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Abstract 

Natural products from traditional medicine inherit bioactivity from their source herbs. However, the pharmacologi-
cal mechanism of natural products is often unclear and studied insufficiently. Pathway fingerprint similarity based 
on “drug-target-pathway” heterogeneous network provides new insight into Mechanism of Action (MoA) for natu-
ral products compared with reference drugs, which are selected approved drugs with similar bioactivity. Natural 
products with similar pathway fingerprints may have similar MoA to approved drugs. In our study, XYPI, an andro-
grapholide derivative, had similar anti-inflammatory activity to Glucocorticoids (GCs) and non-steroidal anti-inflam-
matory drugs (NSAIDs), and GCs and NSAIDs have completely different MoA. Based on similarity evaluation, XYPI has 
similar pathway fingerprints as NSAIDs, but has similar target profile with GCs. The expression pattern of genes in 
LPS-activated macrophages after XYPI treatment is similar to that after NSAID but not GC treatment, and this experi-
mental result is consistent with the computational prediction based on pathway fingerprints. These results imply that 
the pathway fingerprints of drugs have potential for drug similarity evaluation. This study used XYPI as an example to 
propose a new approach for investigating the pharmacological mechanism of natural products using pathway finger-
print similarity based on a “drug-target-pathway” heterogeneous network.
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Introduction
More than half of new chemical entities from 1981 to 
2010 were derived from natural products directly or 
indirectly [1]. Natural product-based drugs are often 

identified by phenotypic assays, and deconvolution of 
their MOA can be challenging and time-consuming 
[2, 3]. The approved drugs with clear MoA provide a 
benchmark for natural product to follow. Comparison 
with approved drugs with clear mechanisms can help to 
explore the exact MoA of a natural product. As a natural 
product, andrographolide is the main active ingredient 
of Andrographis paniculate, which makes up about 4%, 
0.8 ~ 1.2% and 0.5 ~ 6% in dried whole plant, stem and leaf 
extracts respectively [4–7]. And Andrographis paniculate 
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was used as an herbal medicine in both traditional Indian 
and Chinese medicine (where it is known as kalmegh 
and chuanxinlian, respectively) [8], which also exhibit 
anti-inflammatory activity that is commonly attributed 
to andrographolide [9]. Xiyanping injection (XYPI) is a 
CFDA-approved drug that consists of andrographolide 
derivatives, including water-soluble sulfonated andro-
grapholide [10]. In the clinic, Glucocorticoids (GCs) and 
non-steroidal anti-inflammatory drugs (NSAIDs) both 
have anti-inflammatory effects with distinct MoA [11, 
12]. Our study attempts to confirm the mechanism of 
XYPI (andrographolide derivatives) using both NSAIDs 
and GCs as references. Commonly used GCs and 
NSAIDs were chosen as positive controls to analyze the 
similarities and differences with XYPI [12].

Drugs without common targets can also exert similar 
therapeutic effects on the same disease because differ-
ent targets participate in the same pathway or interact 
with each other, which is closely associated with the 
pathological process [13]. Therefore, in addition to struc-
ture-based and target-based viral screening methods, 
a pathway-based approach was been applied for nature 
product-based drug discovery [13, 14] and reposition-
ing [15]. Bayesian sparse factor analysis model was used 
to identify the target biological pathways for drugs with 
unclear mechanism of action based on the joint analysis 
of gene expression and drug sensitivity profiles measured 
on the same set of cell lines [16]. Besides that, matrix 
decomposition-based machine learning methods have 
been used for identification of drug-pathway associations 
[17–19]. Gene2Drug, a computational method for drug 
repositioning, was developed to assesses the drug impact 
of transcription of pathway [20]. Fukuoka et al. proposed 
a drug repositioning method based on a protein–protein 
interaction (PPI) network of two diseases and the similar-
ity of the drugs [21].

However, known “natural product-pathway” associa-
tions discovered by biological experiments are too less. 
Only Connectivity Map (cMap) has been employed to 
predict potential drug-pathway association which collect 
genomewide transcriptional expression data form cell 
lines after small molecules treatment [22, 23]. But few 
natural products were included in cMap, and discovery of 
“natural product-pathway” associations by experimental 
methods is time consuming and laborious. Fortunately, 
“drug-target-pathway” heterogenous network is easily 
constructed based on prediction of drug-target inter-
actions and gene-pathway associations from pathway 
database (including KEGG Pathway, Reactome, WikiP-
athways, MSigDB) [24–27]. As a semi-structured repre-
sentation method, “drug-target-pathway” heterogeneous 
information network (HIN) is an effective tool for inte-
grating information, which can fuse three types of objects 

(including drug, target, pathway) and two semantics rela-
tionships between them (drug-target interactions and 
target-pathway association) via multiple social network 
platforms. In HIN, two drug objects can be connected 
via different semantic path, which are defined as meta-
paths. The metapath not only characterizes the seman-
tic relationship between objects but also extracts feature 
information between objects. The metapath “drug-tar-
get-pathway-target-drug” of two drugs was considered 
to describe the linkage between two drugs. The pathway 
fingerprint similarity of two drugs was measured based 
on a “drug-target-pathway” heterogeneous network using 
the Meta Path-based similarity search method-PathSim, 
which has been applied to recommendation systems in 
social networks [28]. And a casual heterogenous network 
(drug-target-pathway-gene-disease) was applied to dis-
cover new positioning of existing drugs [29]. And In our 
previous study, active compounds from TCM were pre-
dicted and validated by pathway-based similarity search 
method (PathSim) based on “drug-target-pathway” HIN 
[14]. In the future, heterogeneous network would be 
widely used in exploration of the exact MoA of natural 
product as a tool.

In this study, we proposed an approach using pathway 
fingerprint similarity based on a “drug-target-pathway” 
heterogeneous network to explore the mechanisms of 
natural drugs XYPI using NSAIDs and GCs as reference 
agents. A heterogeneous network similarity algorithm 
used for social networks was applied to investigate the 
pathway fingerprint similarity between drugs in the het-
erogeneous "drug-target-pathway" network and to pre-
dict the drug-pathway associations of XYPI. The results 
indicate that XYPI may have similar MoA with NSAIDs, 
neither than GCs. To validate the prediction result, LPS-
induced macrophage activation model was applied and 
transcriptome of drug treatment to model were launched 
to investigate the transcriptome expression pattern after 
drug treatment, which can validate potential drug-path-
way association of XYPI based on experiment data. The 
drug-pathway association predicted based on HIN is 
consistent with association from experiment data which 
indicate that XYPI has similar MoA with NSAIDs, and 
pathway-based approach using “drug-target-pathway” 
heterogeneous network is promising for investigating the 
pharmacological mechanism of natural products.

Methods
Construction of “drug‑target‑pathway” heterogeneous 
information network
Prediction of drug‑target interactions of drugs
Three types of drug-target interactions of drugs (XYPI 
and positive/negative controls) were used to con-
struct the target profile for drug. STITCH provides the 
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drug-target interactions based on literature mining [30], 
PubChem provides the drug-target interactions based on 
bioactivity tests in bioassays [31, 32] and BATMAN-TCM 
predicts drug-target interactions based on structure and 
function annotation (all downloaded in Jan 2018) [33]. 
For a query drug-target interaction, a combined confi-
dence score (CS) was applied to comprehensively evalu-
ate the probability of a drug-target interaction from the 
three types of resources same like the combined score of 
protein–protein interactions in STRING [34], which was 
calculated as follows:

Pstitch represents the probability of drug-target inter-
action from STITCH, Ppubchem represents the probabil-
ity of drug-target interaction from PubChem Bioassay 
(1 = active, 0 = inactive, 0.5 = inconclusive or unspecific), 
and Pbatman represents the probability from BATMAN-
TCM. In subsequent analysis, the drug-targets interac-
tions with CS > 0.4 were selected as interactions with 
higher reliability for analysis.

Based on the similar structure and activities, drug-
target interactions of four compositions of XYPI were 
combined in to one dataset to present XYPI. If there 
are common targets between four compositions, larg-
est confidence score of same target was used as the final 
confidence score of drug-target interactions. For drug-
target interactions of XYPI, using "Xi yan ping Injection”, 
"Andrographolide sulfonates" and "Andrographolide" as 
keywords to mine the medical literature abstracts from 
PubMed from 1950 to 2015, related genes mentioned 
in the literature were excavated based on sentence co-
occurrence. Combining targets based on literature min-
ing, targets predicted by BATMAN-TCM, and targets 
extracted from PubChem Bioassay, potential targets of 
XYPI were kept with combined score > 0.4.

Associations of target‑pathway from pathway database
Associations of target-pathway were obtained from three 
pathway databases, including Gene Ontology (GO) [35], 
Reactome [25], and WikiPathways [27]. Target-pathway 
associations from GO were annotated by biological pro-
cesses term in Gene ontology annotation (GOA, down-
loaded in Aug, 2021). Target-pathway associations from 
Reactome and WikiPathways were downloaded in Jun, 
2021.

Construction of “drug‑target‑pathway” heterogeneous 
information network
“Drug-target-pathway” heterogeneous information 
network consists of three type of objects (including 
drug, target, pathway) and two semantics relationships 

(1)
CS = 1− (1− Pstitch) ×

(

1−Ppubchem
)

× (1− Pbatman)

between them (drug-target interactions and target-path-
way associations) mentioned above.

Hierarchical clustering of drugs based on target similarity
The target similarity between two drugs was measured 
based on comprehensive targets of the compounds. For 
example, Ta represents target space of drug a , and Tb rep-
resents target space of drug b . The similarity score Sa,b for 
the similarity of target space of drug a and b was calcu-
lated as follows:

The hierarchical clustering of N compounds was exe-
cuted by the R package hClust [36] based on the target 
similarity matrix of compounds.

GCs and NSAIDs were selected as positive controls 
which are representative anti-inflammatory drugs and 
three types of negative control without anti-inflamma-
tory activities include H2 receptor antagonists, antide-
pressants, and 5-HT3 receptor antagonists. Only GCs 
with similar targets profile were included in further anal-
ysis which was cluster together into one cluster based on 
the hierarchical clustering of target similarity, same as 
the NSAIDs and three types of negative control to make 
these drugs representative for their MoA respectively.

Hierarchical clustering of drugs based on similarity 
of pathway fingerprints from a “drug‑target‑pathway” 
heterogeneous network
The pathway fingerprint similarity of two drugs was 
measured based on a “drug-target-pathway” heteroge-
neous network using the PathSim method, which has 
been applied to recommendation systems in social net-
works [28]. Under the metapath framework, PathSim was 
developed to find similar objects sharing metapath in the 
network (e.g., find drugs with similar pathway descrip-
tions) and to measure the similarity of objects based 
on metapath. Using “drug-target-pathway” network as 
an example, the first definition is metapath which is a 
path between two drugs in the form of ‘drug x-> target x
-> pathway x < -target y < -drug y ’. Here we use P to rep-
resent all the metapath between all drugs in the “drug-
target-pathway” heterogeneous network.

The second definition is the similarity of pathway fin-
gerprints of two drugs (drug x , drug y ), which is

where px∼y is the path instance between drug x and drug 
y , and {px∼y} is the number of path instance between 
drug x and drug y , {px∼x} is the number of path instance 

(2)Sa,b =
Ta ∩ Tb

Ta ∩ Tb

(3)s
(

x, y
)

=
2×

{

px∼y : px∼y ∈ P
}

{px∼x : px∼x ∈ P} +
{

py∼y : py∼y ∈ P
}
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between drug x itself, {py∼y} is the number of path 
instance between drug y itself. The hierarchical clustering 
of N compounds was executed by the R package hClust 
[36] based on the pathway fingerprints similarity matrix 
of compounds.

Prediction of drug‑pathway associations of XYPI 
from metapath in heterogeneous network
The drug most similar to XYPI can be selected based 
on the result of hierarchical clustering of drugs using 
the heterogeneous network, whose drug-pathway asso-
ciation may the possible pathways of XYPI. By extract-
ing metapath between XYPI and the most similar drug 
from of "drug-target-pathway" network, according to the 
transcriptome data of the most similar drugs in LINCS, 
the regulatory direction of the most similar drugs on the 
pathway is calculated to predict the direction of action of 
XYPI on the pathway.

Validation of dug‑pathway associations retrieved 
from genome‑wide transcriptome data on macrophage 
inflammation model
To validate the prediction result, LPS-induced mac-
rophage activation model was applied and transcriptome 
of drug treatment to this model were launched to inves-
tigate the transcriptome expression pattern after drug 
treatment.

LPS‑induced RAW264.7 mouse macrophage inflammation 
model
Chemicals and reagents Trypsin–EDTA digestion solu-
tion (Beijing Solable Technology Co., Ltd.),dimethyl sul-
foxide (DMSO), LPS (CST), fetal bovine serum (Gibco, 
New Zealand), a penicillin–streptomycin double anti-
body (Beijing Solable Technology Co., Ltd.), DMEM cul-
ture medium (Gibco, New Zealand), and a mouse IL-6 
ELISA kit (CUSABIO, Wuhan, China) were used. The 
RAW264.7 mouse macrophage cell line was purchased 
from the Cell Resources Center of the Institute of Basic 
Medical Sciences, Chinese Academy of Medical Sciences, 
and frozen in liquid nitrogen for use. A ZD-420 electric 
thermostatic water bath, a Multiskan Ascent microplate 
reader (Thermo Electron, United States), a BS224S elec-
tronic balance (Serdulis in Germany), a Napco5410 car-
bon dioxide incubator (American NAPCO), a DMIL 
inverted microscope (Germany LEICA), an optical 
microscope (Olympus), a program storage box, an ultra-
clean platform were also used.

Cell culture and experimental procedure Nor-
mal RAW246.7 cells were cultured in DMEM culture 
medium containing a final concentration of 10% fetal 
bovine serum and 100,000 U/L penicillin and placed in 
a cell incubator with 5% CO2 and a temperature of 37 °C. 

The medium was changed once every 48–72 h according 
to the cell growth. After the cells had grown to 70% ~ 80% 
confluence, they were digested with 0.25% trypsin–EDTA 
and centrifuged to separate the cells. The cells were 
then subcultured by passage once every 6 days and fro-
zen in liquid nitrogen for later use. The total number of 
inoculated cells was 2 × 104 per well, and the plates were 
placed in a cell incubator containing 5% CO2 at 37  °C. 
After 24 h of adherence, the cell culture solution was dis-
carded, and 100  μl of DMEM culture medium contain-
ing a final concentration of 0.5 to 5 μg/ml LPS was added 
for inflammatory stimulation. After 48  h of treatment, 
the cell supernatant in each group of wells was collected. 
Interleukin (IL)-6 concentrations were determined using 
Duo Set ELISA Kits (CUSABIO, Wuhan, China). The 
experiment was conducted following the manufacturer’s 
instructions. And the morphological differences between 
cells in each group were observed with a microscope.

RAW264.7 cells (5 × 105 cells/well in a 6-well plate) 
were pretreated with or without XYPI, ketoprofen, or 
prednisolone for 24  h and then incubated with LPS for 
48  h. Cells lysates were prepared with RIPA lysis buffer 
and protease inhibitors (Solarbio, Beijing, China), and 
centrifuged at 14,000g for 15  min at 4  °C. Then protein 
samples were completed for western assay.

The statistical significance of differences between two 
groups was determined by an unpaired Student’s t-test. 
The results were considered statistically significant when 
the p value was less than 5%. ELISA kits were used to 
detect the levels of the inflammatory factor IL-6 in the 
cell supernatant. Data are expressed as the mean using a 
t-test, with P < 0.05 indicating statistical significance.

RNA extraction, library construction and sequencing 
for genome‑wide transcriptome data
Total RNA was extracted with TRIzol Reagent (Thermo 
Fisher, USA) according to the manufacturer’s instruc-
tions, and RNA integrity was assessed using the RNA 
Nano 6000 Assay Kit and the Bioanalyzer 2100 system 
(Agilent Technologies, CA, USA). Three biological repli-
cates were used. A total amount of 3 μg RNA per sample 
was applied for library construction. Briefly, sequencing 
libraries were generated by using the NEBNext® Ultra™ 
RNA Library Prep Kit for Illumina® (NEB, USA) accord-
ing to the instructions. First, poly-T oligo-bound mag-
netic beads were applied to purify mRNA before RNA 
fragmentation was carried out. Then, random hexamer 
primers and M-MuLV Reverse Transcriptase (RNase H-) 
were used to synthesize first-strand cDNA, and DNA Pol-
ymerase I and RNase H were used to synthesize second-
strand cDNA. After that, PCR was performed to enrich 
the cDNA template following adenylation of the 3’ ends 
of the DNA fragments and ligation of the adapters. The 
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PCR products were purified (AMPure XP system), and 
the Agilent Bioanalyzer 2100 system was used to evalu-
ate library quality. The AcBot Cluster Generation System 
was applied for clustering of the index-coded samples by 
using TruSeq PE150 Cluster Kit v3-cBot-HS (Illumina). 
Then, the sequencing library was sequenced on an Illu-
mina HiSeq 4000 platform, and 150 bp paired-end reads 
were generated. This whole experiment was conducted at 
Novogene Bioinformatics Technology Co., Ltd. (Beijing, 
China).

The EdgeR package was used for RNA-SEQ differen-
tial gene expression analysis [37], and the resulting P-val-
ues were adjusted using the Benjamini and Hochberg’s 
approach for controlling the false discovery rate (FDR). 
Gene with a FDR <  = 0.1 and fold change >  = 1.5 were 
assigned as differentially expressed. The principal com-
ponent analysis (PCA) method was used to visualize the 
clustering of samples, as it can intuitively observe the clus-
tering of samples in the experimental group and the con-
trol group. PCA analysis and visualization was executed 
by the R package FactoMineR [38]. Hierarchical clustering 
of differentially expressed genes was generated by hClust 
package [36].

Transcriptome data analysis to build drug‑pathway 
associations
The differentially expressed genes can be found via tran-
scriptome data after drug treatment. According to the 
predicted pathways regulated by XYPI based on HIN, 
the transcriptome data is used to verify the regulatory 
direction of XYPI on pathways. The ratio of up-regulated 
genes in pathway after drug treatment was used to eval-
uate the direction of drug regulation on pathway. Hier-
archical clustering of differentially expressed genes in 
pathway was generated by hClust package [36].

Results
Potential Target prediction for XYPI
By integrating the confidence scores of targets from dif-
ferent resources, 140 targets of XYPI with a combined 
confidence score greater than 0.4 were retained for subse-
quent analysis. Based on the functional enrichment of the 
integrated targets by metascape, XYPI may be involved in 
regulation of the inflammatory response, leukocyte dif-
ferentiation, ROS metabolic process, etc. (Fig.  1A). The 
above results indicate that research on XYPI should focus 
on immune and inflammation-related pathways.

XYPI has targets similar to those of GCs but pathway 
fingerprints similar to those of NSAIDs
There were 140 targets of XYPI (XYPI), 65 common tar-
gets of GCs (target for at least two GCs) and 161 com-
mon targets of NSAIDs (target for at least two NSAIDs) 

whose confidence scores were greater than 0.4. To inves-
tigate the similarity of XYPI with GCs and NSAIDs, Venn 
diagram of XYPI, GCs and NSAIDs showed that there 
were 12 common targets of XYPI, GC and NSAIDs, and 
XYPI had common targets with both GC and NSAIDs 
(Fig. 1B). To evaluate the target similarity between XYPI 
and different GCs and NSAIDs separately, unsupervised 
hierarchical clustering of XYPI, 6 glucocorticoids and 7 
NSAIDs based on target similarity was applied. The clus-
tering result showed that 6 glucocorticoids clustered with 
each other, as well as NSAIDs (Fig.  1C), which indicate 
that GCs have a high similarity with each other at the 
target level, as NSAIDs do. However, GCs and NSAIDs 
have relatively different target spaces, which may be due 
to the different MoA by which they exert anti-inflamma-
tory effects. XYPI clustered with glucocorticoids, which 
shows that the targets of XYPI are more similar to those 
of glucocorticoids than those of NSAIDs.

After investigating the similarity of the pathway finger-
prints of XYPI, GCs and NSAIDs, the unsupervised clus-
tering results showed that XYPI is more similar to NSAIDs 
at pathway level, which was contrary to the previous tar-
get-based clustering results. This result was confirmed 
by three different pathway datasets, including Biological 
Process terms in GO (GOBP), Reactome and WikiPath-
ways (Fig. 1D). For target-pathway association from GOBP, 
although seven NSAIDs were separated into two clusters, 
XYPI was still clustered with 5 NSAIDs based on path-
way fingerprint similarity. Besides that, to assesses the 
robustness of method, three types of drugs without anti-
inflammatory activity were chosen as negative controls. 
XYP injection still cluster with NSAIDs after negative con-
trol added in the hierarchical clustering of drugs based on 
pathway fingerprints similarity which is consistent with 
previous result without negative control (Additional file 1: 
Figure S1, Additional file 2: Figure S2). The results based 
on different pathway datasets and negative controls were 
consistent, which reflect the robustness of pathway-based 
drug similarity search methods and reliability of the result. 
To demonstrate the topic simply, we choose GOBP as 
pathway annotation database for following analysis which 
is very commonly used for Gene functional annotation.

XYPI has pathway fingerprints similar to those of NSAIDs 
in terms of immune and inflammatory pathways
To explore the role of XYPI in immune and inflammatory 
responses, a Venn diagram was generated to compare 
the differences between XYPI drug targets and genes in 
the GO terms “immune response” and “inflammatory 
response”. The results showed that 59/140 and 37/140 
targets of XYPI participate in immune and inflammatory 
responses, respectively. Similar results were obtained for 
GCs and NSAIDs (Fig. 2A). This result implies that most 
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targets of XYPI, GCs and NSAIDs participate in immune 
and inflammatory pathways. Next, hierarchical clustering 
of XYPI, GCs and NSAIDs based on pathway fingerprints 
showed that XYPI was most similar to two NSAIDs 
(aspirin and ketoprofen), if the pathways were restricted 
to inflammation-related pathways (Fig.  2B). In addition, 
XYPI was most similar to ketoprofen and ibuprofen, 
when restricted to immune pathways (Fig.  2C). These 
results indicate that XYPI is more similar to NSAIDs in 
terms of immunity and inflammation. Hierarchical clus-
tering based on pathway fingerprints shows that GCs and 
NSAIDs separate into different clusters, which indicates 
that GCs and NSAIDs have distinct target pathways in 
terms of inflammation and immunity.

Predictions of drug‑pathway associations of XYPI based 
on a “drug‑target‑pathway” heterogeneous network
To further illustrate the inflammatory and immune 
related characteristics of XYPI, we identified the shared 

pathways of XYPI and NSAIDs (ketoprofen) to predict 
the associated pathway of XYPI. In the inflammatory 
pathways, XYPI tends to affect molecules related to posi-
tive regulation of the inflammatory response and mol-
ecules involved in cytokine production, which include 
proinflammatory proteins such as NFKBIA, FABP4, IL2, 
and CCL4 (Fig.  3A). In the immune pathways, XYPI is 
more likely to be involved in leukocyte migration, the 
complement receptor signal transduction pathway, the 
LPS-mediated signaling pathway and the innate immune 
response. Among these factors, ICAM1, MMP9, PTPN6, 
and SRC are regulated by XYPI and participate in the 
process of leukocyte migration (Fig. 3B).

Transcriptome assays from the LINCS database also 
provide an opportunity to explore the expression of 
sharing pathway of reference drugs. Prednisolone and 
ketoprofen were selected as representative of GCs and 
NSAIDs, respectively, because of their high similar-
ity with XYPI based on pathway fingerprints. In this 

Signaling by Interleukins

cellular response to organic cyclic compound

gland development

regula
on of DNA-binding transcrip
on factor ac
vity

leukocyte differen
a
on

response to tumor necrosis factor

Interleukin-10 signaling

posi
ve regula
on of cytokine produc
on
regula
on of inflammatory response

posi
ve regula
on of
cell death

reac
ve oxygen species metabolic process

regula
on of MAPK cascade neuron death

8

16

32

5 10 20 40 80

-
lo
g1
0(
FD

R)

Enrichment

XYP injection

Aspirin

Betamethasone

Cortisone

Diflunisal

Hydrocortisone

Ibuprofen

Ketoprofen

Magnesium salicylate

Methylprednisolone

Naproxen

Prednisolone

Prednisone

Salsalate

116 31
4

123

8 18

12

XYPI GCs

NSAIDs

A

C D

B

GOBP Reactome WikiPathways

XYP injection
Aspirin

Betamethasone

Cortisone

Diflunisal

Hydrocortisone

Ibuprofen
Ketoprofen

Magnesium salicylate

Methylprednisolone

Naproxen

Prednisolone
Prednisone

Salsalate

XYP injection
Aspirin

Betamethasone

Cortisone

Diflunisal

Hydrocortisone

Ibuprofen
Ketoprofen

Magnesium salicylate

Methylprednisolone

Naproxen

Prednisolone
Prednisone

Salsalate

XYP injection
Aspirin

Betamethasone
Cortisone

Diflunisal

Hydrocortisone

Ibuprofen
Ketoprofen

Magnesium salicylate

Methylprednisolone

Naproxen

Prednisolone
Prednisone

Salsalate
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study, differential expressing pathways after ketoprofen 
and prednisolone treatment were investigated based on 
LINCS data [22, 23] which can provide hint for XYPI 
regulation direction to pathway. We found that Ketopro-
fen and Prednisolone has distinct regulation for some 
pathways (Fig.  3C), including interferon gamma medi-
ated signaling pathway, LPS mediated signaling pathway 
and regulation of inflammatory response (Fig. 3D). XYPI 
is more likely to be involved in Interferon γ-mediated 
signaling pathway similar to GCs, which was down regu-
lated by prednisolone, but up regulated by ketoprofen 
based on the LINCS data (Fig. 3D). The sharing pathway 
between XYPI and ketoprofen, pro-inflammatory process 

(positive regulation of inflammatory response), was sup-
pressed by ketoprofen, but anti-inflammatory process 
(negative regulation of inflammatory response) was acti-
vated by ketoprofen which imply that XYPI may have 
similar anti-inflammatory activity and mechanism with 
ketoprofen.

Transcriptome of XYPI against LPS‑activated murine 
macrophage model exhibiting its anti‑inflammatory effect
To validate the prediction MoA of XYPI (similar to keto-
profen), and to compare the pharmacological effects 
of XYPI, an LPS-activated murine macrophage model 
was used. Prednisolone and ketoprofen were selected as 
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representative GCs and NSAIDs, respectively, because of 
their high similarity with XYPI based on pathway finger-
prints. In LPS-activated macrophages, transcription of 
the cytokine IL6 was increased after 48 h of stimulation 
(Fig.  4A). Pretreatment with low- and high-dose XYPI 
(low dose: 0.02  mg/ml, high dose: 0.04  mg/ml) strongly 
decreased cytokine expression in LPS-activated murine 
macrophages after 24  h of exposure. Pretreatment with 

ketoprofen and prednisolone (low dose: 1 µM, high dose: 
2 µM) also reversed the upregulation of IL6. The results 
show that preadministration of XYPI has a significant 
anti-inflammatory effect by reducing IL-6 in activated 
macrophages, and this effect is similar to that of ketopro-
fen and prednisolone.

Transcriptome analysis based on RNA-seq was 
performed to detect the gene expression profile of 
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LPS-activated macrophages after XYPI treatment, and 
ketoprofen and prednisolone were used as positive con-
trols. A volcano plot of differentially expressed genes 
showed that the model group had a total of 117 differen-
tially expressed genes compared with the control group, 
including 62 upregulated genes and 55 downregulated 
genes. Compared with the model group, the XYPI high-
dose administration group had a total of 45 differen-
tially expressed genes, including 23 upregulated genes 
and 22 downregulated genes. The ketoprofen high-dose 
group had 118 differentially expressed genes, includ-
ing 55 upregulated genes and 73 downregulated genes. 
There were 883 differentially expressed genes in the 

prednisolone high-dose group, including 456 upregu-
lated genes and 427 downregulated genes (Fig. 4B). The 
results of PCA in Fig. 4C show that the distance between 
the XYPI group and the control group was very small, 
indicating that after XYPI preadministration, the gene 
expression pattern of RAW263.4 cells was similar to that 
of the control group. As a positive control drug, ketopro-
fen had a gene expression pattern relatively similar to that 
of the control group. Although prednisolone has an anti-
inflammatory effect, the gene expression pattern after 
treatment with prednisolone is very different from that 
of the control group and the group treated with XYPI 
and ketoprofen. The above results imply that XYPI may 
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have a similar anti-inflammatory mechanism to ketopro-
fen, but it is quite different from the anti-inflammatory 
mechanism of prednisolone. A heatmap of hierarchical 
clustering was performed on the differentially expressed 
genes in each group, revealing a total of 7 distinct gene 
expression patterns, and functional enrichment analysis 
was performed for each group of genes (Fig. 4D), which 
showed that high-dose XYPI pretreatment reversed the 
downregulation of genes related to the response to LPS 
and the immune and inflammatory response and recov-
ered the inflammatory response by suppressing the 
positive regulation of cytokine and NO biosynthesis pro-
cesses and T cell proliferation (Fig. 4D). Compared with 
that of the model group, the response to LPS and IL1 was 
significantly upregulated after prednisolone treatment, 
and DNA replication, the cell cycle and immune and 
inflammatory responses were suppressed.

Validation of drug‑pathway associations of XYPI 
from transcriptome data
To predict the specific pathways regulated by XYPI, the 
shared metapath ‘drug-target-pathway-target-drug’ of 
the heterogeneous network was extracted for XYPI and 
NSAIDs. In Fig.  3A and B, possible drug-pathway asso-
ciation of XYPI from the “drug-target-pathway” hetero-
geneous network is shown in terms of the inflammatory 
response and immune response. The regulation direction 
to possible pathway of XYPI was validated based on tran-
scriptome data for XYPI, ketoprofen and prednisolone.

In terms of inflammatory response, Fig.  5A showed 
that neutrophil degranulation and negative regulation 
were upregulated by XYPI (63.1% of genes upregulated in 
the former and 66.7% in the latter), same as ketoprofen 
(47.2% of genes upregulated in the former and 66.7% in 
the latter) which is consistent with the prediction result 
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“XYPI may have similar anti-inflammatory activity and 
mechanism with ketoprofen”. The heatmap of differen-
tial gene expression in the XYPI, ketoprofen and pred-
nisolone pathways shows that most genes involved in 
neutrophil degranulation and negative regulation of the 
inflammatory response pathway were upregulated after 
XYPI and ketoprofen treatment but downregulated after 
prednisolone treatment (Fig.  5B). Genes related to ‘cel-
lular response to glucocorticoid stimulus’ were obviously 
upregulated by prednisolone but downregulated by XYPI 
and ketoprofen (Fig. 5B). This implied that prednisolone 
had an expression pattern distinct from those of XYPI 
and ketoprofen in terms of the inflammatory pathway.

A comparison of the immune pathways for drug reg-
ulation (Fig.  5C) showed that the innate (61/91 genes 
upregulated), adaptive (5/10 genes upregulated) and 
humoral (12/15 genes upregulated) immune responses 
were activated by XYPI but repressed by prednisolone 
(32/91, 4/10, and 3/15 genes upregulated, respectively). 
In addition, “cellular response to IFN-γ” was upregu-
lated by XYPI (29/45 genes upregulated). In previ-
ous prediction, XYPI is more likely to be involved in 
Interferon γ-mediated signaling pathway which was up 
regulated by ketoprofen. So XYPI and ketoprofen both 
activate the pathway related to IFN-γ, which was down 
regulated by prednisolone on the contrary. The heat-
map of differential gene expression in the XYPI, keto-
profen and prednisolone pathways mentioned above 
shows that most genes involved in innate, adaptive 
and humoral immune responses and cellular responses 
to IFN-γ were upregulated after XYPI and ketoprofen 
treatment but downregulated after XYPI treatment 
(Fig.  5D). This implied that prednisolone repressed 
most aspects of the immune response.

These results imply that XYPI has similar regulation 
to immune and inflammatory pathway with ketoprofen, 
not prednisolone, which was predicted based on path-
way fingerprints similarity evaluation. Second, drug-
pathway associations of XYPI predicted by HIN were 
validated by the transcriptome data.

Discussion
As commonly used anti-inflammatory drugs in the clinic, 
GCs and NSAIDs were selected as controls to study the 
anti-inflammatory and immune effects of XYPI. XYPI 
injection has similar targets as GCs because XYPI clus-
tered with GCs in hierarchical clustering based on target 
similarity. However, XYPI has similar pathway finger-
prints as NSAIDs. The transcriptome of the LPS-acti-
vated macrophage model after drug treatment shows 
that the gene expression pattern of macrophages after 
XYPI treatment is much more similar to that of ketopro-
fen, with no repression of the immune response, than to 

prednisolone. XYPI and ketoprofen both participate in 
the positive regulation of the inflammatory response and 
cytokine production. GCs are more likely to negatively 
regulate the signaling pathways mediated by interferon γ 
and are more involved in the function of acquired immu-
nity. The expression pattern of these pathways after XYPI 
treatment is diametrically opposite that of GCs. We pro-
pose that XYPI may have a similar anti-inflammatory 
mechanism as NSAIDs.

These results indicate that pathway fingerprints pro-
vide a new approach for pathway based drug discov-
ery. Even for a single drug compound, the mechanism 
should be explored from a multitarget perspective. A 
drug’s multiple targets (direct and indirect) interact with 
each other to shut down a cellular pathway, which may 
be an unintended pathway, demonstrating the potential 
for polypharmacy to impact complex diseases. In addi-
tion to target profiles, pathway fingerprints have also 
been used in polypharmacological studies to describe the 
function of drug therapy [13, 15]. In this study, similarity 
analysis of pathway fingerprints and target profiles were 
both applied to investigate the MoA of natural products 
(XYPI). The experimental results confirmed that pathway 
fingerprints can be used to evaluate drug similarity and 
to predict MoA.

Natural products from traditional medicine inherit 
bioactivity from their source herbs. However, the phar-
macological mechanism by which they protect against 
disease is often unclear and studied insufficiently. The 
prediction of MoA based on structures and target pro-
files has been performed extensively in drug discovery. 
However, the “drug-target-pathway” heterogeneous 
network provides new insight into drug MoA. Pathway 
fingerprints extracted from a “drug-target-pathway” 
heterogeneous network can describe the pathways 
affected by drugs, which are meaningful combinations 
of direct and indirect targets of drugs. The similarity 
evaluation of pathway fingerprints based on recom-
mendation systems used in social networks is a tech-
nological transformation of social network technology 
to pharmacological research. Compared to novel com-
pounds, natural products have more easily predict-
able bioactivities based on traditional use. Pathway 
fingerprint similarity provides new insight into natu-
ral products compared with reference drugs, which 
are selected approved drugs with similar bioactivity. 
Natural products with similar pathway fingerprints 
may have similar MoA to approved drugs. In our study, 
pathway fingerprints of drugs can provide new ideas 
for drug similarity investigations. Similarity evaluation 
for heterogeneous networks based on recommendation 
systems for social networks provides good reference 
methodologies for pathway fingerprints (Fig. 6).
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In summary, pathway fingerprints were applied to an 
XYPI MoA investigation. XYPI, GCs and NSAIDs have 
considerable anti-inflammatory effects. However, we found 
that XYPI has a similar target profile to GCs but similar 
pathway fingerprints to NSAIDs. Based on the experi-
mental validation of the transcriptome, we found that the 
expression profile of ketoprofen is similar to that of XYPI, 
but prednisolone has a distinct profiling pattern, which 
indicates that the anti-inflammatory mechanism of XYPI 
may be different from that of GCs but similar to that of 
NSAIDs because XYPI does not have an immunosuppres-
sive effect, unlike GCs. This experimental result is consist-
ent with the computational prediction based on pathway 
fingerprints. This study used XYPI, an andrographolide 
derivative, as an example and proposed a new approach for 
investigating the pharmacological mechanism of natural 
products using pathway fingerprint similarity based on a 
“drug-target-pathway” heterogeneous network.
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