the Additional 
file 1 for numerical data

3  A variant of the knapsack problem was used to build cryptosystems to 
securely hide secrets in the 70’s. It was later broken with the LLL algorithm. 
We leave to future work the application of the LLL algorithm to our setting.
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balanced, in order to minimize the total running-time. 
We end up with two lists of masses in increasing order, 
of value between 0 and the target mass. Then reading 
onward the first list and downwards the second list, one 
looks for pairs of partial solutions, one from each list, so 
that the paired mass matches the target mass. A numeri-
cal example is given in the Additional file 1 in Sect. 6.1.

We adapt this strategy to speed up the solution of our 
problem. We partition the input atoms in two sets: the 
set of multivalent atoms (C, N, O, S) and the set of mon-
ovalent atoms (H, F, Cl, Br, I). First, all solutions made 
of multivalent atoms, and smaller or equal to the target 
mass, are generated. To a generated multivalent-atom-
solution, a maximum number of monovalent atoms, 
twice the DBE value (cf. Eq.  (2)), can be added and still 
form a valid chemical formula. In this way, the partial 
solutions made of multivalent atoms give us an upper 
bound on the number of monovalent atoms that can 
complete the fragment, reducing considerably the enu-
meration of partial possibilities with monovalent atoms. 
In particular, it gives an upper bound on the number of 
hydrogen H. A numerical example is given in the Addi-
tional file 1 in Sect. 6.2.

The list made of multivalent atoms is precomputed for 
the heaviest mass first, and can be re-used for the smaller 
masses. We also implemented a way to re-use the list of 
monovalent atoms precomputed for the heaviest target 
mass, when processing the lighter target masses. Our 
strategy turned out to be fast enough for the consid-
ered mass ranges (see runtime in "How wrong knapsack 
solutions are rejected and implications for computa-
tionruntime" section) and we did not investigate further 
optimisations. Dührkop et  al. [58] have a very different 
approach well-suited for molecular masses of around 
1000  Da, implemented in the SIRIUS software suite for 
tandem MS [59].

After Step 1 (Fig. 1), for each measured mass, all chem-
ical formulae that are in agreement with the measured 
mass within its uncertainty, made of abundant isotopes, 
and having a positive DBE value, are generated. At this 
stage, the fragment formulae are not uniquely identified 
by the knapsack: for each measured mass there are either 
too many possibilities, or none (usually because the frag-
ment may contain non-abundant isotopes).

Step 2: Organisation of the results 
in a pseudo‑fragmentation graph
The aim of Step 2 is to organise all chemical formulae 
generated in Step 1 according to a specific order, to help 
identify and delete unlikely chemical formulae.

With EI-MS, a fragmentation cascade happens due 
to the high ionisation energy, i.e.  several fragmentation 
steps one after the other [e.g., 18]. A fragmentation step 

produces an ionised fragment (detected) and a neutral 
(not detected). Each detected fragment may result from 
one or several fragmentation steps. As the EI fragmen-
tation takes place under vacuum with pressure usually 
below 10−5 bar, we do not expect to see clusters originat-
ing from agglomeration of (fragments of ) the molecu-
lar ion with other chemical species. On the contrary, all 
detected fragments are pieces of the original molecule. If 
all fragmentation steps are known, one can organise the 
fragments in an acyclic directed graph (Fig. 2). The nodes 
are the fragments. One edge is one fragmentation step. 
This forms a fragmentation graph. Potentially, several 
fragmentation pathways in the EI source may produce 
the same end fragment(s). But thanks to directions, the 
graph is acyclic.

We organise all the candidate formulae from the knap-
sack in a directed graph (with the class DiGraph pro-
vided in the Python package Networkx, [60]). Each 
node on the graph is a candidate fragment, with associ-
ated attributes, such as its chemical formula, its exact 
mass, the associated measured mass(es), and the list of 
minor isotopocules that will be generated at the next 
step. An edge is set from a node to another if the chemi-
cal formula of the first fragment admits the chemical 
formula of the second one as subformula (e.g. CCl3 has 
subfragment CCl, see Fig. 2 presenting the directed graph 
obtained with all knapsack solutions of CCl4 ). This mim-
ics the possible fragmentation pathways. In other words, 
we define a partial ordering of the fragments (it is not 
total because, for example, there is no relation between 
candidate fragments CCl3 and CSBr, cf. Fig. 2). The maxi-
mal fragments4 have no ancestor but may have children 
(Fig. 2, nodes in orange and yellow), they are the maximal 
elements of the ensemble of fragments. If the molecu-
lar ion is present, it is one of the maximal fragments. 
As with EI, the molecular ion is often absent (as for 14 
compounds of the training set, see Table 3), several maxi-
mal fragments are allowed. Also, to account for poten-
tial co-elution of different molecules, several connected 
components are allowed. This algorithm does not use 
any structural information, only the candidate chemi-
cal formulae, producing only a pseudo-fragmentation 
graph, not a chemically realistic one, contrary to previous 
algorithms [21]. We do not use a list of expected neutral 
losses (as in e.g., [12]) due to the high heterogeneity of 
our chosen molecules. Therefore, it is likely that some 
edges are actually not structurally possible, but this is not 
relevant at this stage. Optimisation strategies for an effi-
cient construction of this directed graph are reported in 
the Additional file 1  (Sect. 5.1).

4  in the usual mathematical meaning, e.g. https://​en.​wikip​edia.​org/​wiki/​Parti​
ally_​order​ed_​set#​Extre​ma.

https://en.wikipedia.org/wiki/Partially_ordered_set#Extrema
https://en.wikipedia.org/wiki/Partially_ordered_set#Extrema
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From this pseudo-fragmentation graph, we would 
like to eliminate the isolated nodes, or nodes not being 
connected to any other node (singletons), with neither 
ancestors nor children (Fig.  2, nodes in yellow). They 
may correspond to (i) impurities produced for example 
by GC bleed or (ii) solutions from the knapsack that are 
unlikely, in particular with an atom absent from all other 
nodes. But we need to account for very small molecules 
such as CFC-11 ( CFCl3 ) or CFC-13 ( CF3Cl) that produce 
a very limited number of different fragments, without the 
molecular ion: if one measured mass has only singletons 
as candidate fragments, we do not eliminate them.

At the end of Step 2, usually a few unlikely knapsack 
solutions being singletons have been eliminated.

Step 3: Enumeration of chemical formulae containing 
minor isotopes
The knapsack algorithm produces candidate chemical 
formulae made of abundant isotopes only. But all iso-
topocules of a fragment are expected to be present in a 
given time slot (the very rare ones which are below the 
detection limit of the mass spectrometer may not be 
detected). Therefore, for each candidate chemical for-
mula, we now generate a set of all isotopocules including 
their relative intensities based on their natural isotopic 
abundances [56]).

Hereafter, we name knapsack formula a chemical for-
mula from the knapsack, and minor-isotope formula a 
chemical formula with at least one minor isotope, even 
if this isotopocule is expected to be more abundant 
than the abundant chemical formula. For example, CCl4 
is called knapsack formula, while CCl3[37Cl] is called 
minor-isotope formula.

For each possible knapsack formula, we generate the 
list of all possible isotopocules. Again, this is an enu-
meration process using combinatorics. If the chemical 
formula is made of atoms that are monoisotopic, the 
list contains the knapsack formula only, whose intensity 
is one, that is, 100%. Otherwise, for each minor-iso-
tope formula, we compute its exact mass and expected 
intensity relative to the knapsack formula [56, 61]. The 
isotopocules of the knapsack formula CCl4 with their 
relative intensities are shown in Fig.  3 and the corre-
sponding numerical values can be found in Table S8 of 
the Additional file 1.

Optimisation strategies to speed up the enumeration 
are reported in the Additional file  1  (Sect.  5.3). In par-
ticular, isotopocules with intensity expected below the 
instrumental limit of detection are not enumerated.

At the end of Step 3, knapsack-generated chemical 
formulae, containing only abundant isotopes, are organ-
ised as nodes in a pseudo-fragmentation graph. Each 

knapsack formula of a node is complemented by its 
minor-isotope formula(e) if the latter is above the instru-
mental limit of detection.

Step 4: Computing the optimum contribution for each 
isotopocule set individually
We now consider the measured mass intensity profile. 
Potentially, any candidate chemical formula may con-
tribute to the measured intensity profile along the mass 
axis. First, one generates the theoretical mass profile for 
each node, i.e. for each knapsack formula together with 
its minor-isotope formulae. Then, one optimises a certain 
contribution for each node taken individually, to match 
the measured mass profile.

Computing a profile of intensity vs mass for a given set 
of isotopocules
For each set of isotopocules belonging to the same node, 
we generate an expected mass profile. A measured inten-
sity profile is not continuous, it is a discrete set of coordi-
nates (ma, Ima) where ma is a mass abscissa, and Ima is the 
intensity for this mass. We consider that a knapsack frag-
ment and its associated minor-isotope fragments have an 
expected intensity profile made of the sum of contribu-
tions of all isotopocules along the mass range. Each mass 
peak is generated as a pseudo-Voigt profile, with a pre-
scribed peak width as obtained from the mass calibration 
(Additional file 1) and a mass resolution of about 8 ppm, 
which is sufficient given our instrumental mass resolu-
tion. We obtain an expected discrete mass profile (a set of 
coordinates) for the whole isotopocule set of the node, of 
the form {(ma, Ĩma) : ma ∈ mass abscissa}.

Computing the contribution of a given set of isotopocules
At this point, over the mass domain covered by a given 
candidate set of isotopocules i, we look for a non-neg-
ative scaling factor ki , such that the measured signal 
smeasured = {(ma, Ima) : ma ∈ mass abscissa} best fits the 
theoretical profile of the set. This can be seen as an opti-
misation problem, where the difference between measured 
and generated profile is minimised:

where smeasured and Ĩi can be seen as vectors. With only 
one ki value to optimise, Eq. (3) can be simplified as the 
average value of the measured profile divided by the com-
puted isotopocule profile:

(3)

smeasured − ki · Ĩi =
∑

ma∈mass abscissa

(

Ima − ki · Ĩi,ma

)

= 0
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After optimisation of the factor ki , if the entire profile 
falls below the LOD, the candidate node is removed from 
the graph of solutions.

This step can be seen as computing the maximum con-
tribution for a given node (as if no other nodes were pre-
sent to contribute to the signal). The computed maximum 
contribution, that we denote kmax

i  , will be used as starting 
value for the first computation of likelihood in Step 5.

Step 5: Ranking of candidates according to a likelihood 
estimator
To help us select the most probably correct formulae 
among all candidate formulae, we define an artificial likeli-
hood estimator based on two quantifications, as explained 
hereafter. The estimator takes as input a knapsack frag-
ment, together with its set of minor-isotope fragments.

We decide to capture in the likelihood estimator the 
other knapsack fragments that are sub-fragments, and their 
isotopocules. For example, for CCl2 as chosen knapsack 

formula, we would consider its five minor-isotope formulae 
(e.g. [ 13C]Cl2 ), the subformulae CCl and Cl and their own 
set of isotopocules (C of m/z 12 is filtered out in our TOF 
MS). At Step 4, we estimated kmax

i  , the maximum value that 
ki could take. We now estimate the maximum proportion g 
of signal that a candidate fragment n, its isotopocules, and 
all its sub-fragments i could explain. These considerations 
lead to a first possible estimator:

where pi,j is the theoretical abundance of the given iso-
topocule j for the given fragment i computed with Eq. 7 
in the Additional file 1, mspec ranges over the mass spec-
trum, Imspec is the intensity at that mass ( Imspec is com-
puted as a discrete integral, this is the area of the peak of 
the measured signal around mspec ). Numerical values of 
g(n) for knapsack fragments of CCl4 are given in Table 5, 
fourth column. In practice, we have observed a misbehav-
iour of the estimator g(n) from Eq. (5): knapsack formulae 

(4)ki =
1

#{ma ∈ mass abscissa}

∑

ma∈mass abscissa

Ima

Ĩi,ma

(5)g(n) =

∑

i sub-fragment of n

kmax
i

∑

j isotopocule of i

pi,j

∑

mspec∈mass spectrum
Imspec

that contain many atomic elements have many more sub-
fragments, of various masses, hence a higher probability 
to match a larger fraction of the signal. Eq. (5) therefore 
gives advantage to “complicated” formulae. This effect 
can be seen for knapsack fragments of CFC-11 (Table 5, 
col. 4): fragment HCFCl (wrong) gets a higher score than 
CFCl (correct) using Eq. (5). Misbehaviour of similar esti-
mators, also capturing the total matched signal, has been 
reported previously [62].

To correct for this effect, we multiply Eq.  (5) by the 
number of found sub-formulae, divided by the expected 
maximum number of sub-formulae. In practice, this 
maximum number of sub-formulae is computed with 
the knapsack algorithm, using the minimum detectable 
mass as lower bound (in our case, m/z = 23 , as all smaller 
masses are filtered out in our TOF detector). As the num-
ber of knapsack solutions increases with i) the total num-
ber of atoms and ii) the number of elements present in the 
fragment, using this number as denominator will favour 
solutions constituted of a limited number of elements. 
The advantage of this technique is to favour “simple” solu-
tions, without setting any parameter to limit the number 
of elements to use. Equation (5) is therefore completed as:

where #{sub-fragments i of n} is the number of existing 
subfragments in the directed graph, for fragment n.

All knapsack fragments are set out in order by decreas-
ing likelihood value. Looking again at the same example 
for CFC-11 in Table 5, using Eq. (6) now fragment CFCl 
(correct) gets a higher likelihood score than HCFCl 
(col. 5), and is therefore ranked better (col. 6). We under-
line that this defined likelihood estimator has no chemi-
cal signification. Its aim is only to highlight the simplest 
knapsack solutions that explain the maximum proportion 
of the measured signal. It is therefore only a practical tool 
to speed up the identification process.

Step 5 to Step 8: Iterating loop to compute the optimum 
contribution of multiple sets of candidates together
Overall, the measured signal profile smeasured = {(ma, Ima

) :

ma ∈ mass abscissa} should match a linear combina-
tion of the expected profiles of all correct candidate sets, 
an approach already found in e.g.  [63]. Formally, this 
approach allows several fragments to form together the 
signal of one measured peak, which is realistic given our 
mass resolution. Equation (3) is therefore completed as:

(6)g(n) =

∑

i sub-fragment of n

kmax
i

∑

j isotopocule of i

pi,j

∑

mspec∈mass spectrum
Imspec

#{sub-fragments i of n}

#{all theoretical sub-fragments of n, mass ≥ 23m/z}
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This equation cannot be simplified. Instead, the opti-
misation of multiple ki is handled by a machine learn-
ing technique, using the Python package lmfit, based 
on the Levenberg-Marquardt algorithm [for details, see 
64]. This optimisation of multiple ki together is by far the 
most expensive computation step in the entire method. 
The lmfit package is most efficient when only a limited 
number of parameters ki are optimised. In particular, it 
is outside the computing power of a regular desktop 
machine to optimize all the profiles of the candidate for-
mulae together. We implement three techniques to lower 
the running time of lmfit.

First, the measured profile is itself not perfect but 
affected by measurement noise. This noise also affects 
the expected isotopic pattern accuracy. To account for 
this, we do not aim at reconstructing 100% of the signal, 
but only a significant portion of it. Since our experimen-
tal precision is in the order of 1 % to 5%, as well as the 
isotopic pattern accuracy, we set the threshold at 95% 
of the signal: when 95% of the “area” below the signal is 
reconstructed, the optimisation is stopped. The fraction 
of explained signal f is calculated as follow, iterating over 
the i selected candidate fragments, their respective set of 
isotopocules, and the mass spectrum:

where ki are the linear factors optimised by the lmfit 
package. We aim at reaching f ≥ 0.95.

Second, a further reduction of computation time is 
achieved by splitting the mass domain: all candidates are 
grouped into smaller, non-overlapping mass domains, 
where the optimisation is run separately. Indeed, opti-
mising a small number of ki multiple times is more effi-
cient than optimising a large number of ki just at once.

Third, we observe that at this stage, many wrong solu-
tions generated by the knapsack are still present, while 
usually, only a limited number of chemical formulae are 
really present (see later discussion in "How wrong knap-
sack solutions are rejected and implications for computa-
tionruntime" section  and also Fig. 8). We therefore adopt 
the following greedy-like strategy5, in order to reduce 
the number of fitted isotopic profiles. The most likely 

(7)

smeasured −

�

ki · Ĩi

=

�

ma∈mass abscissa



Ima
−

�

profile i

ki · Ĩi,ma



 = 0

(8)f =

∑

selected candidate i

ki
∑

isotopocule j of i

pi,j

∑

mspec∈mass spectrum
Imspec

solutions are processed first, until the reconstructed sig-
nal reaches 95% of the measured signal. This way, unlikely 
solutions left after 95% of the signal has been recon-
structed are not considered at all. This approach requires 
all candidate fragments to be ordered according to a well 
chosen likelihood estimator, as done in Step 5.

In practice, from the list of ranked knapsack formu-
lae (or nodes on the graph), we take the one ranked 
first, together with all its sub-fragments (or children of 
the node) and all associated isotopocules, optimise the 
contributions of these selected nodes (Step 7), and then 
eliminate any node below the LOD, as well as any node 
becoming a singleton (Step 8). Since the ki have updated 
values, the ranking is updated (back to Step 5). If less 
than 95% of the signal is reconstructed, the next most 
likely node is added to the selected nodes (Step 6). This 
iterating procedure is depicted in Fig. 1, green boxes.

At the end of this iterating procedure, nodes that have 
not been selected to be optimised are deleted from the 
pseudo-fragmentation graph, and any new singletons 
are deleted as well (Step 9). For each remaining node, its 
factor ki is used to compute the final contribution of this 
node to each measured mass peak.

Step 10: Tentative identification of the molecular ion
At the end of Step 9, the majority of detected fragments 
have been assigned a chemical formula. Using this infor-
mation, we develop a simple algorithm to identify or 
reconstruct likely molecular ions. The three conditions 
of the SENIOR theorem have to be fulfilled, as listed by 
Kind and Fiehn [57]: 

1	 The sum of valences or the total number of atoms 
having odd valences is even.

2	 The sum of valences is greater than or equal to twice 
the maximum valence. This rule prevents fragments 
such as CFCl to be considered as valid molecular ion.

3	 The sum of valences is greater than or equal to twice 
the number of atoms minus 1. In our settings, by 
construction all fragment formulae have a non-neg-
ative DBE value, therefore this rule is fulfilled.

We start from the list of maximal fragments still part of 
the graph at the end of Step 9, and separate them into 
two groups, with odd or even sum valence.

All maximal fragments with even valence fulfil the first 
condition of the SENIOR theorem. We then test for the 
second condition. All maximal fragments fulfilling these 
two criteria are added to the list of potential molecular 
ions.

5  https://​en.​wikip​edia.​org/​wiki/​Greedy_​algor​ithm.

https://en.wikipedia.org/wiki/Greedy_algorithm
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Table 2  Known compounds used as validation set

Identification and quantification of these 23 compounds has been done by [8, 44, 49, 70]. Present chemical elements: H, C, N, O, F, Cl. Chemical elements used as input 
for the knapsack algorithm are the same as for the training set: H, C, N, O, F, S, Cl, Br and I. SMILES codes can be found in the Additional file 1

Compound Chemical name Chemical formula Monoisotopic molecular 
mass Da

CAS number

Kigali Amendment to the Montreal Protocol

HFC-41 fluoromethane CH3F 34.021878 593-53-3

HFC-32 difluoromethane CH2F2 52.012456 75-10-5

HFC-152 1,2-difluoroethane C2H4F2 66.028106 624-72-6

HFC-152a 1,1-difluoroethane C2H4F2 66.028106 75-37-6

HFC-23 fluoroform CHF3 70.003035 75-46-7

HFC-143 1,1,2-trifluoroethane C2H3F3 84.018685 430-66-0

HFC-143a 1,1,1-trifluoroethane C2H3F3 84.018685 420-46-2

HFC-134 1,1,2,2-tetrafluoroethane C2H2F4 102.009263 359-35-3

HFC-134a 1,1,1,2-tetrafluoroethane C2H2F4 102.009263 811-97-2

HFC-125 pentafluoroethane C2HF5 119.999841 354-33-6

HFC-245ca 1,1,2,2,3-pentafluoropropane C3H3F5 134.015491 679-86-7

HFC-245fa 1,1,1,3,3-pentafluoropropane C3H3F5 134.015491 460-73-1

HFC-365mfc 1,1,1,3,3-pentafluorobutane C4H5F5 148.031141 406-58-6

HFC-236cb 1,1,1,2,2,3-hexafluoropropane C3H2F6 152.006069 677-56-5

HFC-236ea 1,1,1,2,3,3-hexafluoropropane C3H2F6 152.006069 431-63-0

HFC-236fa 1,1,1,3,3,3-hexafluoropropane C3H2F6 152.006069 690-39-1

HFC-227ea 1,1,1,2,3,3,3-heptafluoropropane C3HF7 169.996647 431-89-0

HFC-43-10mee 1,1,1,2,2,3,4,5,5,5-decafluoropentane C5H2F10 251.999682 138495-42-8

HFOs

HFO-1234yf 2,3,3,3-tetrafluoroprop-1-ene H2C3F4 114.009263 754-12-1

HFO-1234ze(E) (E)-1,3,3,3-tetrafluoroprop-1-ene H2C3F4 114.009263 29118-24-9

HCFO-1233zd(E) (E)-1-chloro-3,3,3-trifluoro prop-1-ene H2C3F3Cl 129.979712 102687-65-0

Halogenated compounds with high boiling point

HCBD 1,1,2,3,4,4-hexachlorobuta-1,3-diene C4Cl6 257.813116 87-68-3

TCHFB 1,2,3,4-tetrachlorohexafluorobutane C4Cl4F6 301.865830 375-45-1

Fig. 4  Reconstructed mass spectrum for CCl4 , when setting as target that 95% of the signal should be reconstructed. Numerical values can be 
found in the Additional file 3
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Using all the maximal fragments with odd valence, 
we enumerate all possibilities of adding one monova-
lent atom to each of them, using all monovalent atoms 
present in all fragments on the graph. Each newly con-
structed maximal fragment, if fulfilling the second 
SENIOR condition, is considered a potential molecular 
ion. It is added to the graph with all other fragments, 
and its likelihood value is computed.

This algorithm implicitly makes the assumption that all 
multivalent atoms present in the true molecule have been 
detected in at least one fragment and correctly identified.

Results and discussion
Validation data from standard measurements
To evaluate the reconstructed fragment formulae, we 
adopt the following pragmatic approach, already used 

Table 3  Known compounds used as training set: presence of the molecular ion

If the molecular ion is absent, we give the detected maximal fragments instead. Note that several maximal fragments may be detected for one substance. The last 
column indicates the ranking of the correct molecular ion, if reconstructed by our method, or which molecular ion(s) is (are) reconstructed (if any)

Compound Chemical formula Molecular ion present Reconstructed mol. ion

C2H6 C2H6 Yes 1

C3H8 C3H8 Yes 1

CH3Cl CH3Cl Yes 1

COS COS Yes 1

NF3 NF3 Yes 1

Benzene C6H6 Yes 1

CH2Cl2 CH2Cl2 yes 1

HCFC-22 HCF2Cl Yes 1

CF4 CF4 CF3 none

Toluene C7H8 Yes 1

CH3Br CH3Br Yes 1

HCFC-142b H3C2F2Cl H2C2F2Cl, H3C2FCl, H3C2F2 1

SO2F2 SO2F2 Yes O3FCl

CFC-13 CF3Cl CF2Cl, CF3 1

HCFC-141b H3C2FCl2 H2C2Cl2 , H3C2FCl 2 (1: C2H4FCl)

CHCl3 CHCl3 Yes 1

CFC-12 CF2Cl2 Yes 1

C2HCl3 C2HCl3 Yes 1

CFC-11 CFCl3 Yes 1

HCFC-124 HC2F4Cl Yes 1

PFC-116 C2F6 C2F5 1

CH3I CH3I Yes 1

SF6 SF6 SF5 1

Halon-1301 CF3Br Yes 1

CCl4 CCl4 CCl3 2 (1: CHCl3)

CFC-115 C2F5Cl C2F4Cl, C2F5 1

CCl2=CCl2 C2Cl4 Yes 1

Halon-1211 CF2ClBr CFClBr, CF2Br, CF2Cl 1

CFC-114 C2F4Cl2 C2F3Cl2 , C2F4Cl 1

CH2Br2 CH2Br2 Yes 1

CFC-113 C2F3Cl3 Yes 1

PFC-218 C3F8 C3F7 1

SF5CF3 SF5CF3 SF5 , CF3 SF5 , CF4
PFC-c318 C4F8 C3F5 C3F6

Halon-2402 C2F4Br2 Yes 1

C6F14 C6F14 C5F9 C4F10
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in e.g. [65]: a fragment formula is considered to be cor-
rect if it is a sub-formula of the true molecular formula. 
Fragments resulting from re-arrangements, which do 
happen with EI ionisation, are thus considered as correct 
solutions.

Estimators of method performance
A first quantitative measurement of method performance 
is how much of the measured signal Imspec is recon-
structed, written fI, total , irrespective of whether the signal 
corresponds to correct or incorrect fragments:

Reconstruction of fragment formulae produces a qualita-
tive information. To quantify method performance, we 

(9)fI, total =

∑

I correct fragment + I incorrect fragment
∑

mspec∈mass spectrum
Imspec

construct two metrics based on recommendations for 
qualitative measurements [66], Annex D].

We define the ratio of correctly identified fragment for-
mulae fn as the number of correctly identified fragment 
formulae divided by the total number of reconstructed 
fragment formulae, per compound:

Then, we define the ratio of correctly assigned signal 
fI, correct as the sum of intensities of correctly assigned 
fragments divided by the total intensity of all recon-
structed fragments:

(10)fn, correct =

n correct fragment

n correct fragment + n incorrect fragment

(11)

fI, correct =

∑

I correct fragment
∑

I correct fragment + I incorrect fragment

Table 4  Known compounds used as validation set: presence of the molecular ion

If the molecular ion is absent, we give the detected maximal fragments instead. Note that several maximal fragments may be detected for one substance. The last 
column indicates if the correct molecular ion is reconstructed by our method, with its ranking in parenthesis, or which molecular ion(s) is reconstructed (if any - for 
brevity only the two first ranked wrong molecular ions are reported)

Compound Chemical formula Molecular ion present Reconstructed mol. ion

Kigali Amendment to the Montreal Protocol

 HFC-41 CH3F Yes 1

 HFC-32 CH2F2 Yes 1

 HFC-152 C2H4F2 Yes 1

 HFC-152a C2H4F2 Yes 1

 HFC-23 CHF3 CF3 , HCF2 1

 HFC-143 C2H3F3 Yes 1

 HFC-143a C2H3F3 Yes 1

 HFC-134 C2H2F4 Yes 1

 HFC-134a C2H2F4 Yes 1

 HFC-125 C2HF5 C2F5 , HC2F4 1

 HFC-245ca C3H3F5 C3H2F3 , C2H3F2 , C3HF4 C3H2F4 (1), C3H3F3 (2)

 HFC-245fa C3H3F5 Yes 1

 HFC-365mfc C4H5F5 C4H5F4 , C3H2F5 C4H6F4 (1), C3H3F5 (2)

 HFC-236cb C3H2F6 C3H2F5 , C3HF6 1

 HFC-236ea C3H2F6 C3H2F5 1

 HFC-236fa C3H2F6 C3H2F5 1

 HFC-227ea C3HF7 C3HF6 1

 HFC-43-10mee C5H2F10 C4H2F7 , C5HF8, C5H2 C4H2F8 (1), C4H3F7 (2)

HFOs

 HFO-1234yf C3H2F4 yes 1

 HFO-1234ze(E) C3H2F4 Yes 1

 HCFO-1233zd(E) C3H2ClF3 Yes 1

Halogenated compounds with high boiling point

 HCBD C4Cl6 Yes 1

 TCHFB C4Cl4F6 C4ClF6 , C3Cl3F4 C3Cl3F5 (1), C4Cl2F6 (2)
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For comparison, we also compute per training compound 
the fraction of correct fragments and signal on the top-10 
results, which are the list of maximum 10 fragments with 
maximum likelihood.

Performances of the method on the training set
An example of the output produced by the identifica-
tion method is plotted in Fig. 4. All numerical values can 
be found in the Additional file 3 (see section Additional 
Information). What is delivered to the user is a list of the 
chemical formulae of the generated and non-eliminated 
fragments, their exact mass, assigned signal, likelihood 
value according to Eq. (6) and ranking. The method also 
informs if a fragment is a maximal fragment and if it is 
a potential molecular ion fulfilling the SENIOR theorem. 
For example, for CFC-11 the maximal fragment CFCl3 
with ranking of 1 (maximum likelihood) is the molecular 
ion (Table 5). This example demonstrates the usefulness 
of our likelihood estimation to identify the fragments 
closest to, or being, the molecular ion.

Fraction of reconstructed signal
For 34 compounds in the training set (all but two), the 
fraction of reconstructed signal is above 0.95. For CF4 and 
C2H6 , it is 0.06 and 0.88, respectively. In these two cases, 
the measured mass and its uncertainty envelope did not 
contain the true mass, causing the knapsack to fail in 
generating the correct chemical formulae. Given that we 
multiply the mass uncertainty with a coverage factor of 
2.5 (Eq. (1)), corresponding to 98.5% of the expected mass 
interval, it can be expected that in a few cases, the con-
sidered mass domain does not contain the true answer. 
We observe that no wrong fragment fills this gap, but the 
signal is rather not reconstituted. It is therefore easier for 
the user to identify such extreme cases, and e.g.  run the 
identification process again using a larger coverage factor.

For CF4 , correct chemical formulae were reconstructed 
for the three measured masses when using a cover-
age factor of 6.0. For C2H6 , using k = 2.5 , no solution is 
produced for the measured fragment at 29.037805  m/z. 
Using a coverage factor k of 3.0 instead allows the knap-
sack to produce the correct fragment formula, C2H5.

Fig. 5  Performance of the identification algorithm: fraction of correct reconstructed fragments and signal. A fragment is considered correct if 
its chemical formula is a subset of the chemical formula of the true molecular ion. The histogram for fragments is shown in grey and for signal in 
peach. Left: fraction of correct reconstructed fragments compared to all reconstructed fragments (grey); fraction of correct reconstructed signal 
compared to the sum of reconstructed signal (peach). Right: fraction of correct fragments from the top-10 likelihood list of fragments (grey); fraction 
of the associated correct signal compared to the signal reconstructed by the top-10 likelihood fragments (peach). If the number of reconstructed 
fragments is not more than 10, then the top-10 results have same value as the results considering all fragments. Two substances have fragments 
poorly identified: CF4 and SO2F2 . See text for "Discussion"
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Compounds with very few measured masses
As a consequence of their simple molecule structure or a 
very low abundance in the sample, five compounds had 
fewer than 6 detectable masses ( NF3 , CF4 , CH3 I, SO2F2 , 
SF5CF3 ). We observed that in such cases, our identifica-
tion algorithm does not have enough constrains to sug-
gest correct results. This confirms previous observations 
from Hufsky et al. [21]. We therefore developed the fol-
lowing strategy: when the number of measured masses 
is less than 6, maximal fragments are treated separately 
through the iterative Step 5 to Step 8 (green boxes on 
Fig.  1), so that chemical formulae belonging to differ-
ent maximal fragments are not optimised together. The 
list of kept maximal fragments is then returned as result, 
ordered by likelihood. The program returns a message 
warning that multiple maximal fragments are possible, 
and suggests the user to choose the one considered most 
likely.

For the sake of including these compounds with all 
other results in the following figures, the maximal frag-
ment ranked first is kept, and all others are eliminated 
(assuming no co-elution). In all cases except for SO2F2 , 
where only two masses were measured, the first ranked 
maximal fragment was correct.

Fraction of correct reconstructed fragments and signal
Fig. 5 displays the histograms of the fractions of correct 
fragment formulae and of correct reconstructed signal, 
for all fragments (left) and for the top-10 fragments for 
each compound (right). Fig.  5 shows better fraction of 
correct results when taking the fraction of correct signal 
into account compared to the fraction of correct chemi-
cal formulae: wrongly identified fragments tend to have 
a smaller abundance, mostly due to higher mass uncer-
tainty or lack of companion peak that would provide an 
isotopic constrain. For only 44% of the compounds, 90% 
or more of the chemical formulae are correct. However, 
for more than 90% of the compounds, the signal from 
correct fragments constitutes at least 90% of the recon-
structed signal. This underlines that the proportion of 
signal assigned to each chemical formula carries informa-
tion about how likely this chemical formula is correct.

The ability of the method to produce correct chemical 
formulae further improves when taking into account the 
top-10 results only, i.e. the 10 chemical formulae ranked 
as most likely according to the likelihood estimation, and 
their associated signal. For these top-10 fragments, the 
chemical formulae are at least 90% correct for 58% of the 
compounds; the proportion of compounds for which at 

Fig. 6  Training set: distribution of likelihood values of fragments (left) and maximal fragments (right). A likelihood value of 100 indicates that the 
chemical formula of the fragment or maximal fragment is highly likely. Blue: distribution for correctly identified fragments/maximal fragments. 
Red: distribution for wrongly identified fragments/maximal fragments. In total, there were 353 reconstructed fragments, 343 correct and 10 wrong, 
and 50 maximal fragments, 44 correct and 6 wrong. Above a likelihood value of 20, >95% of the fragments are correct, and >90% of the maximal 
fragments
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least 90% of the signal is correct stays unchanged, at 90%. 
Indeed, most of the time, wrong fragments are anyway 
assigned a small portion of the signal.

For the training set, only two compounds were 
poorly identified, CF4 and SO2F2 , for reasons discussed 
previously.

Information from the likelihood estimation and ranking 
results
As we have seen, the identification algorithm does not 
eliminate all wrong chemical formulae. We now study 
more in detail the likelihood value and ranking associ-
ated to each reconstructed fragment to see if these values 
can better inform us if a fragment is correct or wrong.

Fig. 6 (left histogram) presents the distribution of like-
lihood values for correct fragments (in blue) and for 
incorrect fragments (in red), and the same for maximal 
fragments only (right histogram). From these distribu-
tions, we observe that likelihood values above 20 indicate 
that the fragment is correct by 95% (n = 89, 85 correct 

and 4 incorrect fragments), and the maximal fragment 
correct by 90% (n = 35, 32 correct and 3 incorrect maxi-
mal fragments). We could therefore use a likelihood value 
threshold above which a fragment or maximal fragment 
could be tagged as most probably correct. At the other 
end of the distribution, 90% of maximal fragments with a 
likelihood value below 8 are wrong (n = 31, 3 correct and 
28 incorrect maximal fragments). In contrast, small likeli-
hood values do not necessarily indicate that the fragment 
is false, but rather that the fragment represents a small 
portion of the signal. Only below a likelihood value of 0.3, 
90% of the fragments are wrong. This implies that using 
a given likelihood value as cut off to delete fragments 
would be either inefficient and delete very few fragments, 
or be inaccurate and delete many correct fragments.

The distribution of ranking values for fragments and 
maximal fragments are shown in Fig.  7. The left histo-
gram illustrates that the ranking of fragments does not 
help separating between correct and wrong fragments 
because the corresponding distributions overlap strongly. 

Table 5  Behaviour of the likelihood estimator: ten first knapsack fragments for CFC-11 and CCl4 , set out in order according to their 
likelihood value calculated at the first iteration of Step 5. Some fragments may be deleted at subsequent iterations

1
st column: chemical formula of the fragment, containing only abundant isotopes. * indicates that the fragment is not part of the molecular ion. 2nd col.: calculated 

exact mass of ionised fragment. 3rd col.: percent signal of the fragment and its isotopocules relative to the total measured signal. 4th col.: percent signal of the 
fragment, all its sub-fragments and all associated isotopocules relative to the total measured signal, computed from Eq. (5). 5th col.: likelihood value computed from 
Eq. (6). 6th col.: ranking according to decreasing likelihood value. For CFC-11, CFCl3 ranked first is the molecular ion

Fragment Exact mass % Assigned signal of 
the fragment

% Assigned signal of all 
(sub)fragments

Likelihood Ranking Maximal 
fragment?

CFC-11 ( CFCl3)

 CFCl+
3

135.90496 0.0 98.4 88.6 1 True

 CFCl+
2

100.93611 81.9 96.3 84.3 2 False

 CFCl+ 65.96726 5.6 11.9 11.9 3 False

 *CHFCl+ 66.97508 0.0 12.0 9.3 4 True

  CCl+
3

116.90656 2.1 10.0 8.0 5 False

* CHCl+
3

117.91438 0.0 10.2 7.9 6 True

  CCl+
2

81.93771 2.6 8.0 6.0 7 False

*  CHCl+
2

82.94553 0.0 8.1 5.8 8 False

 CCl+ 46.96885 3.1 5.4 5.4 9 False

 C3Cl
+
2

105.93771 0.0 8.0 3.2 10 False

CCl4

 CCl+
3

116.90656 71.2 92.4 73.9 1 False

* CHCl+
3

117.91438 0.4 93.9 73.0 2 True

* CHCl+
2

82.94553 0.5 22.3 16.0 3 False

 CCl+
2

81.93771 11.6 21.2 15.9 4 False

 *COCl+
2

97.93262 0.3 21.8 12.1 5 True

 CCl+ 46.96885 5.5 9.5 9.5 6 False

* HCl+ 35.97668 0.7 4.7 4.7 7 False

 Cl+ 34.96885 4.0 4.0 4.0 8 False

* CF2Cl+ 84.96566 0.2 9.7 3.6 9 True

* OCl+
2

85.93262 0.3 4.3 2.2 10 False
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However, for the maximal fragments, this overlap is less 
pronounced (right histogram): correct maximal frag-
ments have a ranking value usually better than 10, while 

maximal fragments whose ranking is worse than this 
value are mostly wrong.

These observations can help the user in the identifica-
tion process by tagging the maximal fragments with a 
likelihood value above 20 or a ranking value better than 
10 as probably correct, and the others as likely wrong.

Reconstructed molecular ions
For 29 molecules on the training set (>80 %), the recon-
structed molecular ion ranked first is the correct one 
(see detailed results in Tables  3). For CCl4 and HCFC-
141b, the correct solution is ranked second and the 
solution ranked first is still quite close to the correct 
solution ( CHCl3 instead of CCl4 and C2H4FCl instead of 
C2H3FCl2 , respectively). For PFC-c318, perfluorohex-
ane and SF5CF3 , sub-fragments of the molecular ion 
are listed. These last three cases are wrong because our 
reconstruction method assumes that the correct number 
of multivalent atoms is detected in at least one fragment, 
which was not the case. For CF4 and SO2F2 , no correct 
solution was suggested, these two cases are discussed in 
"Fraction of reconstructed signal" and "Compounds with 
very few measured masses" sections.

For comparison, we tested two software that suggest the 
weight of the molecular ion. Both software use unit mass 
information, not high resolution. We used the same train-
ing set, excluding C6F14 because its molecular weight is 

Fig. 7  Training set: distribution of ranking values for fragments and maximal fragments. A ranking value of 1 means that the fragment/maximal 
fragment was ranked as most likely (maximum likelihood value within the set of fragments/maximal fragment). Blue: distribution of ranking for 
correctly identified fragments/maximal fragments. Red: distribution of ranking for wrongly identified fragments/maximal fragments

Fig. 8  Behaviour of the identification algorithm for the training and 
validation sets: how knapsack solutions are rejected
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outside our mass detection range. The NIST library tool 
[22] was able to reconstruct the correct molecular weight 
in 17 cases ( ≈49 %). In average, the NIST molecular weight 
prediction deviates from the correct one by 12 Da, with a 
median deviation of 2 Da, which is very similar to the per-
formances published initially in 1993 by Scott et  al. [22]. 
We also tested the commercial software MOLGEN-MS, 

which contains a module to determine if specific chemi-
cal classes are present in a molecule (MSclass module, 
[25]), and then predicts the weight of the molecular ion 
(ElCoCo module, [23]). We found better results when 
using the ElCoCo module alone, without MSclass: the cor-
rect weight for the molecular ion was listed in 15 cases ( ≈
43 %). Technical details are given in the Additional file 1.

Table 6  Numerical values for the obtained runtime on the training set, in seconds

These values are displayed on Fig. 9. Step 1: knapsack enumeration of fragment formulae. Step 2: graph construction. Step 3: isotopocule enumeration. Step 7: 
optimisation of multiple isotopocule sets together using lmfit

Compound No. knapsack 
solutions

Step 1: Knapsack Step 2: Graph Step 3: Iso. Enum. Step 7: 
Optimisation

Total

C2H6 4 0 0 0.00035 0.58114 0.61831

C3H8 12 0.00100 0.00103 0.00277 0.93511 1.02196

CH3Cl 6 0.00100 0 0.00100 0.22414 0.28026

COS 5 0.00175 0 0.00100 0.05579 0.09874

NF3 11 0.00100 0 0.00089 0.09805 0.11600

Benzene 47 0.00399 0.00798 0.01695 1.36925 1.54867

CH2Cl2 15 0.00739 0.00100 0.00499 0.29121 0.39700

HCFC-22 17 0.00390 0.00100 0.00320 0.23608 0.31227

CF4 3 0.00068 0 0.00100 0.04567 0.06479

Toluene 106 0.00894 0.03889 0.05063 1.23265 1.67224

CH3Br 15 0.00484 0.00100 0.00345 0.06066 0.09972

HCFC-142b 127 0.00697 0.03890 0.03164 3.55514 3.90335

SO2F2 16 0.00299 0.00099 0.00399 0.19949 0.23456

CFC-13 9 0.00298 0 0.00099 1.99773 2.02956

HCFC-141b 46 0.00499 0.00603 0.01056 1.52992 1.65464

CHCl3 17 0.00939 0.00105 0.00499 0.08471 0.16614

CFC-12 35 0.01390 0.00794 0.01178 0.28523 0.42641

C2HCl3 66 0.01396 0.01615 0.02093 0.09776 0.30321

CFC-11 44 0.01503 0.00757 0.01496 0.14162 0.30119

HCFC-124 110 0.01198 0.02792 0.02887 0.10436 0.34243

PFC-116 78 0.00891 0.01794 0.02439 0.08703 0.34109

CH3I 45 0.01097 0.00499 0.01476 1.05608 1.17037

SF6 99 0.00901 0.02990 0.03683 0.05829 0.35405

Halon-1301 39 0.01396 0.00895 0.01894 0.12531 0.26130

CCl4 23 0.01103 0.00200 0.00470 0.78681 0.86528

CFC-115 183 0.01696 0.11013 0.07779 0.42488 1.15757

C2Cl4 92 0.06682 0.02865 0.05261 0.09374 0.54953

Halon-1211 78 0.01994 0.01795 0.02094 0.50948 0.73878

CFC-114 358 0.02792 0.36901 0.17453 0.47408 2.15301

CH2Br2 11 0.02094 0.00047 0.00233 0.06566 0.11770

CFC-113 698 0.06004 1.08788 0.42879 0.61436 4.44405

PFC-218 317 0.01794 0.27526 0.13997 0.06965 2.87218

SF5CF3 66 0.00698 0.00997 0.01695 0.08213 0.23013

PFC-c318 149 0.01241 0.04537 0.06582 0.09975 0.58743

Halon-2402 1362 0.12367 4.24480 0.78490 0.14161 11.59514

C6F14 3096 0.09473 23.70908 1.79919 0.21742 76.37336
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Performance of the model on the validation set
The validation set (Table  2) is made of 23 compounds. 
The performance of the reconstructions is similar as with 
the training set: for 95% of the compounds, more than 
90% of the reconstructed signal is correct (Fig. 10). This 
illustrates that our identification method can be applied 
to different dataset, while producing similar perfor-
mances. As an example, the reconstructed mass spec-
trum for HFO-1234yf is given in Figure 11.

The reconstructed molecular ion is correct in 19 cases 
(83  %, see detailed results in Table  4). For the wrong 
cases, the suggested molecular ions are mostly sub-frag-
ments of the true molecular ion. Interestingly, when the 
correct molecular ion is listed, it is always ranked first, 
suggesting that the likelihood estimator (Eq.  6) is quite 
effective in ranking first the most likely results.

How wrong knapsack solutions are rejected 
and implications for computation runtime
Figure  8 displays, for each compound of the training 
and validation sets, how many knapsack fragments are 

generated, kept and rejected. For compounds where 
less than ≈ 50 knapsack fragments were generated, we 
observe that most fragments have gone through the iter-
ating steps of the workflow (see Fig. 1), and are therefore 
validated (Fig.  8, blue crosses) or deleted, as singletons 
(grey ’x’) or as being below the LOD (mauve stars). On 
the other hand, for compounds with more than ≈100 
knapsack fragments, the number of fragments gone 
through the computation-intensive iterating steps do 
not exceed ≈100, even if more than 1000 knapsack frag-
ments were generated. In such cases, most fragments are 
rejected at Step 9 of the workflow (Fig.  1). This behav-
iour may explain why the computation runtime does not 
increase linearly with the number of generated knapsack 
fragments, as discussed hereafter.

Details about the computation runtime are given in 
Fig.  9. For all compounds, the knapsack step (Step  1) 
represents only a minor part of the runtime, prov-
ing that the optimisation of this computation step is 
appropriate for the considered compounds. Above 1000 
generated knapsack formulae, the graph construction 
(Step  2) represents an important portion of the runt-
ime, but remains minor for all compounds with less 
than 1000 knapsack fragments. Since the runtime for 
the graph construction is proportional to the number of 
generated knapsack solutions, if applied to larger mole-
cules, further optimisation will be necessary to limit the 
computation time. For example, a method to pre-select 
likely present chemical elements may be useful.

For most compounds, the most computation inten-
sive step is the optimisation of multiple isotopocule 
profiles (Step  7), which uses the machine learning 
tool lmfit. However, the runtime of Step  7 does not 
increase linearly with the number of knapsack solu-
tions, but for most compounds is limited to less than 
10 seconds. We attribute this to the fact that only a 
limited number of most likely knapsack fragments go 
through this expensive step.

Conclusion
Adequate information about the presence in the envi-
ronment and potentially illicit emissions of halogen-
ated and in particular (per)fluorinated compounds is 
more and more pressing, requiring a broader use of NTS 
approaches [67]. Gas chromatography followed by elec-
tron ionisation and high-resolution mass spectrometry is 
increasingly used for ambient air quality measurements 
and is a promising technique for non-target screening of 
atmospheric trace gases. To support automated identifi-
cation of small unknown (halogenated) substances, espe-
cially in cases where the molecular ion is absent from 
the obtained mass spectrum, specific data analysis tools 

Fig. 9  Runtimes of the identification algorithm for the training and 
validation sets. The total runtime per compound is shown in black. 
The runtime of specific steps is also depicted: for the knapsack 
(Step 1), for the graph construction with all knapsack fragments 
(Step 2), for the enumeration of all minor-isotope chemical formulae 
above the LOD (Step 3), for the optimisation of contribution of 
sets of fragments, using a machine learning algorithm (Step 7). For 
most compounds, Step 7 remains the most time intensive step. The 
corresponding numerical values are given in Tables 6 and 7
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Fig. 10  Performance of the identification algorithm on the validation set (21 compounds): fraction of correct reconstructed fragments and signal. 
A fragment is considered correct if its chemical formula is a subset of the chemical formula of the true molecular ion. The histogram for fragments is 
shown in grey and for signal in peach. Left: fraction of correct reconstructed fragments compared to all reconstructed fragments (grey); fraction of 
correct reconstructed signal compared to the sum of reconstructed signal (peach). Right: fraction of correct fragments from the top-10 likelihood 
list of fragments (grey); fraction of the associated correct signal compared to the signal reconstructed by the top-10 likelihood fragments (peach). If 
the number of reconstructed fragments is not more than 10, then the top-10 results have same value as the results considering all fragments

Fig. 11  Reconstructed mass spectrum for HFO-1234yf, when setting as target that 95% of the signal should be reconstructed. Numerical values can 
be found in the Additional file 3
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making use of newly availably high resolution mass spec-
trometry data are expected to improve current identifica-
tion performances.

In this work, we have developed a novel algorithm to 
allow reconstruction of the chemical formula based on 
the measured mass of fragments likely belonging to the 
same substance. The developed method specifically 
addresses the observation that peaks with low signal have 
a higher mass uncertainty, by using a specific uncertainty 
for each measured mass peak. This approach allows to 
use all measured data simultaneously, while giving more 
weight to more accurate mass peaks. Our method does 
not require the molecular ion to be present, and can still 
reconstruct the chemical formula of all other detected 
fragments. This is important for electron-ionisation spec-
tra, where the molecular ion is absent in approx. 40% of 
the cases. In addition, we developed a simple algorithm 
to generate and rank possible molecular ions, based on 
the addition of likely monovalent chemical elements to 
the largest identified fragments.

Overall, the method performs well on very heterogene-
ous compounds, comprising nine different chemical ele-
ments and many different structures, for molecules from 

3  atoms (COS) to 20  atoms ( C6F14 ), over a large molar 
mass domain from 30 g mol−1 to over 300 g mol−1 , and 
measured with an average mass uncertainty of 70 ppm: for 
more than 90% of the compounds, more than 90% of the 
signal has been assigned to the correct chemical formula. 
The presented method was able to reconstruct and rank 
first the molecular ion in >80 % of the cases. The recon-
struction becomes less reliable with decreasing number of 
detected mass peaks, in case of compounds measured at 
very low molar fraction.

Finally, we would like to emphasis that in the difficult 
field of compound annotation and structure elucida-
tion, robust knowledge can certainly be gained from 
applying different methods in parallel. For example, 
when the retention time information is available, addi-
tional confidence could be gained from comparison 
with predictions (e.g., using Quantitative Structure 
Property Relationships (QSPR) models or correla-
tions with the boiling point, as previously done in e.g. 
[35]). For the compounds where the molecular ion was 
proven present in the spectrum, the fragmentation 
tree computation method from Hufsky et al. [21] could 
then be applied. For further structure elucidation, the 

Table 7  Numerical values for the obtained runtime on the validation set, in seconds

These values are displayed on Fig. 9. Step 1: knapsack enumeration of fragment formulae. Step 2: graph construction. Step 3: isotopocule enumeration. Step 7: 
optimisation of multiple isotopocule sets together using lmfit

Compound No. knapsack 
solutions

Step 1: Knapsack Step 2: Graph Step 3: Iso. Enum. Step 7: 
Optimisation

Total

HFC-41 3 0.00098 0 0.00199 0.0748 0.09376

HFC-32 5 0.001 0 0.001 0.14962 0.17655

HFC-152 20 0.00199 0.00198 0.00499 0.48074 0.53358

HFC-152a 22 0.00199 0.00199 0.00598 0.63579 0.70561

HFC-23 5 0.00099 0 0.00299 0.10472 0.13266

HFC-143 33 0.00299 0.00299 0.00698 0.56412 0.64393

HFC-143a 39 0.00499 0.00798 0.00898 1.28358 1.38034

HFC-134 51 0.00499 0.00997 0.01396 0.75513 0.8778

HFC-134a 69 0.00598 0.01396 0.01795 1.15894 1.34445

HFC-125 62 0.00899 0.01297 0.01795 0.31715 0.51916

HFC-245ca 119 0.00897 0.04189 0.05086 1.04231 1.44332

HFC-245fa 204 0.01695 0.10971 0.06982 0.73306 1.49405

HFC-365mfc 356 0.02094 0.40094 0.13765 3.05672 5.10083

HFC-236cb 404 0.02693 0.43587 0.16956 0.91956 3.0124

HFC-236ea 352 0.01995 0.35804 0.13165 0.58447 2.39165

HFC-236fa 157 0.01297 0.06383 0.06148 0.17143 0.85424

HFC-227ea 369 0.02592 0.34808 0.15559 0.49173 2.80308

HFC-43-10mee 3192 0.1516 27.8139 1.71247 1.455 83.46999

HFO-1234yf 184 0.00798 0.08976 0.06084 0.15259 0.72908

HFO-1234ze(E) 153 0.00997 0.04887 0.04488 0.44783 0.87914

HCFO-1233zd(E) 189 0.01296 0.10572 0.07579 0.08976 0.74725

HCBD 790 0.13464 1.53374 0.77896 0.14859 6.21535

TCHFB 3452 0.15757 28.7482 2.01913 0.85859 52.94723
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identified or generated most likely molecular ion could 
be fed to subsequent molecular structure generators 
and EI fragmentation programs, which already exists 
[14, 29, 31–33, 68, 69].
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