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Abstract 

Background:  Predicting protein-ligand binding sites is a fundamental step in understanding the functional charac-
teristics of proteins, which plays a vital role in elucidating different biological functions and is a crucial step in drug 
discovery. A protein exhibits its true nature after binding to its interacting molecule known as a ligand that binds only 
in the favorable binding site of the protein structure. Different computational methods exploiting the features of pro-
teins have been developed to identify the binding sites in the protein structure, but none seems to provide promising 
results, and therefore, further investigation is required.

Results:  In this study, we present a deep learning model PUResNet and a novel data cleaning process based on 
structural similarity for predicting protein-ligand binding sites. From the whole scPDB (an annotated database of 
druggable binding sites extracted from the Protein DataBank) database, 5020 protein structures were selected to 
address this problem, which were used to train PUResNet. With this, we achieved better and justifiable performance 
than the existing methods while evaluating two independent sets using distance, volume and proportion metrics.

Keywords:  Ligand binding sites, Binding site prediction, Deep residual network, Convolutional neural network, Data 
cleaning
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Introduction
In living organisms, all biological processes involve pro-
teins that are dynamic molecules with functions almost 
invariably dependent on the interactions with other mol-
ecules, which are affected in physiologically important 
ways through subtle, or striking changes in the protein 
conformation [1]. Such interactions occur in a specific 
site of a protein known as binding site, and any interact-
ing molecule, ion, or protein is known as ligand. Elucidat-
ing the characteristics and function of a protein depends 
solely on its interaction with the ligand at a suitable 

binding site. The prediction of such binding sites is the 
first step towards understanding the functional proper-
ties of the proteins leading to drug discovery.

In recent years, numerous methods have been pro-
posed to identify the potential druggable binding sites. 
Fpocket [2] is a geometry-based method, which is based 
on Voronoi tessellation and alpha spheres. The alpha 
sphere is a sphere that contacts four atoms on its bound-
ary and contains no internal atom, which was intro-
duced by Liang and Edelsbrunner [3]. LIGSITE [4] and 
POCKET [5] are based on a regular Cartesian grid, where 
if an area of solvent-accessible grid points are enclosed 
on both sides by the protein atoms, then it has a higher 
chance of being located in a pocket or cavity. EASYMIFs 
and SITEHOUND [6] are energy-based methods, where 
the molecular interaction fields (MIFs) are used to iden-
tify the probable binding sites through filtering and 
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clustering. ConCavity [7] is a geometry-based method 
that combines evolutionary sequence conservation. 
COACH [8] is a consensus method based on a template 
in which the pocket is predicted by using a support vec-
tor machine (SVM). Other than the traditional meth-
ods for predicting the binding site, which are based on 
geometry, energy, evolutionary, consensus, and template, 
machine learning and deep learning methods have suc-
cessfully emerged in recent years.

P2Rank [9] is a machine learning-based method for 
predicting ligand binding sites in the protein structures 
that imposes the random forest algorithm, where the 1D 
feature vector represents 35 numerical features and is 
trained on CHEN11 [10] dataset. DeepSite [11], kalasanty 
[12], DeepSurf [13] and DeepPocket [14] are deep learn-
ing approaches, which are based on 3D convolutional 
neural networks. In DeepSite and kalasanty methods, the 
protein structure is treated as a 3D image discretized into 
a grid of 1 × 1 × 1 Å3 sized voxel. DeepSite uses 16 × 16 
× 16 voxels, whereas kalasanty uses 36 × 36 × 36 vox-
els to represent a protein structure. DeepSurf is a surface 
based learning approach where a new representation of 
the 3D protein surface is introduced, based on local voxel 
grids centered at sample points of the surface and uses 16 
× 16 × 16 voxels. DeepPocket is a multi-step approach to 
get the final pocket location where first Fpocket is used 
to get the pockets and later classified whether they are 
binding site or not. All these methods shows promising 
results and uses scPDB [15] dataset. To improve result, 
filtering of scPDB dataset based on structural similar-
ity is required which is not done by any mentioned deep 
learning methods. Although, DeepSite employs sequence 
similarity method to eliminate similar protein structure 
but we are more focused on structural similarity.

Our work is focused on improving the training data, 
so that our deep learning model can generalize more and 
provide better predictions. Therefore, we developed an 
independent training dataset, which is a subset of scPDB 
[15], a publicly available dataset released in 2017, con-
taining 16034 entries, 4782 proteins, and 6326 ligands. 
Among 16034 protein structures present in scPDB, we 
selected 5020 structures. First, each of the protein struc-
tures from scPDB were grouped according to the UniProt 
ID [16], and then the Tanimoto coefficient [17] was cal-
culated. Second, longest sequenced protein structure was 
selected from each UniProt ID cluster according to the 
Tanimoto coefficient (if Tanimoto coefficient ≥ 80%, then 
it is regarded as a similar structure [17]). Finally, manual 
inspection was performed using PYMOL [18] and 5020 
protein structures were selected out of 16034.

In this study, ResNet [19] architecture is used as 
a backbone for our model (PUResNet). ResNet is 
one of the popular deep learning architecture due to 

residual learning and identity mapping by shortcuts [19]. 
PUResNet comprises two blocks, encoder and decoder, 
where there is a skip connection between encoder and 
decoder as well as within the layers of encoder and 
decoder. Skip connections are used to address the vanish-
ing gradient problem, which is the most common prob-
lem in training deep neural networks [20].

Protein structure is treated as a 3D image of the shape 
(36 × 36 × 36 × 18) which is input to PUResNet, and the 
output is the same as the input shape with a single chan-
nel (i.e., 36 × 36 × 36 × 1), where each voxel (point in 3D 
space) in the output has a probability that whether or not 
the voxel belongs to the cavity. Later, these predictions 
can be saved as mol2 files, which can be later visualized 
using the molecular modeling software (PYMOL).

Materials
In this study, new training dataset is developed, which is a 
subset of scPDB. scPDB dataset consists of protein struc-
tures belonging to 2050 different protein families [21]. 
The family Pkinase contains the highest number of pro-
tein structures (1486) whereas 555 protein families con-
tain only a single structure. As an independent validation 
dataset, we selected COACH420 [22] test dataset, which 
consists of 420 protein structure with known ligands, 
and among them 122 protein structures were removed 
since they were present in our dataset. Finally, 298 pro-
tein structure with ligand were selected. Additionally, 
BU48 [23] dataset consisting of 48 pairs of bounded and 
unbounded protein structure, among which 31 pair were 
selected as an independent dataset, after removing pro-
tein structure contained in our training set.

Data cleaning
304 protein structures that were erroneous while load-
ing using openbabel [24, 25] were removed from scPDB 
dataset. Then, we followed the process of data cleaning, 
as depicted in Fig. 1. First, the grouping of protein struc-
ture according to the UniProtID was conducted using the 
Retrieve/ID mapping tool available online (https://​www.​
unipr​ot.​org/​uploa​dlists/). A total of 5462 clusters of Uni-
Port ID were obtained, of which 2964 contained a single 
protein structure and 2498 contained multiple protein 
structures. The cluster of UniPort ID (P00388), which 
had 19 protein structures, was the largest of all. Second, 
each protein structure in the cluster fingerprint was 
determined, where we used a substructure-based finger-
print calculation molecular access system (MACCS) [26], 
and then the Tanimoto index was calculated within each 
cluster.

For calculating Tanimoto index as shown in Fig. 2, pro-
tein structure having N amino acids, we obtained N-3+1 
number of 3-mers (consecutive amino acid substrings of 

https://www.uniprot.org/uploadlists/
https://www.uniprot.org/uploadlists/
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length three within a protein sequence obtained using 
frame size of three and stride of one), where each 3-mers 
is represented as a single molecule using openbabel and 
167-bit MACCS key was obtained. Then, fingerprint for 
the protein structure is an array of size (N-3+1,167), 
where each row contains MACCS key for corresponding 
3-mers. Let, A1 and A2 be fingerprint arrays for two pro-
tein structures. If the length of A1 and A2 is equal then 
the Tanimoto index is calculated between A1 and A2. 
Else if the length of A1 is greater than A2 then the Tani-
moto index is calculated with the frame size of A2 with 

stride 1 and the maximum Tanimoto index is taken from 
calculated ones. Else Tanimoto index is calculated with 
the frame size of A1 with stride 1 and maximum Tani-
moto index is taken from obtained values.

On an average, for each cluster having multiple protein 
structure, the Tanimoto index was found to be 80%, and 
therefore, we decided to select the longest sequenced 
protein structure from each cluster because of high simi-
larity between the protein structure in the cluster [17]. 
The total number of selected protein structures was 5462 
corresponding to unique UniPort IDs as a single cluster. 
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For each protein structure in a single cluster, manual 
inspection was performed using PYMOL. Protein 
structures along with their binding sites were loaded in 
PYMOL, the chain with the binding site was retained, 
and the others were removed. As we treat the protein 
structure as a 3D image and classify each voxel as a bind-
ing site or not. Data imbalance occurs when data points 
are not equally distributed among classes. In our case, 
the number of voxels not belonging to the binding site is 
very high which makes our problem to be highly imbal-
anced. In a protein structure represented in 3D image, 
the ratio of voxels belonging to binding site to the voxels 
not belonging to binding site is about 0.001. Due to high 
data imbalance, the removal of chains without a binding 
site is necessary to address this problem. Although we 
cannot fully eradicate this problem, this step provides lit-
tle leverage to the model. After that, the distance between 
the binding site coordinates to the center of the protein 
structure was calculated; if the distance between any 
coordinate of the binding site and the protein structure 
center is greater than 70 Å, then it is removed because 
such a binding site cannot be represented in voxels, and 
this will lead to training data without a binding site or a 
portion of the binding site. Finally, 5020 protein struc-
tures were selected for training, corresponding to 5020 
Uniport ID and 1243 protein families, among which the 
Pkinase family contained 186 protein structures, and was 
largest of all.

We split our data into four folds by addressing the 
problem of data leakage during validation, based on the 
protein family, all the structures belonging to one family 
were kept in the same set of each fold (either on training 
or validation set). In each fold, the training set consisted 
of 3765 protein structures, whereas the validation set had 
1255. We used k-fold [27, 28] training to tune the hyper-
parameters and validate PUResNet. After selecting the 
optimal parameters, the model was trained on the entire 
dataset for better performance.

Data representation
Here, the protein structure was treated as a 3D image of 
size 36 × 36 × 36 × 18, where a 3D cube of size 36 × 36 
× 36 is placed at the center of a protein with 70 Å dis-
tance in each direction, and was described based on nine 
atomic features [29], such as hybridization, heavy atoms, 
heteroatoms, hydrophobic, aromatic, partial charge, 
acceptor, donor, and ring. Plotting of each atomic feature 
used in the study of the protein structure (1A80) is pro-
vided in Additional file  1. Finally, one protein structure 
was represented with 3D voxels of size 36 × 36 × 36 × 
18.

To treat it as a binary segmentation problem where 
input size is 36 × 36 × 36 × 18 and output size is 36 × 36 
× 36 × 1, each binding site was represented using same 
sized 3D voxels (36 × 36 × 36 × 1) placed at the protein 

M
S

D
K

. . . 
A

N
L

A

N

Protein (P1)

M S D

S D K

A N L

N L A

.

.

.

N
-3+1

3

P1 3-mers

0 1 0 0 ....... 0 0 1 0

1 0 0 1 ....... 0 0 0 1

1 0 0 0 ....... 1 1 0 1

0 0 0 1 ....... 1 0 0 1

.  .  .

A1 fingerprint array

N
-3+1

167

1 1 0 0 ....... 1 0 1 0

1 1 0 1 ....... 0 1 0 1

0 0 0 0 ....... 1 0 1 1

0 0 1 0 ....... 0 0 0 1
.  .  .

K-3+1

167

A2 fingerprint array

D E I

E I A

V A N

A N I

.

.

.

P2 3-mers

K-3+1

3D
E

I
A

. . . 
V

A
N

I

K

Protein (P2)

Get
3-mers

Get
3-mers

Calculate
MACCS

key

Calculate
MACCS

key

Yes

No

Length A1
equals

Length A2
Calculate

tanimoto index

Yes

No

Length A1
greater than
Length A2

Calculate
tanimoto index
with frame size
of A2 and stride

1

Calculate
tanimoto index
with frame size
of A1 and stride

1

Maximum

tanimoto index 1

tanimoto index 2

tanimoto index N-1

tanimoto index N

. . . . . 

Tanimoto
Index

Fig. 2  Flow diagram showing calculation of Tanimoto index



Page 5 of 14Kandel et al. J Cheminform           (2021) 13:65 	

center, and for each voxel, if the binding site was present, 
then the assigned value was 1 or else 0.

Model
PUResNet is derived from the concept of U-Net [30] 
and ResNet. U-Net was originally developed for the seg-
mentation of biomedical images, which are composed of 
convolutional and max-pooling layers in the encoder side 
and convolutional and up sampling layers in the decoder 
side. Moreover, there is a skip connection between the 
encoder and decoder blocks. Here, we propose a variant 
of U-Net that consists of three basic blocks (convolution, 

identity, and up-sampling blocks), as depicted in Addi-
tional file 2: Figure 1S, 2S and 3S which are based on the 
concept of ResNet. Unlike the 2D segmentation problem, 
which uses 2D convolution, we used 3D convolution to 
address our problem.

PUResNet is divided into two blocks, an encoder and 
a decoder, as depicted in Fig.  3, where the encoder is 
composed of a convolution block and an identity block 
(which has convolution layers as shown in Additional 
file 2: Figure 2S ), and the decoder is composed of an up-
sampling block and an identity block. Instead of directly 
passing the skip connection to the decoder block like 
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U-net, we first pass it through the identity block and then 
to the decoder, which leads to use of identity operation 
[19] in the skip connection. The idea behind designing 
this model is to address the vanishing gradient problem. 
To validate, whether skip connection helps in eliminat-
ing the vanishing gradient problem, we visualized the 
training process of two variants of PUResNet, one with 
skip connection and one without. As shown in Addi-
tional file 4: Figure 9S we can see that the accuracy of the 
PUResNet (learning rate = 10−5, kernel regularizer as L2 
with value of 10−3, batch size of 5) without skip connec-
tions is almost constant which implies as the model is 
deep, gradients are either exploding or vanishing (shown 
in Additional file 4 Figure 10S). To counter this problem, 
skip connection inspired from ResNet architecture, are 
added in PUResNet which drastically changes the per-
formance of the model as shown in Additional file 4: Fig-
ure 11S. One of the benefits of using skip connection is 
to eliminate exploding or vanishing gradients(as shown 
in Additional file 4: Figure 12S) in deep neural networks 
[20]. Here in PUResNet, there are 12 layers in the convo-
lution block, 10 layers in the identity block, and 14 layers 
in the up sampling block. Altogether, there are 5 convolu-
tion blocks, 13 identity blocks, and 4 up sampling blocks. 
Number of filters used in each block is provided in Addi-
tional file 2: Table S1 and input/output size of each block 
is shown in Additional file 2: Figure S4. In total, there are 
252 layers in PUResNet with 13,840,903 trainable param-
eters and 16,992 non-trainable parameters. Although 
PUResNet is deep but has a smaller number of param-
eters than kalasanty, which has 23 million parameters. A 
detailed explanation of this model is provided in Addi-
tional file 2.

Model optimization
Our approach to optimize the hyperparameters was 
conducted through K-fold training, and we imple-
mented the hit and trial approach using a heuristic 
method for optimizing the model. To select the value 
of K during the K-fold training, we assessed the valida-
tion and training curves for different values of K and 
found that K = 4 exhibits a smoother validation and 
training curve for our dataset. Hyperparameter opti-
mization was conducted through selecting two sets of 
hyperparameters in such a way that the difference in 
values was high. K-fold training was conducted using 
the two sets of hyperparameters and determined which 
set had good performance, and then, the average value 
of the two sets was computed. After that, K-fold train-
ing was performed using individual values keeping 
others the same, and the results were obtained. If the 
performance was better than the previous result, then 
those values were selected and otherwise discarded. 

Further, we selected the top two results from K-fold 
training, which was conducted recursively until opti-
mal parameters were obtained. Here, while selecting 
the optimal parameter, we considered every data point 
as the validation data using cross-validation so that 
our parameters were not biased towards a certain pro-
tein structure. Finally, after obtaining a set of optimal 
hyperparameters, we conducted K-fold cross-valida-
tion using K = 4, and the results were obtained. Final 
training was performed on the entire dataset with the 
obtained optimal parameters (learning rate = 10−4, ker-
nel regularizer as L2 with value of 10−4, batch size of 5, 
number of trainable parameters 13,840,903, and others 
as default values as in keras [31]). Dice loss and binary 
crossentropy are widely used loss functions in the case 
of binary segmentation problems. To find out the per-
formance of these loss functions, we carried out 4 fold 
experiment. As shown in Additional file 4: Figure 1S to 
8S, we can observe that the dice loss has better perfor-
mance than binary crossentropy (learning rate = 30−7, 
kernel regularizer as L2 with value of 10−5, batch size of 
5). As expected, dice loss performs better in the case of 
highly a imbalanced dataset [32]. Therefore, we selected 
dice loss as our loss function.

Results
Distance center center (DCC) and discretized volume 
overlap (DVO) are the matrices used to evaluate model 
in different studies [9, 11, 12]. In this study, we propose 
new metrics, the Proportion of Ligand Inside (PLI) for 
the accountability of ligands and predicted binding sites.

•	 Distance center center (DCC)

	 It is distance between center of predicted binding site 
to the center of actual binding site or ligand. If the 
distance is ≤ 4 Å, then it is determined to be correctly 
predicted site, which is used to measure the success 
rate of the model and defined as follows: 

•	 Discretized volume overlap (DVO)
	  DCC metric does not consider the volume and shape 

of the predicted and actual binding sites or ligands. 
Therefore, DVO, which provides insight into the vol-
ume and shape, is the ratio between the volumetric 
intersection between the predicted(Vpbs) and actual 
binding site(Vabs) to their union. For predicted bind-
ing sites having DCC ≤ 4 Å, DVO was calculated as 
follows: 

(1)

Success Rate =
Number of sites having DCC ≤ 4Ao

Total number of sites
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•	 Proportion of Ligand Inside (PLI)
	 In case of ligands using DVO metrics to find over-

lap does not provide a comprehensive idea of the 
overlap, the binding sites are usually larger than the 
ligand. The DVO metric is similar to a shape analysis 
between the two binding sites, but in case of ligands 
and binding sites, it is not appropriate. Therefore, we 
developed a new matrix to determine the proportion 
of ligand (VL) resides inside binding site(Vpbs). For 
predicted binding sites with a DCC less than or equal 
to 4 Å, PLI was calculate as follows: 

DCC was calculated by taking the center of the predicted 
and actual binding sites, and DVO by representing both 
the predicted and actual binding sites (for PLI Ligand) 
in a 3D grid of size 36x36x36. To calculate the F1 score, 
we considered a predicted binding site with a DCC less 
than or equal to 4 Å as true positive (TP), greater than 4 
Å as false positive (FP) and no prediction as false nega-
tive (FN). In this problem, there is no true negative since 
every protein structure has a binding site.

K‑Fold cross validation result
We conducted our experiment in 4 folds, where the 
entire dataset was divided into four parts, leaving one 
part as the validation set and the other as the train-
ing set; and thus, we obtained four different models. 
Each model was compared with the kalasanty, which 
we trained on each fold-keeping with obtained optimal 
(using our optimization technique) parameters (learn-
ing rate = 10−3, kernel regularizer as L2 with value of 

(2)DVO =
Vpbs ∩ Vabs

Vpbs ∪ Vabs

(3)PLI =
VL ∩ Vpbs

VL

10−4, batch size of 5 and others as default values as in 
keras [31]). Combining all folds, out of 5020 protein 
structures, kalasanty did not identify any binding site 
for 76 protein structures (i.e., 6% of total protein struc-
ture) and PUResNet did not identify any binding site for 
122 protein structures (i.e., 10% of total protein struc-
ture). For 64% of protein structures, kalasanty returned 
a single binding site, whereas PUResNet returned a sin-
gle binding site for 93% of protein structures. Here, we 
were able to achieve an average F1 score of 0.83, which 
is 0.22 more than that of kalasanty, as shown in Table 1. 
PUResNet achieved a 61% success rate, whereas kala-
santy achieved 51%, as shown in Fig.  4. Average DVO 
(shown in Fig.  5) of kalasanty is 0.46, whereas that of 
PUResNet is 0.61 combining results of all fold. There-
fore, PUResNet can predict the binding sites more 
precisely and accurately compared to kalasanty. More 
detailed results for each fold are provided in Additional 
file 3.

Table 1  KFold validation result

True Positive (TP), False Positive (FP), False Negative (FN) and F1 score obtained 
in different fold by kalasanty and PUResNet.

Fold Model TP FP FN F1 score

kalasanty 741 1041 37 0.58

1st PUResNet 916 349 42 0.82

kalasanty 781 894 18 0.63

2nd PUResNet 903 384 29 0.81

kalasanty 815 983 7 0.62

3rd PUResNet 960 293 19 0.86

kalasanty 751 1049 14 0.59

4th PUResNet 913 365 32 0.82

kalasanty 0.61

Average PUResNet 0.83

Fig. 4  Success rate plot for different DCC values combining all fold 
(kalasanty vs PUResNet)

Fig. 5  Histogram of DVO values combining all folds (kalasanty vs 
PUResNet)
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Independent set result
The evaluation was conducted using the Coach420 and 
BU48 datasets individually to determine the perfor-
mance of PUResNet and kalasanty. In the Coach420 
dataset, kalasanty did not provide any output for 26 
protein structures (i.e., 8% of total protein structure), 
whereas PUResNet did not provide any output for 19 
protein structures (i.e., 6% of total protein structure), 
as shown in Table   2. PUResNet has a success rate of 
53%, average DVO of 0.32, and average PLI of 0.87, 
whereas kalasanty has a success rate of 51%, average 
DVO of 0.30, and PLI of 0.82, as shown in Table  2 and 
Figs. 6, 7,8. Kalasanty has an F1 score of 0.64, whereas 
PUResNet has an F1 score of 0.66, as shown in Table 2.

In case of BU48 dataset, PUResNet did not provide 
any output for 3 protein structures (i.e., 4% of total pro-
tein structure), whereas kalasanty did not provide any 
output for 7 protein structures (i.e., 11% of total pro-
tein structure), as shown in Table   2. PUResNet has 
a success rate, average DVO, and average PLI of 62%, 
0.31, and 0.89, respectively, whereas kalasanty has 57%, 
0.30, and 0.82, respectively, as shown in Table  2 and 
Figs.  9,  10 and  11. F1 score was calculated to be 0.71 

for both models, as shown in Table 2. Clearly, in both 
independent dataset PUResNet has better performance 
than kalasanty.

Table 2  Independent test results

Comparison between kalasanty and PUResNet in terms of True Positive (TP), False Positive (FP), False Negative (FN), F1 score, Success Rate, Average (Avg) DVO and 
Average (Avg) PLI obtained in independent test

Dataset Model TP FP FN F1 score Success rate (%) Avg DVO Avg PLI

kalasanty 150 142 26 0.64 51 0.30 0.82

Coach 420 PUResNet 156 141 19 0.66 53 0.32 0.87

kalasanty 37 23 7 0.71 57 0.30 0.82

BU48 PUResNet 40 30 3 0.71 62 0.31 0.89

Fig. 6  Success rate plot for different DCC values in Coach420 dataset 
(PUResNet vs kalasanty)

Fig. 7  Histogram of DVO values for protein structure having DCC ≤ 4 
Å in Coach420

Fig. 8  Histogram of PLI values for protein structure having DCC ≤ 4 
Å in Coach420
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Discussion
To better understand the performance of PUResNet, 
we further investigated each individual prediction 
made using PUResNet and kalasanty in the Coach420 
and BU48 datasets. Figures  12 and 13 show the DCC 
values for individual protein structures predicted by 
kalasanty and PUResNet present in the Coach 420 
and BU48 datasets, respectively. DCC values greater 
than or equal to 121.24 Å corresponds to the protein 
structures for which not even a single binding site was 
identified.

Out of 298 protein structures in the Coach420 dataset, 
both the models correctly predicted 137 protein struc-
tures, incorrectly predicted 100 protein structures, and 
for 11 protein structures, no site was predicted, as shown 
in Fig. 12 View I, II and V. Excluding the common pre-
dictions, kalasanty specifically provided output for eight 
protein structures (Fig. 12 View III) for which PUResNet 
did not provide any output. Among them, one protein 
structure was correctly predicted by kalasanty. Moreover, 
PUResNet predicted 14 protein structures (Fig. 12 View 
IV) for which no prediction was provided by kalasanty, 
and among them, four were correctly predicted. Addi-
tionally, 15 protein structures were correctly predicted 
by PUResNet, which were falsely predicted by kalasanty, 
whereas 12 protein structures were correctly predicted 
by kalasanty, which were falsely predicted by PUResNet. 
The average DVO for the common correctly predicted 
structures by both the models was 0.31, whereas the 
average PLI for PUResNet was 0.87, and that of kalasanty 
was 0.85.

Similarly, for BU48 dataset containing 62 protein struc-
tures (31 pairs of bound and unbound structures), 33 
structures were correctly predicted, 14 were incorrectly 
predicted, and for one structure, no site was predicted, 
which was common among both the models, as shown in 
Fig. 13 View I, II and V. Excluding common predictions, 7 
protein structures were correctly predicted by PUResNet; 
and among them, for two protein structures, kalas-
anty did not predict any site (Fig. 13 View IV), whereas 
4 structures that were correctly predicted by kalasanty, 
among them for one PUResNet did not returned any site 
(Fig.  13 View III). For the three protein structures that 
were falsely predicted by PUResNet, kalasanty did not 
return any site. The average DVO for common correct 
prediction by each model is 0.28, whereas the average PLI 
of kalasanty and PUResNet is 0.86 and 0.87, respectively.

In the Coach420 dataset, protein structures 2zhz, 3h39, 
and 3gpl (shown in Fig.  14) have binding sites for the 
ATP(ADENOSINE-5’-TRIPHOSPHATE) ligand, which 

Fig. 9  Success rate plot for different DCC values in BU48 dataset 
(PUResNet vs kalasanty)

Fig. 10  Histogram of DVO values for protein structure having DCC ≤ 
4 Å in BU48

Fig. 11  Histogram of PLI values for protein structure having DCC ≤ 4 
Å in BU48
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was completely missed by kalasanty, although there were 
401 protein structures having ATP binding site in the 
scPDB dataset, whereas PUResNet predicted the binding 
site for all three structures, and among them, correct pre-
diction was made for 3h39 and 3gpl (shown in Fig. 14). 
Protein Structure’s (7est, 2w1a, 1a4k as shown in Fig. 14) 
binding site in both the model’s prediction are different 
in shape and size.

In BU48 dataset consisting of 31 pairs of bound and 
unbound structures, kalasanty completely missed to pre-
dict the unbound structures (1a6u,1krn,2ctv,2pk4 and 

6ins) and bound structures (5cna and 1gca); however, 
PUResNet predicted all unbounded structure and did 
not predict bound structures (1rob, 6rsa and 5cna). For 
pairs ((1a6u, 1a6w), and (1gcg, 1gca) as shown in Fig. 15), 
PUResNet correctly predicted the binding sites, whereas 
kalasanty correctly predicted for 1gcg and 1a6w only. The 
binding site predicted by PUResNet for bound (1gca, 
1a6w) and unbound (1a6u, 1gcg) structures has different 
shapes and sizes as shown in Fig. 15. Interestingly, for the 
pair (5cna, 2ctv), PUResNet was able to correctly pre-
dict the unbound 2ctv but kalasanty completely missed 

Fig. 12  Scatter plot showing DCC values of Coach420 dataset predicted by kalasanty and PUResNet with different views(I-V), View I showing DCC 
values ≤ 20 Å from PUResNet and kalasanty, View II showing DCC values ≤ 10 Å from PUResNet and kalasanty, View III showing DCC values ≥ 120 Å 
from PUResNet and ≤ 20 Å from kalasanty, View IV showing DCC values ≥ 120 Å from kalasanty and ≤ 20Å from PUResNet and View V showing DCC 
values ≥ 124 Å from kalasanty and PUResNet
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it. Therefore, we can conclude that the prediction made 
by PUResNet is distinct and better than that made by 
kalasanty.

To validate, whether our data cleaning process 
improves the performance of PUResNet, we performed 
an experiment in which PUResNet is trained on the orig-
inal scPDB dataset. As shown in Additional file  4: Fig-
ure  11S,12S,13S,14S,15S, and 16S, we found out that in 
BU48 dataset as well as in Coach420 dataset, PUResNet 
trained on filtered dataset has better performance than 
PUResNet (learning rate = 30−5, kernel regularizer as L2 

with value of 10−4, batch size of 10) trained on the origi-
nal dataset.

Conclusion
We introduced a new deep learning model, PUResNet, 
to predict the ligand-binding sites on protein struc-
tures trained on a newly formed dataset, which is a sub-
set of scPDB. We compared our results with those of 
kalasanty, which was previously mentioned to exhibit 
better performance than DeepSite, Fpocket, and Con-
cavity. Our results suggest that PUResNet provides a 

Fig. 13  Scatter plot showing DCC values of BU48 dataset predicted by kalasanty and PUResNet with different views (I–V), View I showing DCC 
values ≤ 20 Å from PUResNet and kalasanty, View II showing DCC values ≤ 10 Å from PUResNet and kalasanty, View III showing DCC values ≥ 120 Å 
from PUResNet and ≤ 20 Å from kalasanty, View IV showing DCC values ≥ 120 Å from kalasanty and ≤ 20 Å from PUResNet and View V showing DCC 
values ≥ 120 Å from kalasanty and PUResNet
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better prediction than kalasanty. In K-fold experiment, 
PUResNet has a success rate of 61% whereas kalasanty 
has a success rate of 51%. The results from independent 
test sets (Coach420 and BU48) revealed that PUResNet 
exhibits better accuracy than kalasanty (PUResNet had 
success rates of 53% and 62%, respectively, in Coach420 
and BU48, whereas kalasanty had 51% and 57%, respec-
tively). It is important to note that although PUResNet 
is trained with approximately 1/3 of the dataset that 
was used to train kalasanty, we were able to exceed 
kalasanty in terms of performance while evaluating 
K-fold as well as in independent tests. The model was 
developed in Python using the Keras library. All the 

information regarding the use of the trained model is 
publicly available at https://​github.​com/​jivan​kandel/​
PURes​Net, along with the trained model and all data-
sets used in this work. Predicted sites are provided in a 
mol2 file and can be visualized using different software, 
such as PYMOL. This work can be further improved 
by using a sequence alignment tool before calculating 
similarity using our method which will remove the step 
of taking maximum over shifted sequences, represent-
ing the protein structures along with water molecules, 
as well as differentiating the surface residue and incor-
porating the depth of the residues.

Fig. 14  Protein strucutre ( 2zhz, 3h39, 3gpl, 7est, 2w1a, 1a4k) from Coach420, showing predicted binding site by kalasanty(Blue region) and 
PUResNet (Red Region)

https://github.com/jivankandel/PUResNet
https://github.com/jivankandel/PUResNet
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