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source software platform for de novo molecular 
generation and cheminformatics
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Abstract 

Many contemporary cheminformatics methods, including computer-aided de novo drug design, hold promise to 
significantly accelerate and reduce the cost of drug discovery. Thanks to this attractive outlook, the field has thrived 
and in the past few years has seen an especially significant growth, mainly due to the emergence of novel methods 
based on deep neural networks. This growth is also apparent in the development of novel de novo drug design meth-
ods with many new generative algorithms now available. However, widespread adoption of new generative tech-
niques in the fields like medicinal chemistry or chemical biology is still lagging behind the most recent developments. 
Upon taking a closer look, this fact is not surprising since in order to successfully integrate the most recent de novo 
drug design methods in existing processes and pipelines, a close collaboration between diverse groups of experi-
mental and theoretical scientists needs to be established. Therefore, to accelerate the adoption of both modern and 
traditional de novo molecular generators, we developed Generator User Interface (GenUI), a software platform that 
makes it possible to integrate molecular generators within a feature-rich graphical user interface that is easy to use by 
experts of diverse backgrounds. GenUI is implemented as a web service and its interfaces offer access to cheminfor-
matics tools for data preprocessing, model building, molecule generation, and interactive chemical space visualiza-
tion. Moreover, the platform is easy to extend with customizable frontend React.js components and backend Python 
extensions. GenUI is open source and a recently developed de novo molecular generator, DrugEx, was integrated as 
a proof of principle. In this work, we present the architecture and implementation details of GenUI and discuss how it 
can facilitate collaboration in the disparate communities interested in de novo molecular generation and computer-
aided drug discovery.
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Introduction
Due to significant technological advances in the past 
decades, the body of knowledge on the effects and roles 
of small molecules in living organisms has grown tre-
mendously [1, 2]. At present, we assume the number of 

entries across all databases to be in the range of hundreds 
of millions or billions (108–109) [3–5] and a large portion 
of this data has also accumulated in public databases such 
as ChEMBL [6, 7] or PubChem BioAssay [1]. However, 
the size of contemporary databases is still rather small 
when compared to some estimates of the theoretical 
size of the drug-like chemical space, which may contain 
up to 1033 unique structures according to a recent study 
[8]. However, it should be noted that numerous studies 
in the past reported numbers both bigger and smaller 
depending on the definition used [8–11]. In addition, 
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considering that only 1–2 measured biological activities 
per compound are available [12], the characterization of 
known compounds also needs to be expanded.

For a long time, de novo drug design algorithms for 
systematic and rational exploration of chemical space 
[13–15] and quantitative structure–activity relationship 
(QSAR) modeling [16] have been considered promising 
and useful cheminformatics tools to efficiently broaden 
our horizons with less experimental costs and without 
the need to exhaustively evaluate as many as 1033 possi-
ble drug-like compounds to find the few of interest. The 
relevance of QSAR modeling and de novo compound 
design for drug discovery has been discussed many times 
[13–21], but these approaches can be just as useful in 
other research areas [16]. In chemical biology, new tool 
compounds and chemical probes can be discovered with 
these methods as well [22].

Thanks to the rapid growth of bioactivity databases 
and widespread utilization of graphical processing units 
(GPUs) the efforts to develop powerful data-driven 
approaches for de novo compound generation and QSAR 
modeling based on deep neural networks (DNNs) has 
grown substantially (Fig. 1) [19]. The most attractive fea-
ture of DNNs for de novo drug design is their ability to 
probabilistically generate compound structures [13, 23]. 

DNNs are able to take non-trivial structure–activity pat-
terns into account, thereby increasing the potential for 
scaffold hopping and the diversity of designed molecules 
[24, 25]. A number of generators based on DNNs was 
developed recently demonstrating the ability of various 
network architectures to generate compounds of given 
properties [13, 23, 26–29]. However, it should also be 
noted that the field of de novo drug design and molecular 
generation also has a long history of evolutionary heuris-
tic methods with genetic algorithms on the forefront [20]. 
These traditional methods are still being investigated and 
developed [30–35] and it is yet to be established how 
they compare to the novel DNN-based approaches [13].

Although de novo molecular design algorithms have 
been in development for multiple decades [36] and 
experimentally validated active compounds have been 
proposed [18, 37–44], these success stories are still far 
away from the envisaged performance of the ‘robot sci-
entist’ [45–47]. Successful development of a completely 
automated and sufficiently accurate and efficient closed 
loop process has been elusive, but significant advances 
have been made nonetheless [48]. However, even with 
encouraging results suggesting that full automation of 
the drug discovery process might be possible [18, 49–
51], human insight and manual labor are still necessary 

Fig. 1  Schematic view of a typical cheminformatics workflow involving a DNN. First, a data set of compound structures and their measured 
activities on the desired target molecule (most often a protein) is compiled and encoded to suitable representation. Second, the encoded data 
is used as input of the neural network in forward mapping. A large number of architectures can be used with recurrent neural networks (RNNs) 
and convolutional neural networks (CNNs) as the most popular examples. Finally, the neural network is trained by backpropagating the error of 
a suitable loss function to adjust the activations inside the network so that the loss is minimized. Depending on the architecture, the network is 
trained either as a bioactivity predictor (e.g. a QSAR model) or as a molecular generator
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to further refine and evaluate the compounds generated 
by de novo drug design algorithms. In particular, human 
intervention is of utmost importance in the process of 
compound scoring whereby best candidates are pri-
oritized for synthesis and experimental validation [18, 
51]. In this instance, the contributions of artificial intel-
ligence (AI) are significant and AI algorithms can work 
independently to some extent, but expert knowledge is 
still important to interpret and refine such results and 
the creation of comprehensive graphical user interfaces 
(GUIs) and interoperable software packages can facilitate 
more direct involvement of experts from various fields.

Though many in silico compound generation and opti-
mization tools are available for free [52], it is still an 
exception that these approaches are routinely used since 
the vast majority of methods described in the literature 
serve only as a proof of concept and can rarely be consid-
ered production-ready software. In particular, they lack 
a proper GUI through which non-experts could easily 
access the algorithms and analyze their inputs and out-
puts in a convenient way. While there are many notable 
exceptions [33, 35, 53, 54], the implemented GUIs are 
often simplistic and intended to be used only with one 
particular method. In addition, many molecular genera-
tors would also benefit from a comprehensive and easy to 
use application programming interface (API) that would 
enable easier integration with existing computational 
tools and infrastructures. Recently an open source tool 
called Flame was presented that offers many of the afore-
mentioned features in the field of predictive QSAR mod-
eling [55]. Such integrated frameworks from the realm 
of de novo compound generation are much more rare, 
however. To the best of our knowledge, BRADSHAW 
[56] and Chemistry42 [57] are the only two that were dis-
closed in literature recently and they unfortunately have 
not been made available as open source, which limits 
their use by the scientific community. On the other hand, 
it should be noted that there has been effort to develop 
open and interactive databases of generated structures 
as evidenced by the most recent example, cheML.io [58], 
which allows open access to the generated structures, but 
does not support “on-the-fly” generation. We argue that 
the lack of easy to use and auditable information systems 
for de novo drug design is a factor leading to some level 
of disconnection between medicinal and computational 
chemists [59], which can stand in the way of effective uti-
lization of many promising de novo drug design tools.

Therefore, in this work we present the development 
of GenUI, a cheminformatics software framework that 
provides a GUI and APIs for easy use of molecular 
generators by human experts as well as their integra-
tion with existing drug discovery pipelines and other 
automated processes. The GenUI framework integrates 

solutions for import, generation, storage and retrieval 
of compounds, visualization of the created molecular 
data sets and basic utilities for QSAR modeling. There-
fore, it is also suitable for many basic cheminformatics 
tasks (i.e. visualization of chemical data sets or simple 
QSAR modeling).

All GenUI features can be easily accessed through the 
web-based GUI or the Representational State Transfer 
API (REST API) to ensure that both human users and 
automated processes can interact with the application 
with ease. Integration of new molecular generators and 
other features is facilitated by a documented Python API 
while quick GUI customization is possible with an exten-
sive library of components implemented with the React.
js JavaScript library. To demonstrate the features of the 
GenUI framework, our recently published molecular 
generator DrugEx [60] was integrated within the GenUI 
ecosystem. The source code of the GenUI platform is dis-
tributed under the MIT open-source license [61–63] and 
several Docker [64–66] images are also available online 
for quick deployment [67].

Implementation
Software architecture
User interaction with GenUI happens through the fron-
tend web client that issues REST API calls to the backend, 
which comprises five services (Fig. 2). However, advanced 
users may also implement clients and automated pro-
cesses that use the REST API directly.

The five backend services form the core parts of GenUI 
and can be described as follows:

1.	 “Projects” service handles user account management, 
authorization, and workflows. It is used to log in 
users and organize their work into projects.

2.	 “Compounds” service manages the compound data-
base including deposition, standardization, and 
retrieval of molecules and the associated data (i.e. 
bioactivities, physicochemical properties, or chemi-
cal identifiers).

3.	 “QSAR models” service facilitates the training and 
use of QSAR models. They can be used to predict 
biological activities of the generated compounds, but 
they are also integral to training of many molecular 
generators.

4.	 “Generators” service is responsible for the integra-
tion of de novo molecular generators. It is meant 
to be used to set up and train generative algorithms 
whether they are based on traditional approaches or 
deep learning.
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5.	 “Maps” service enables the creation of 2D chemical 
space visualizations and integration of dimensionality 
reduction algorithms.

In the following sections, the design and imple-
mentation of each part of the GenUI platform will be 
described in more detail.

Frontend
Graphical user interface (GUI)
The GUI is implemented as a JavaScript application 
built on top of the React.js [68] web framework. The 
majority of graphical components is provided by the 
Vibe Dashboard open-source project [69], but the 
original collection of Vibe components was consider-
ably expanded with custom components to fetch, send, 
and display data exchanged with the GenUI backend. In 
addition, frameworks Plotly.js [70], Charts.js [71] and 
ChemSpace.js [72] are used to provide helpful interac-
tive figures.

The GUI reflects the structure of the GenUI backend 
services (Figs. 2 and 3). Each backend service (“Projects”, 
“Compounds”, “QSAR models”, “Generators”, and “Maps”) 
is represented as a separate item in the navigation menu 
on the left side of the interface (Fig.  3a). Upon clicking 
a menu item, the corresponding page opens rendering 

a grid of cards (Fig.  3b) that displays the objects corre-
sponding to the selected backend service. Various actions 
related to the particular service can be performed from 
the action menu in the top right of the interface (Fig. 3c).

Projects  The “Projects” interface serves as a simple way 
to organize user workflows. For example, a project can 
encapsulate a workflow for the generation of novel ligands 
for one protein target (Fig.  3). Each project contains 
imported compounds, QSAR models, molecular genera-
tors and chemical space maps. The number of projects per 
user is not limited and they can be deleted or created as 
needed.

Compounds  Each project may contain any number of 
compound sets (Fig. 4). Each set of compounds can have 
a different purpose in the project and come from a dif-
ferent source. Therefore, the contents of each card on the 
card grid depend on the type of compound set the card 
represents. Compounds can be generated by generators, 
but also imported from SDF files, CSV files or obtained 
directly from the ChEMBL database [6, 7]. New import 
filters can be easily added by extending the Python back-
end and customizing the components of the React API 
accordingly (see “14” and “10”). For each compound in the 
compound set the interface can display its 2D representa-
tion (Fig. 4), molecular identifiers (i.e. SMILES, InChI, and 

Fig. 2  Schematic depiction of the GenUI platform architecture. On the frontend (A), users interact with the web-based GUI to access the backend 
server REST API services (B). All actions and data exchange are facilitated through REST API calls so that any automated process can also interact 
with GenUI. The backend application comprises five REST API services each of which has access to the data storage and task queue subsystems. 
The services can issue computationally intensive and long-running asynchronous tasks to backend workers to ensure sufficient responsiveness and 
scalability. In the current implementation, tasks can be submitted to two queues: (1) the default CPU queue, which handles all tasks by default, or (2) 
the GPU queue, intended for tasks that can be accelerated by the use of GPUs
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InChIKey), reported and predicted activities (Fig. 4) and 
physicochemical properties (i.e. molecular weight, num-
ber of heavy atoms, number of aromatic rings, hydrogen 
bond donors, hydrogen bond acceptors, logP and topo-
logical polar surface area).

QSAR models  All QSAR models trained or imported in 
the given project are available from the “QSAR Models” 
page (Figs.  5, 6). Each QSAR model is represented by a 
card with several tabs. The “Info” tab contains model 
metadata, as well as a serialized model file to download 
(Fig. 5). The “Performance” tab lists various performance 
measures of the QSAR model obtained by cross-valida-
tion or on an independent hold out test set (Fig. 6). The 
validation procedure can be adjusted by the user dur-
ing model creation (Fig. 5). Making predictions with the 
model is possible under the “Predictions” tab. Each QSAR 
model can be used to make predictions for any compound 
set listed on the “Compounds” page and the calculated 
predictions will then become visible in that interface as 
well (Fig. 4).

New QSAR models are submitted for training with 
a creation card (Fig.  5) that helps users choose model 
hyperparameters and a suitable training strategy (i.e. the 
characteristics of the independent hold out validation set, 

the number of cross-validation folds or the choice of vali-
dation metrics). The “Info” tab of a trained model con-
tains important metadata as well as a hyperlink to export 
the model and save it as a reusable Python object. This 
import/export feature enables users to archive and share 
their work, enhancing the reusability and reproducibility 
of the developed models [73]. The “Performance” tab can 
be used to observe model performance data according to 
the chosen validation scheme (Fig.  6). This information 
is different depending on the chosen model type (regres-
sion vs. classification, Fig. 6a vs.  b) and the parameters 
used (i.e. the choice of validation metrics). Additional 
performance measures and machine learning algorithms 
can be integrated with the backend Python API. Creation 
of such extensions does not even require editing of the 
GUI for many standard algorithms (see “14”).

Generators  Under the “Generators” menu item, the 
users find a list of individual generators implemented in 
the GenUI framework (Fig.  7). Currently, only the Dru-
gEx generator [60] is available, but other generators can 
be added by extending the Python backend (see “14”) and 
customizing the existing React components (see “10”). It 
is likely that some generators will have specific require-
ments on the GUI elements used on the page and, thus, 

Fig. 3  A screenshot showing part of the GenUI web GUI. In the figure, the GUI is in a state where the “A2A Receptor” project is already open and the 
navigation menu on the left can be used to access its data. The GUI consists of three main parts: (a) navigation menu, (b) card grid and (c) action 
menu. The navigation menu is used to browse data associated with various GenUI services (“Projects” in this case). If a link is clicked in the navigation 
menu, the data of the selected service is displayed as a grid of interactive cards. Each card allows the users to manage particular data items (a 
project in this case). The action menu in the top right is also updated depending on the service selected in the navigation menu and performs 
actions not related to a particular data item. In this case, the action menu was used to bring up the project creation form represented by the card in 
the bottom left of the card grid
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Fig. 4  A screenshot showing part of the “Compounds” GUI. On this page, users can import data sets from various sources. A card representing 
an already imported data set from the ChEMBL database [7] is shown. The position and size of each displayed card can be modified by either 
dragging the card (reposition) or adjusting the bottom right corner (size change). The card shown is currently expanded over two rows of the card 
grid (Fig. 3b) in order to accommodate the displayed data better. The “Activities” tab in the compound overview shows summary of the biological 
activity data associated with the compound. The activities are grouped by type and aside from experimentally determined activities the interface 
also displays activity predictions of available QSAR models. For example, in the view shown the “Active Probability” activity type is used to denote 
the output probability from a classification QSAR model. Each activity value also contains information about its origin (the “Source” column) so that 
it can be tracked back to its source

Fig. 5  A screenshot showing part of the “QSAR Models” GUI. The card on the left side of the screen shows how training data is chosen for a new 
model while the card on the right shows metadata about an already trained model
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Fig. 6  Performance evaluation view for (a) regression and (b) classification QSAR model. In (a), the mean-squared error (MSE) and the coefficient 
of determination (R2) are used as validation metrics. In (b), the performance is measured on a hold out independent validation test set with the 
Matthews correlation coefficient (MCC) and the area under the receiver operating characteristic (ROC) curve (AUC). The ROC curve itself is also 
displayed above the metrics

Fig. 7  A screenshot showing part of the “DrugEx” GUI with a model creation card with (a) DrugEx training parameters and (b) performance 
overview of a trained DrugEx network. In (a) the fields to define the compound set for the process of fine-tuning the exploitation (‘parent’) recurrent 
neural network trained on the ZINC data set [60] are shown. In addition, the form provides fields to set the number of learning epochs, training 
batch size, frequency of performance monitoring and size of the validation set. In (b) the “Performance” tab tracks model performance. It shows 
values of the loss function on the training set and validation set (top) and the SMILES error rate (bottom) at each specified step of the training 
process. The performance view is updated according to the chosen monitoring frequency in real time as the model is being trained. Each model 
also has the “Info” tab which holds the same information as for QSAR models
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the GUI is organized so that each new generator is inte-
grated as a completely new page accessed from the navi-
gation menu on the left. Many of the graphical elements 
used in the DrugEx extension (i.e. the model creation 
form, Fig.  7a) are simply customized elements from the 
library of GenUI graphical components. In fact, the GUI 
for DrugEx is based on the same React components as the 
“QSAR Models” view.

The DrugEx method consists of two networks, an 
exploitation network and an exploration network, that 
are trained together [60]. The exploration network is 
used to fine-tune the exploitation network, which is then 
trained under the reinforcement learning framework 
to optimize the agent that generates the desired com-
pounds. Therefore, the interface of DrugEx was divided 
into two parts: (1) for training DrugEx exploration net-
works (Fig.  7) and (2) for training DrugEx agents (not 
shown). In this case, the graphical elements needed for 
the two types of networks are very similar and are just 
placed as two card grids under each other. The only cus-
tom React components made for this interface are the fig-
ures used to track real time model performance (Fig. 7b). 
All other components come from the original GenUI 
React library (see “10”) and are simply configured to use 
data from the DrugEx extension REST API endpoints.

Like QSAR models, DrugEx networks can also be seri-
alized and saved as files. For example, a cheminformat-
ics researcher can build a DrugEx model outside of the 
GenUI ecosystem (i.e. using the scripts published with 

the original paper [60]) and provide the created model 
files to another researcher who can import and use the 
model from the GenUI web-based GUI. Therefore, it is 
easy to share work and accommodate various groups of 
users in this way.

Maps  Interactive visualization of chemical space is 
available under the “Maps” menu item. The menu sepa-
rates the creation of the chemical space visualization, the 
“Creator” page (Fig. 8), and its exploration, the “Explorer” 
page (Fig. 9).

The “Creator” page is implemented as a grid of cards 
each of which represents an embedding of chemical 
compounds in 2D space (Fig.  8). Implicitly, the GenUI 
platform enables t-SNE [74] embedding (provided by 
openTSNE [75]). However, new projection methods 
can be easily added to the backend through the GenUI 
Python API with no need to modify the GUI (see “14”) 
[76].

The purpose of the “Explorer” page (Fig. 9) is to inter-
actively visualize chemical space embedding prepared 
in the “Creator”. In the created visualization, users can 
explore compound bioactivities, physicochemical prop-
erties, and other measurements for various representa-
tions and parts of chemical space. Thanks to ChemSpace.
js [72] up to 5 dimensions can be shown in the map at 
the same time with various visualization methods: X and 
Y coordinates, point color, point size and point shape. 
The map can be zoomed in by drawing a rectangle over 

Fig. 8  The “Creator” interface of GenUI “Maps” page. On the left a form to create a new t-SNE [74] mapping of two sets of compounds using Morgan 
fingerprints is shown while information about an existing map can be seen on the right
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Fig. 9  A screenshot showing the “Explorer” part of the “Maps” GUI. The interactive plot on the left side of the screen is provided by the ChemSpace.
js library [72]. Each point in this visualization corresponds to one molecule. In this particular configuration, the shapes and colors of the points 
indicate the compound set to which the compounds belong to. The color scheme of points can be changed with the menu in the top left corner of 
the plot. It is possible to color points by biological activities, physicochemical properties and other data associated with the compounds. The same 
can also be done with the size of the points. The points drawn in the map are interactive and hovering over a point shows a box with information 
about the compound inside and on the right side of the map. Groups of points can also be selected by drawing a rectangle over them in which 
case a list of selected compounds is shown in the “Selection List” tab (Fig. 10) and their bioactivity data is summarized under the “Selection Activities” 
tab (Fig. 11)

Fig. 10  View of the “Selected List” tab of the “Explorer” page. The tab shows the selected molecules in the map as a list which is the same as the one 
used in the “Compounds” view (Fig. 4). For easier navigation, the compounds are also grouped by the compound set they belong to and the view 
for each set can be accessed by switching tabs above the displayed list (only one compound set, CHEMBL251, is present in this case)
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a group of points. Such points form a selection and their 
detailed information is displayed under the “Selected 
List” (Fig. 10) and “Selected Activities” tabs (Fig. 11).

JavaScript API
Two main considerations in the development of GenUI 
are reusability and extensibility. Therefore, the frontend 
GUI comprises a large library of over 50 React compo-
nents that are encapsulated in a standalone package 
(Fig.  12A). The package is organized into subpackages 
that follow the structure and hierarchy of design ele-
ments in the GenUI interface. In the following sections, 
we use the two most important groups of the React API 
components as case studies to illustrate how the frontend 
GUI can be extended. The presented components are 
“Model Components”, used to add new trainable mod-
els, and “REST API Components”, used to fetch and send 
data between the frontend and the GenUI REST API.

Model components  Much of the functionality of the 
GenUI platform is based on trained models. The “QSAR 
Models”, “DrugEx” and “Maps” pages all borrow from 
the same library of reusable GenUI React components 
(Fig. 12A). At the core of the “models” component library 
(Fig. 12A) is the ModelsPage component (Fig. 13). Mod-
elsPage manages the layout and data displayed in model 
cards. When the users select to build a new model, the 
ModelsPage component is also responsible to show a card 
with the model creation form. The information that the 

ModelsPage displays can be customized through various 
React properties (Fig. 13) that represent either data (data 
properties) or other components (component properties). 
Such an encapsulation approach and top-down data flow 
is one of the main strengths of the React framework. This 
design is very robust since it fosters appropriate separa-
tion of concerns by their encapsulation inside more and 
more specialized components. This makes the code easy 
to reuse and maintain.

REST API components  Because the GUI often needs to 
fetch data from the backend server, several React compo-
nents were defined for that purpose. In order to use them, 
one just needs to provide the required REST API URLs 
as React component properties. For example, the Com-
ponentWithResources component configured with the ‘/
maps/algorithms/’ URL will get all available embedding 
methods as JSON (JavaScript Object Notation) and con-
verts the result to a JavaScript object. Many components 
can also periodically update the fetched data, which is 
useful for tracking information in real time. For paginated 
data there is also the ApiResourcePaginator component 
that only fetches a new page if a given event is fired (i.e. 
user presses a button). This makes it convenient to create 
efficient GUIs for larger data sets. In addition, user cre-
dentials are also handed over to the server automatically 
in all of these components.

Many more specialized components are also avail-
able to fetch specific information. For example, the 

Fig. 11  View of the “Selection Activities” tab of the “Explorer” page. In this view, violin plots representing distributions of activities in the set of 
selected compounds are displayed. Each violin plot corresponds to one compound set and one activity type. The violin plots are also interactive 
and hovering over points updates the compound structure and its physicochemical properties are displayed on the right
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Fig. 12  Organization of the GenUI frontend (A) and backend (B) packages. The frontend React library (A) contains customized styles, utility 
functions and the React components used in the GenUI web client. The React components are further divided into groups related to the structure 
of the GenUI interface. Schematic depiction of the GenUI backend Python code. The backend (B) is structured as a standard Django project 
(designated by its settings package and the urls and wsgi modules). The GenUI code itself is divided into a number of root packages that are further 
divided into subpackages. The extensions subpackage is specific to GenUI and is used to automatically discover and configure extension modules. 
GenUI extensions and packages typically define the genuisetup module, which is used to configure the extension when the Django project is run

Fig. 13  A simplified illustration of the high-level components in the GenUI React API for rendering model cards. The main ModelsPage component 
has two kinds of attributes (called “properties” in React): (a) data properties and (b) component properties. The values of data properties are used to 
display model data while the values of component properties are used as child components and injected into the GUI at appropriate places. If no 
component property is specified, default components are used as children instead (i.e. ModelCard and NewModelCard). The child components can 
accept data and component properties as well from their parent (i.e. ModelsPage). This creates a hierarchy of reusable components that can be 
easily assembled and configured to accommodate the different needs of each model view in a standardized and consistent manner 
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TaskAwareComponent tracks URLs associated with back-
ground asynchronous tasks and it regularly passes infor-
mation about completed, running, or failed tasks to its 
child components. However, other specialized compo-
nents exist that automatically fetch and format pictures 
of molecules, bioactivities, physicochemical properties or 
create, update and delete objects in the UI and the server 
[62].

Backend
The backend services are the core of the GenUI plat-
form and the GenUI Python API provides a convenient 
way to write backend extensions (i.e. add new molecular 
generators, compound import filters, QSAR modeling 
algorithms, and dimensionality reduction methods for 
chemical space maps). All five backend services (Fig.  2) 
are implemented with the Django web framework [77] 
and Django REST Framework [78]. For data storage, a 
freely available Docker [66] image developed by Infor-
matics Matters Ltd. [79] is used. The Docker image con-
tains an instance of the PostgreSQL database system with 
integrated database cartridge from the RDKit chemin-
formatics framework [80]. The integration of RDKit with 
the Django web framework is handled with the Django 
RDKit library [81]. All compounds imported in the data-
base are automatically standardized with the current ver-
sion of the ChEMBL structure curation pipeline [82].

Because the backend services also handle processing 
of long-running and computationally intensive tasks, 
the framework uses Celery distributed task queue [83] 
with Redis as a message broker [84] to dispatch them to 
workers. Celery workers are processes running in the 
background that consume tasks from the task queue and 
process them asynchronously. Workers can either run on 
the same machine as the backend services or they can 
be distributed over an infrastructure of computers (see 
“24”).

Python API
Django is a web framework that utilizes the Model View 
Template (MVT) design pattern to handle web requests 
and draw web pages. MVT is similar to the well-known 
Model View Controller (MVC) design pattern, but with-
out a dedicated controller that determines what view 
needs to be called in response to a request. In MVT, 
the framework itself plays the role of the controller and 
makes sure that the correct view is called upon receiv-
ing a web request. In Django, the view is represented by 
a Python function or a method that returns various data 
types based on the nature of the request. The view can 
also take advantage of the Django templating engine to 
dynamically generate HTML pages. In both MVC and 
MVT, the model plays a role of a data access layer. The 

model represents the tables in the database and facilitates 
search and other data operations. GenUI does not use the 
Django templating engine, but rather handles all requests 
via REST API endpoints that manipulate data in JSON. 
This makes the frontend React application completely 
decoupled from the backend and also enables other cli-
ents to access the GenUI data in a convenient way by 
design (Fig. 2).

The GenUI backend codebase [63] follows the stand-
ard structure of any Django project and is divided into 
multiple Python packages that each encapsulate smaller 
self-contained parts (Fig.  12B). In GenUI, any package 
that resides in the root directory is referred to as the root 
package. Root packages facilitate many of the REST API 
endpoints (Fig. 2), but they also contain reusable classes 
that are intended to be built upon by extensions (see “17”, 
for example). In the following sections, some important 
features of the backend Python API are briefly high-
lighted. However, a much more detailed description with 
code examples is available on the documentation page of 
the project [76].

Extensions  Django is known for its strong focus on 
modularity and extensibility and GenUI tries to follow 
in its footsteps and support a flexible system of plugga-
ble applications. Each of the GenUI root packages con-
tains a Python package called extensions (Fig. 12B). The 
extensions package can contain any number of Django 
applications or Python modules, which ensures that the 
extending components of the GenUI framework are well-
organized and loosely coupled.

Provided that GenUI extensions are structured a cer-
tain way they can take advantage of automatic con-
figuration and integration (see “16”). Before the Django 
project is deployed, GenUI applications and extensions 
are detected and configured with the genuisetup com-
mand, which makes sure that the associated REST API 
endpoints are exposed under the correct URLs. The 
genuisetup command is executed with the manage.py 
script (a utility script provided by the Django library).

Automatic code discovery  The root packages of the 
GenUI backend library define many abstract and generic 
base classes to implement and reuse in extensions. These 
classes either implement the REST API or define code to 
be run on the worker nodes inside Celery tasks. Auto-
matic code discovery uses several introspection functions 
and methods to find the derived classes of the base classes 
found in the root packages. By default, this is done when 
the genuisetup command is executed (see “15”).

For example, if the derived class defines a new machine 
learning algorithm to be used in QSAR modelling, auto-
matic code discovery utilities make sure that the new 
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algorithm appears as a choice in the QSAR modelling 
REST API and that proper parameter values are col-
lected via the endpoint to create the model. Moreover, 
all changes also get automatically propagated to the 
web-based GUI because it uses the REST API to obtain 
algorithm choices for the model creation form. Thus, 
no JavaScript code has to be written to integrate a new 
machine learning algorithm. These concepts are also 
used when adding molecular generators, dimensionality 
reduction methods, or molecular descriptors.

Generic views and viewsets  When developing REST API 
services with the Django REST Framework [78], a com-
mon practice is to use generic views and sets of views 
(called viewsets). In Django applications, views are func-
tions or classes that handle incoming HTTP requests. 
Viewsets are classes defined by the Django REST Frame-
work that bring functionality of several views (such as 
creation, update or deletion of objects) into one single 
class. Generic views and viewsets are classes that usually 
do not stand on their own, but are designed to be further 
extended and customized.

The GenUI Python library embraces this philoso-
phy and many REST API endpoints are encapsulated in 
generic views or viewsets. This ensures that the function-
ality can be reused and that no code needs to be written 
twice, as stated by the well-known DRY (“Don’t Repeat 
Yourself”) principle [85]. An example of such a generic 
approach is the ModelViewSet class that handles the 
endpoints for retrieval and training of machine learn-
ing models. This viewset is used by the qsar and maps 
applications, but also by the DrugEx extension. All these 
applications depend on some form of a machine learning 
model so they can take advantage of this interface, which 
automatically checks the validity of user inputs and sends 
model training jobs to the task queue.

Asynchronous tasks  Many of the GenUI backend ser-
vices take advantage of asynchronous tasks which are 
functions executed in the background without blocking 
the main application. Moreover, tasks do not even have to 
be executed on the same machine as the caller of the task, 
which allows for a great deal of flexibility and scalability 
(see “24”).

The Celery task queue [83] makes creating asynchro-
nous tasks as easy as defining a Python function [86]. 
In addition, some GenUI views already define their 
own tasks and no explicit task definition is needed in 
the derived views of the extensions. For example, the 
compounds root package defines a generic viewset 
that can be used to create and manage compound sets. 
The import and creation of compounds belonging to 
a new compound set is handled by implementing a 

separate initializer class, which is passed to the appro-
priate generic viewset class [76]. The initialization of 
a compound set can take a long time or may fail and, 
thus, should be executed asynchronously. Therefore, the 
viewset of the compounds application automatically exe-
cutes the methods of the initializer class asynchronously 
with the help of an available Celery worker.

Integration of new features with the two APIs
While a few examples of integrating new features to 
the GenUI platform have already been given for both 
Python and JavaScript, in this section a brief overview 
of all extensible features of the GenUI platform will be 
given. The vast majority of the features implemented in 
the reference platform presented in this work is realized 
through the extension system introduced earlier (see 
“15”). Extensions can use a wide selection of cheminfor-
matics and data analysis tools each with their own level 
of complexity. Therefore, in this section we discuss the 
ease/difficulty of implementing the most common exten-
sions and outline the problems the developers will face 
when developing each type of extension on both frontend 
and backend. All of the extensible use cases discussed 
here are also described in the project documentation 
with code examples [76].

Compounds import
Importing sets of compounds from various sources 
may require different approaches and as a result differ-
ent kinds of interfaces. Therefore, the GenUI platform 
was designed with more flexibility in mind in this case. 
However, it also means that more configuration is needed 
from the developer. Extending the GenUI backend is 
accomplished by creating an extension application that 
defines the REST API URLs of the extension as well as 
views that will serve the defined URLs. GenUI provides 
a generic viewset class that can be derived from to make 
this process a matter of a few lines of code. The initial-
izer class that handles the import itself also needs to 
be implemented by the developer of the extension, but 
an already prepared initializer base class is available in 
GenUI as well. Among other things, this base class also 
handles molecule standardization and clean up which 
ensures unified representation of chemical structures 
across data sets. In the frontend API, there is a selection 
of React components that can be used to build cards rep-
resenting imported compound sets. The cards need very 
little configuration and automatically include metadata 
and the list of compounds in the compound set.

QSAR models
The backend model integration API is designed to pro-
vide easy and fast integration of simple machine learning 
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algorithms even without the need to manually modify the 
frontend GUI. Adding a QSAR model can be as simple 
as adding a single class to the extension. The responsibil-
ity of this class is to use a machine learning algorithm to 
train and serialize a model upon receiving training data 
and predict unknown data from the deserialized model 
when requested. This class is also annotated with meta-
data about the model to be displayed in the frontend 
GUI. Therefore, in the simplest cases no URLs or cus-
tomized GUI components need to be defined. The GenUI 
framework itself also performs cross-validation and inde-
pendent set validation and data preprocessing. However, 
in many cases customized behavior, novel descriptor or 
validation metrics implementations might be necessary 
and in that case the developer may be required to define 
new URLs, views and modeling strategies. However, also 
in this case the GenUI platform attempts to make this 
process easier by providing generic viewsets and loosely 
coupled base class implementations that the developers 
can take advantage of. In addition, the interface to define 
molecular descriptors and validation metrics is designed 
with reusability in mind and also exposes the imple-
mented features to other QSAR algorithms if needed.

Molecular generators
Molecular generators can be of various types and even 
those based purely on DNNs are often of different archi-
tectures and take advantage of diverse software frame-
works. GenUI is designed in a fashion that is agnostic 
to the type of algorithm used and it leaves preprocess-
ing of the training data (if any) and the generation of 
output solely on the developer of the extension. GenUI 
only defines the means to communicate data between the 
framework and the generator code. This also means that 
integration of a molecular generator requires more cus-
tomization, the extent of which largely depends on the 
type of the generative algorithm used. The GenUI model 
integration API that is used for integration of QSAR 
models can also be used for integration of molecular gen-
erators based on DNNs and is used by the DrugEx exten-
sion. Therefore, integrating contemporary approaches 
that are mostly based on DNNs should be easier thanks 
to the possibility to follow the example of DrugEx as a 
proof of concept. Generators may also have different 
requirements on the information displayed in the GUI 
and, thus, it is expected that the GUI will be customized 
as well. However, if the generator takes advantage of the 
GenUI model integration API, this process is significantly 
simplified.

Chemical space maps
The dimensionality reduction methods used to create the 
chemical space maps shown in the GenUI interface are 

handled through the GenUI model integration API as 
well. Therefore, integration of these approaches is han-
dled similarly to QSAR models and, thus, it comes with 
the same set of requirements and assumptions. Imple-
menting a simple dimensionality reduction method will 
likely not require any steps beyond the definition of the 
one class that contains the implementing code and algo-
rithm metadata.

Deployment
Docker images
Since the GenUI platform consists of several components 
with many dependencies and spans multiple program-
ming languages, it can be tedious to set up the whole pro-
ject on a new system. Docker makes deployment of larger 
projects like this easier by encapsulating different parts of 
the deployment environment inside Docker images [64–
66]. Docker images are simply downloaded and deployed 
on the target system without the need to install any other 
tools beside Docker. GenUI uses many official Docker 
images available on the Docker image sharing platform 
Docker Hub [87]. The PostgreSQL database with built-in 
RDKit cartridge [79], Redis [79, 88] and the NGINX web 
server [89, 90] are all obtained by this standard channel. 
In addition, we defined the following images to support 
the deployment of the GenUI platform itself [67]:

1.	 genui-main: Used to deploy both the frontend web 
application and the backend services.

2.	 genui-worker: Deploys a basic Celery worker without 
GPU support.

3.	 genui-gpuworker: Deploys a Celery worker with GPU 
support. It is the same as the genui-worker, but it has 
the NVIDIA CUDA Toolkit already installed.

The tools to build these images are freely available [67]. 
Therefore, developers can create images for extended 
versions of the GenUI that fit the needs of their organi-
zations. In addition, the separation of the main applica-
tion (genui-main) from workers also allows distributed 
deployment over multiple machines, which opens up 
the possibility to create a scalable architecture that can 
quickly accommodate teams of varying sizes.

Future directions
Although the GenUI framework already implements 
much of the functionality needed to successfully inte-
grate most molecular generators, there are still many 
aspects of the framework that can be improved and 
the framework is under continuous development. For 
instance, it would be beneficial if more sources of molec-
ular structures and bioactivity information are integrated 
in the platform besides ChEMBL (i.e. PubChem [91], 
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ZINC [92], DrugBank [93], BindingDB [94] or Probes 
and Drugs [95]). Currently, GenUI also lacks features to 
perform effective similarity and substructure searches, 
which we see as a crucial next step to improve the appeal 
of the platform to medicinal chemists. The current ver-
sion of GenUI would also benefit from extending the 
sets of descriptors, QSAR machine learning algorithms 
and chemical space projections since the performance of 
different methods can vary across data sets. Finally, the 
question of synthesizability of the generated structures 
should also be addressed and a system for predicting 
chemical reactions and retrosynthetic pathways could 
also be very useful to medicinal chemists if integrated in 
the GUI (i.e. by facilitating connection to a service such 
as the IBM RXN [96] or PostEra Manifold [97]).

Even though it is hard to determine the requirements 
of every project where molecular generators might 
be applied, many of the aforementioned features and 
improvements can be readily implemented with the 
GenUI React components (see “10”) and the Python API 
(see “14”). In fact, the already presented extensions and 
the DrugEx interface are useful case studies that can be 
used as templates for integration of many other chemin-
formatics tools and de novo molecular generators. There-
fore, we see GenUI as a flexible and scalable framework 
that can be used by organizations to quickly integrate 
tools and data the way it suits their needs the most. How-
ever, we would also like GenUI to become a new useful 
way to share the progress in the development of novel de 
novo drug design methods and other cheminformatics 
approaches in the public domain.

Conclusions
We implemented a full stack solution for integration of de 
novo molecular generation techniques in a multidiscipli-
nary work environment. The proposed GenUI software 
platform provides a GUI designed to be easily under-
stood by experts outside the cheminformatics domain, 
but it also offers a feature-rich REST API for program-
matic access and straightforward integration with auto-
mated processes. The presented solution also provides 
extensive Python and JavaScript extension APIs for easy 
integration of new molecular generators and other chem-
informatics tools. We envision that the field of molecu-
lar generation will likely expand in the future and that 
an open source software platform such as this one is a 
crucial step towards more widespread adoption of novel 
algorithms in drug discovery and related research. We 
also believe that GenUI can facilitate more engagement 
between different groups of users and inspire new direc-
tions in the field of de novo drug design.
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