
Sicho et al. J Cheminform (2021) 13:73
https://doi.org/10.1186/s13321-021-00550-y

SOFTWARE

GenUI: interactive and extensible open
source software platform for de novo molecular
generation and cheminformatics
M. Sicho1†  , X. Liu3†  , D. Svozil1,2  and G. J. P. van Westen3*   

Abstract 

Many contemporary cheminformatics methods, including computer-aided de novo drug design, hold promise to
significantly accelerate and reduce the cost of drug discovery. Thanks to this attractive outlook, the field has thrived
and in the past few years has seen an especially significant growth, mainly due to the emergence of novel methods
based on deep neural networks. This growth is also apparent in the development of novel de novo drug design meth-
ods with many new generative algorithms now available. However, widespread adoption of new generative tech-
niques in the fields like medicinal chemistry or chemical biology is still lagging behind the most recent developments.
Upon taking a closer look, this fact is not surprising since in order to successfully integrate the most recent de novo
drug design methods in existing processes and pipelines, a close collaboration between diverse groups of experi-
mental and theoretical scientists needs to be established. Therefore, to accelerate the adoption of both modern and
traditional de novo molecular generators, we developed Generator User Interface (GenUI), a software platform that
makes it possible to integrate molecular generators within a feature-rich graphical user interface that is easy to use by
experts of diverse backgrounds. GenUI is implemented as a web service and its interfaces offer access to cheminfor-
matics tools for data preprocessing, model building, molecule generation, and interactive chemical space visualiza-
tion. Moreover, the platform is easy to extend with customizable frontend React.js components and backend Python
extensions. GenUI is open source and a recently developed de novo molecular generator, DrugEx, was integrated as
a proof of principle. In this work, we present the architecture and implementation details of GenUI and discuss how it
can facilitate collaboration in the disparate communities interested in de novo molecular generation and computer-
aided drug discovery.

Keywords:  Graphical user interface, De novo drug design, Molecule generation, Deep learning, Web application

© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Introduction
Due to significant technological advances in the past
decades, the body of knowledge on the effects and roles
of small molecules in living organisms has grown tre-
mendously [1, 2]. At present, we assume the number of

entries across all databases to be in the range of hundreds
of millions or billions (108–109) [3–5] and a large portion
of this data has also accumulated in public databases such
as ChEMBL [6, 7] or PubChem BioAssay [1]. However,
the size of contemporary databases is still rather small
when compared to some estimates of the theoretical
size of the drug-like chemical space, which may contain
up to 1033 unique structures according to a recent study
[8]. However, it should be noted that numerous studies
in the past reported numbers both bigger and smaller
depending on the definition used [8–11]. In addition,

Open Access

Journal of Cheminformatics

*Correspondence: gerard@lacdr.leidenuniv.nl
†M. Sicho and X. Liu contributed equally to this work
3 Computational Drug Discovery, Drug Discovery and Safety, Leiden
Academic Centre for Drug Research, Einsteinweg 55, Leiden, The
Netherlands
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-8771-1731
http://orcid.org/0000-0003-2368-4655
http://orcid.org/0000-0003-2577-5163
http://orcid.org/0000-0003-0717-1817
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13321-021-00550-y&domain=pdf

Page 2 of 17Sicho et al. J Cheminform (2021) 13:73

considering that only 1–2 measured biological activities
per compound are available [12], the characterization of
known compounds also needs to be expanded.

For a long time, de novo drug design algorithms for
systematic and rational exploration of chemical space
[13–15] and quantitative structure–activity relationship
(QSAR) modeling [16] have been considered promising
and useful cheminformatics tools to efficiently broaden
our horizons with less experimental costs and without
the need to exhaustively evaluate as many as 1033 possi-
ble drug-like compounds to find the few of interest. The
relevance of QSAR modeling and de novo compound
design for drug discovery has been discussed many times
[13–21], but these approaches can be just as useful in
other research areas [16]. In chemical biology, new tool
compounds and chemical probes can be discovered with
these methods as well [22].

Thanks to the rapid growth of bioactivity databases
and widespread utilization of graphical processing units
(GPUs) the efforts to develop powerful data-driven
approaches for de novo compound generation and QSAR
modeling based on deep neural networks (DNNs) has
grown substantially (Fig. 1) [19]. The most attractive fea-
ture of DNNs for de novo drug design is their ability to
probabilistically generate compound structures [13, 23].

DNNs are able to take non-trivial structure–activity pat-
terns into account, thereby increasing the potential for
scaffold hopping and the diversity of designed molecules
[24, 25]. A number of generators based on DNNs was
developed recently demonstrating the ability of various
network architectures to generate compounds of given
properties [13, 23, 26–29]. However, it should also be
noted that the field of de novo drug design and molecular
generation also has a long history of evolutionary heuris-
tic methods with genetic algorithms on the forefront [20].
These traditional methods are still being investigated and
developed [30–35] and it is yet to be established how
they compare to the novel DNN-based approaches [13].

Although de novo molecular design algorithms have
been in development for multiple decades [36] and
experimentally validated active compounds have been
proposed [18, 37–44], these success stories are still far
away from the envisaged performance of the ‘robot sci-
entist’ [45–47]. Successful development of a completely
automated and sufficiently accurate and efficient closed
loop process has been elusive, but significant advances
have been made nonetheless [48]. However, even with
encouraging results suggesting that full automation of
the drug discovery process might be possible [18, 49–
51], human insight and manual labor are still necessary

Fig. 1  Schematic view of a typical cheminformatics workflow involving a DNN. First, a data set of compound structures and their measured
activities on the desired target molecule (most often a protein) is compiled and encoded to suitable representation. Second, the encoded data
is used as input of the neural network in forward mapping. A large number of architectures can be used with recurrent neural networks (RNNs)
and convolutional neural networks (CNNs) as the most popular examples. Finally, the neural network is trained by backpropagating the error of
a suitable loss function to adjust the activations inside the network so that the loss is minimized. Depending on the architecture, the network is
trained either as a bioactivity predictor (e.g. a QSAR model) or as a molecular generator

Page 3 of 17Sicho et al. J Cheminform (2021) 13:73 	

to further refine and evaluate the compounds generated
by de novo drug design algorithms. In particular, human
intervention is of utmost importance in the process of
compound scoring whereby best candidates are pri-
oritized for synthesis and experimental validation [18,
51]. In this instance, the contributions of artificial intel-
ligence (AI) are significant and AI algorithms can work
independently to some extent, but expert knowledge is
still important to interpret and refine such results and
the creation of comprehensive graphical user interfaces
(GUIs) and interoperable software packages can facilitate
more direct involvement of experts from various fields.

Though many in silico compound generation and opti-
mization tools are available for free [52], it is still an
exception that these approaches are routinely used since
the vast majority of methods described in the literature
serve only as a proof of concept and can rarely be consid-
ered production-ready software. In particular, they lack
a proper GUI through which non-experts could easily
access the algorithms and analyze their inputs and out-
puts in a convenient way. While there are many notable
exceptions [33, 35, 53, 54], the implemented GUIs are
often simplistic and intended to be used only with one
particular method. In addition, many molecular genera-
tors would also benefit from a comprehensive and easy to
use application programming interface (API) that would
enable easier integration with existing computational
tools and infrastructures. Recently an open source tool
called Flame was presented that offers many of the afore-
mentioned features in the field of predictive QSAR mod-
eling [55]. Such integrated frameworks from the realm
of de novo compound generation are much more rare,
however. To the best of our knowledge, BRADSHAW
[56] and Chemistry42 [57] are the only two that were dis-
closed in literature recently and they unfortunately have
not been made available as open source, which limits
their use by the scientific community. On the other hand,
it should be noted that there has been effort to develop
open and interactive databases of generated structures
as evidenced by the most recent example, cheML.io [58],
which allows open access to the generated structures, but
does not support “on-the-fly” generation. We argue that
the lack of easy to use and auditable information systems
for de novo drug design is a factor leading to some level
of disconnection between medicinal and computational
chemists [59], which can stand in the way of effective uti-
lization of many promising de novo drug design tools.

Therefore, in this work we present the development
of GenUI, a cheminformatics software framework that
provides a GUI and APIs for easy use of molecular
generators by human experts as well as their integra-
tion with existing drug discovery pipelines and other
automated processes. The GenUI framework integrates

solutions for import, generation, storage and retrieval
of compounds, visualization of the created molecular
data sets and basic utilities for QSAR modeling. There-
fore, it is also suitable for many basic cheminformatics
tasks (i.e. visualization of chemical data sets or simple
QSAR modeling).

All GenUI features can be easily accessed through the
web-based GUI or the Representational State Transfer
API (REST API) to ensure that both human users and
automated processes can interact with the application
with ease. Integration of new molecular generators and
other features is facilitated by a documented Python API
while quick GUI customization is possible with an exten-
sive library of components implemented with the React.
js JavaScript library. To demonstrate the features of the
GenUI framework, our recently published molecular
generator DrugEx [60] was integrated within the GenUI
ecosystem. The source code of the GenUI platform is dis-
tributed under the MIT open-source license [61–63] and
several Docker [64–66] images are also available online
for quick deployment [67].

Implementation
Software architecture
User interaction with GenUI happens through the fron-
tend web client that issues REST API calls to the backend,
which comprises five services (Fig. 2). However, advanced
users may also implement clients and automated pro-
cesses that use the REST API directly.

The five backend services form the core parts of GenUI
and can be described as follows:

1.	 “Projects” service handles user account management,
authorization, and workflows. It is used to log in
users and organize their work into projects.

2.	 “Compounds” service manages the compound data-
base including deposition, standardization, and
retrieval of molecules and the associated data (i.e.
bioactivities, physicochemical properties, or chemi-
cal identifiers).

3.	 “QSAR models” service facilitates the training and
use of QSAR models. They can be used to predict
biological activities of the generated compounds, but
they are also integral to training of many molecular
generators.

4.	 “Generators” service is responsible for the integra-
tion of de novo molecular generators. It is meant
to be used to set up and train generative algorithms
whether they are based on traditional approaches or
deep learning.

Page 4 of 17Sicho et al. J Cheminform (2021) 13:73

5.	 “Maps” service enables the creation of 2D chemical
space visualizations and integration of dimensionality
reduction algorithms.

In the following sections, the design and imple-
mentation of each part of the GenUI platform will be
described in more detail.

Frontend
Graphical user interface (GUI)
The GUI is implemented as a JavaScript application
built on top of the React.js [68] web framework. The
majority of graphical components is provided by the
Vibe Dashboard open-source project [69], but the
original collection of Vibe components was consider-
ably expanded with custom components to fetch, send,
and display data exchanged with the GenUI backend. In
addition, frameworks Plotly.js [70], Charts.js [71] and
ChemSpace.js [72] are used to provide helpful interac-
tive figures.

The GUI reflects the structure of the GenUI backend
services (Figs. 2 and 3). Each backend service (“Projects”,
“Compounds”, “QSAR models”, “Generators”, and “Maps”)
is represented as a separate item in the navigation menu
on the left side of the interface (Fig. 3a). Upon clicking
a menu item, the corresponding page opens rendering

a grid of cards (Fig. 3b) that displays the objects corre-
sponding to the selected backend service. Various actions
related to the particular service can be performed from
the action menu in the top right of the interface (Fig. 3c).

Projects  The “Projects” interface serves as a simple way
to organize user workflows. For example, a project can
encapsulate a workflow for the generation of novel ligands
for one protein target (Fig. 3). Each project contains
imported compounds, QSAR models, molecular genera-
tors and chemical space maps. The number of projects per
user is not limited and they can be deleted or created as
needed.

Compounds  Each project may contain any number of
compound sets (Fig. 4). Each set of compounds can have
a different purpose in the project and come from a dif-
ferent source. Therefore, the contents of each card on the
card grid depend on the type of compound set the card
represents. Compounds can be generated by generators,
but also imported from SDF files, CSV files or obtained
directly from the ChEMBL database [6, 7]. New import
filters can be easily added by extending the Python back-
end and customizing the components of the React API
accordingly (see “14” and “10”). For each compound in the
compound set the interface can display its 2D representa-
tion (Fig. 4), molecular identifiers (i.e. SMILES, InChI, and

Fig. 2  Schematic depiction of the GenUI platform architecture. On the frontend (A), users interact with the web-based GUI to access the backend
server REST API services (B). All actions and data exchange are facilitated through REST API calls so that any automated process can also interact
with GenUI. The backend application comprises five REST API services each of which has access to the data storage and task queue subsystems.
The services can issue computationally intensive and long-running asynchronous tasks to backend workers to ensure sufficient responsiveness and
scalability. In the current implementation, tasks can be submitted to two queues: (1) the default CPU queue, which handles all tasks by default, or (2)
the GPU queue, intended for tasks that can be accelerated by the use of GPUs

Page 5 of 17Sicho et al. J Cheminform (2021) 13:73 	

InChIKey), reported and predicted activities (Fig. 4) and
physicochemical properties (i.e. molecular weight, num-
ber of heavy atoms, number of aromatic rings, hydrogen
bond donors, hydrogen bond acceptors, logP and topo-
logical polar surface area).

QSAR models  All QSAR models trained or imported in
the given project are available from the “QSAR Models”
page (Figs. 5, 6). Each QSAR model is represented by a
card with several tabs. The “Info” tab contains model
metadata, as well as a serialized model file to download
(Fig. 5). The “Performance” tab lists various performance
measures of the QSAR model obtained by cross-valida-
tion or on an independent hold out test set (Fig. 6). The
validation procedure can be adjusted by the user dur-
ing model creation (Fig. 5). Making predictions with the
model is possible under the “Predictions” tab. Each QSAR
model can be used to make predictions for any compound
set listed on the “Compounds” page and the calculated
predictions will then become visible in that interface as
well (Fig. 4).

New QSAR models are submitted for training with
a creation card (Fig. 5) that helps users choose model
hyperparameters and a suitable training strategy (i.e. the
characteristics of the independent hold out validation set,

the number of cross-validation folds or the choice of vali-
dation metrics). The “Info” tab of a trained model con-
tains important metadata as well as a hyperlink to export
the model and save it as a reusable Python object. This
import/export feature enables users to archive and share
their work, enhancing the reusability and reproducibility
of the developed models [73]. The “Performance” tab can
be used to observe model performance data according to
the chosen validation scheme (Fig. 6). This information
is different depending on the chosen model type (regres-
sion vs. classification, Fig. 6a vs. b) and the parameters
used (i.e. the choice of validation metrics). Additional
performance measures and machine learning algorithms
can be integrated with the backend Python API. Creation
of such extensions does not even require editing of the
GUI for many standard algorithms (see “14”).

Generators  Under the “Generators” menu item, the
users find a list of individual generators implemented in
the GenUI framework (Fig. 7). Currently, only the Dru-
gEx generator [60] is available, but other generators can
be added by extending the Python backend (see “14”) and
customizing the existing React components (see “10”). It
is likely that some generators will have specific require-
ments on the GUI elements used on the page and, thus,

Fig. 3  A screenshot showing part of the GenUI web GUI. In the figure, the GUI is in a state where the “A2A Receptor” project is already open and the
navigation menu on the left can be used to access its data. The GUI consists of three main parts: (a) navigation menu, (b) card grid and (c) action
menu. The navigation menu is used to browse data associated with various GenUI services (“Projects” in this case). If a link is clicked in the navigation
menu, the data of the selected service is displayed as a grid of interactive cards. Each card allows the users to manage particular data items (a
project in this case). The action menu in the top right is also updated depending on the service selected in the navigation menu and performs
actions not related to a particular data item. In this case, the action menu was used to bring up the project creation form represented by the card in
the bottom left of the card grid

Page 6 of 17Sicho et al. J Cheminform (2021) 13:73

Fig. 4  A screenshot showing part of the “Compounds” GUI. On this page, users can import data sets from various sources. A card representing
an already imported data set from the ChEMBL database [7] is shown. The position and size of each displayed card can be modified by either
dragging the card (reposition) or adjusting the bottom right corner (size change). The card shown is currently expanded over two rows of the card
grid (Fig. 3b) in order to accommodate the displayed data better. The “Activities” tab in the compound overview shows summary of the biological
activity data associated with the compound. The activities are grouped by type and aside from experimentally determined activities the interface
also displays activity predictions of available QSAR models. For example, in the view shown the “Active Probability” activity type is used to denote
the output probability from a classification QSAR model. Each activity value also contains information about its origin (the “Source” column) so that
it can be tracked back to its source

Fig. 5  A screenshot showing part of the “QSAR Models” GUI. The card on the left side of the screen shows how training data is chosen for a new
model while the card on the right shows metadata about an already trained model

Page 7 of 17Sicho et al. J Cheminform (2021) 13:73 	

Fig. 6  Performance evaluation view for (a) regression and (b) classification QSAR model. In (a), the mean-squared error (MSE) and the coefficient
of determination (R2) are used as validation metrics. In (b), the performance is measured on a hold out independent validation test set with the
Matthews correlation coefficient (MCC) and the area under the receiver operating characteristic (ROC) curve (AUC). The ROC curve itself is also
displayed above the metrics

Fig. 7  A screenshot showing part of the “DrugEx” GUI with a model creation card with (a) DrugEx training parameters and (b) performance
overview of a trained DrugEx network. In (a) the fields to define the compound set for the process of fine-tuning the exploitation (‘parent’) recurrent
neural network trained on the ZINC data set [60] are shown. In addition, the form provides fields to set the number of learning epochs, training
batch size, frequency of performance monitoring and size of the validation set. In (b) the “Performance” tab tracks model performance. It shows
values of the loss function on the training set and validation set (top) and the SMILES error rate (bottom) at each specified step of the training
process. The performance view is updated according to the chosen monitoring frequency in real time as the model is being trained. Each model
also has the “Info” tab which holds the same information as for QSAR models

Page 8 of 17Sicho et al. J Cheminform (2021) 13:73

the GUI is organized so that each new generator is inte-
grated as a completely new page accessed from the navi-
gation menu on the left. Many of the graphical elements
used in the DrugEx extension (i.e. the model creation
form, Fig. 7a) are simply customized elements from the
library of GenUI graphical components. In fact, the GUI
for DrugEx is based on the same React components as the
“QSAR Models” view.

The DrugEx method consists of two networks, an
exploitation network and an exploration network, that
are trained together [60]. The exploration network is
used to fine-tune the exploitation network, which is then
trained under the reinforcement learning framework
to optimize the agent that generates the desired com-
pounds. Therefore, the interface of DrugEx was divided
into two parts: (1) for training DrugEx exploration net-
works (Fig. 7) and (2) for training DrugEx agents (not
shown). In this case, the graphical elements needed for
the two types of networks are very similar and are just
placed as two card grids under each other. The only cus-
tom React components made for this interface are the fig-
ures used to track real time model performance (Fig. 7b).
All other components come from the original GenUI
React library (see “10”) and are simply configured to use
data from the DrugEx extension REST API endpoints.

Like QSAR models, DrugEx networks can also be seri-
alized and saved as files. For example, a cheminformat-
ics researcher can build a DrugEx model outside of the
GenUI ecosystem (i.e. using the scripts published with

the original paper [60]) and provide the created model
files to another researcher who can import and use the
model from the GenUI web-based GUI. Therefore, it is
easy to share work and accommodate various groups of
users in this way.

Maps  Interactive visualization of chemical space is
available under the “Maps” menu item. The menu sepa-
rates the creation of the chemical space visualization, the
“Creator” page (Fig. 8), and its exploration, the “Explorer”
page (Fig. 9).

The “Creator” page is implemented as a grid of cards
each of which represents an embedding of chemical
compounds in 2D space (Fig. 8). Implicitly, the GenUI
platform enables t-SNE [74] embedding (provided by
openTSNE [75]). However, new projection methods
can be easily added to the backend through the GenUI
Python API with no need to modify the GUI (see “14”)
[76].

The purpose of the “Explorer” page (Fig. 9) is to inter-
actively visualize chemical space embedding prepared
in the “Creator”. In the created visualization, users can
explore compound bioactivities, physicochemical prop-
erties, and other measurements for various representa-
tions and parts of chemical space. Thanks to ChemSpace.
js [72] up to 5 dimensions can be shown in the map at
the same time with various visualization methods: X and
Y coordinates, point color, point size and point shape.
The map can be zoomed in by drawing a rectangle over

Fig. 8  The “Creator” interface of GenUI “Maps” page. On the left a form to create a new t-SNE [74] mapping of two sets of compounds using Morgan
fingerprints is shown while information about an existing map can be seen on the right

Page 9 of 17Sicho et al. J Cheminform (2021) 13:73 	

Fig. 9  A screenshot showing the “Explorer” part of the “Maps” GUI. The interactive plot on the left side of the screen is provided by the ChemSpace.
js library [72]. Each point in this visualization corresponds to one molecule. In this particular configuration, the shapes and colors of the points
indicate the compound set to which the compounds belong to. The color scheme of points can be changed with the menu in the top left corner of
the plot. It is possible to color points by biological activities, physicochemical properties and other data associated with the compounds. The same
can also be done with the size of the points. The points drawn in the map are interactive and hovering over a point shows a box with information
about the compound inside and on the right side of the map. Groups of points can also be selected by drawing a rectangle over them in which
case a list of selected compounds is shown in the “Selection List” tab (Fig. 10) and their bioactivity data is summarized under the “Selection Activities”
tab (Fig. 11)

Fig. 10  View of the “Selected List” tab of the “Explorer” page. The tab shows the selected molecules in the map as a list which is the same as the one
used in the “Compounds” view (Fig. 4). For easier navigation, the compounds are also grouped by the compound set they belong to and the view
for each set can be accessed by switching tabs above the displayed list (only one compound set, CHEMBL251, is present in this case)

Page 10 of 17Sicho et al. J Cheminform (2021) 13:73

a group of points. Such points form a selection and their
detailed information is displayed under the “Selected
List” (Fig. 10) and “Selected Activities” tabs (Fig. 11).

JavaScript API
Two main considerations in the development of GenUI
are reusability and extensibility. Therefore, the frontend
GUI comprises a large library of over 50 React compo-
nents that are encapsulated in a standalone package
(Fig. 12A). The package is organized into subpackages
that follow the structure and hierarchy of design ele-
ments in the GenUI interface. In the following sections,
we use the two most important groups of the React API
components as case studies to illustrate how the frontend
GUI can be extended. The presented components are
“Model Components”, used to add new trainable mod-
els, and “REST API Components”, used to fetch and send
data between the frontend and the GenUI REST API.

Model components  Much of the functionality of the
GenUI platform is based on trained models. The “QSAR
Models”, “DrugEx” and “Maps” pages all borrow from
the same library of reusable GenUI React components
(Fig. 12A). At the core of the “models” component library
(Fig. 12A) is the ModelsPage component (Fig. 13). Mod-
elsPage manages the layout and data displayed in model
cards. When the users select to build a new model, the
ModelsPage component is also responsible to show a card
with the model creation form. The information that the

ModelsPage displays can be customized through various
React properties (Fig. 13) that represent either data (data
properties) or other components (component properties).
Such an encapsulation approach and top-down data flow
is one of the main strengths of the React framework. This
design is very robust since it fosters appropriate separa-
tion of concerns by their encapsulation inside more and
more specialized components. This makes the code easy
to reuse and maintain.

REST API components  Because the GUI often needs to
fetch data from the backend server, several React compo-
nents were defined for that purpose. In order to use them,
one just needs to provide the required REST API URLs
as React component properties. For example, the Com-
ponentWithResources component configured with the ‘/
maps/algorithms/’ URL will get all available embedding
methods as JSON (JavaScript Object Notation) and con-
verts the result to a JavaScript object. Many components
can also periodically update the fetched data, which is
useful for tracking information in real time. For paginated
data there is also the ApiResourcePaginator component
that only fetches a new page if a given event is fired (i.e.
user presses a button). This makes it convenient to create
efficient GUIs for larger data sets. In addition, user cre-
dentials are also handed over to the server automatically
in all of these components.

Many more specialized components are also avail-
able to fetch specific information. For example, the

Fig. 11  View of the “Selection Activities” tab of the “Explorer” page. In this view, violin plots representing distributions of activities in the set of
selected compounds are displayed. Each violin plot corresponds to one compound set and one activity type. The violin plots are also interactive
and hovering over points updates the compound structure and its physicochemical properties are displayed on the right

Page 11 of 17Sicho et al. J Cheminform (2021) 13:73 	

Fig. 12  Organization of the GenUI frontend (A) and backend (B) packages. The frontend React library (A) contains customized styles, utility
functions and the React components used in the GenUI web client. The React components are further divided into groups related to the structure
of the GenUI interface. Schematic depiction of the GenUI backend Python code. The backend (B) is structured as a standard Django project
(designated by its settings package and the urls and wsgi modules). The GenUI code itself is divided into a number of root packages that are further
divided into subpackages. The extensions subpackage is specific to GenUI and is used to automatically discover and configure extension modules.
GenUI extensions and packages typically define the genuisetup module, which is used to configure the extension when the Django project is run

Fig. 13  A simplified illustration of the high-level components in the GenUI React API for rendering model cards. The main ModelsPage component
has two kinds of attributes (called “properties” in React): (a) data properties and (b) component properties. The values of data properties are used to
display model data while the values of component properties are used as child components and injected into the GUI at appropriate places. If no
component property is specified, default components are used as children instead (i.e. ModelCard and NewModelCard). The child components can
accept data and component properties as well from their parent (i.e. ModelsPage). This creates a hierarchy of reusable components that can be
easily assembled and configured to accommodate the different needs of each model view in a standardized and consistent manner

Page 12 of 17Sicho et al. J Cheminform (2021) 13:73

TaskAwareComponent tracks URLs associated with back-
ground asynchronous tasks and it regularly passes infor-
mation about completed, running, or failed tasks to its
child components. However, other specialized compo-
nents exist that automatically fetch and format pictures
of molecules, bioactivities, physicochemical properties or
create, update and delete objects in the UI and the server
[62].

Backend
The backend services are the core of the GenUI plat-
form and the GenUI Python API provides a convenient
way to write backend extensions (i.e. add new molecular
generators, compound import filters, QSAR modeling
algorithms, and dimensionality reduction methods for
chemical space maps). All five backend services (Fig. 2)
are implemented with the Django web framework [77]
and Django REST Framework [78]. For data storage, a
freely available Docker [66] image developed by Infor-
matics Matters Ltd. [79] is used. The Docker image con-
tains an instance of the PostgreSQL database system with
integrated database cartridge from the RDKit chemin-
formatics framework [80]. The integration of RDKit with
the Django web framework is handled with the Django
RDKit library [81]. All compounds imported in the data-
base are automatically standardized with the current ver-
sion of the ChEMBL structure curation pipeline [82].

Because the backend services also handle processing
of long-running and computationally intensive tasks,
the framework uses Celery distributed task queue [83]
with Redis as a message broker [84] to dispatch them to
workers. Celery workers are processes running in the
background that consume tasks from the task queue and
process them asynchronously. Workers can either run on
the same machine as the backend services or they can
be distributed over an infrastructure of computers (see
“24”).

Python API
Django is a web framework that utilizes the Model View
Template (MVT) design pattern to handle web requests
and draw web pages. MVT is similar to the well-known
Model View Controller (MVC) design pattern, but with-
out a dedicated controller that determines what view
needs to be called in response to a request. In MVT,
the framework itself plays the role of the controller and
makes sure that the correct view is called upon receiv-
ing a web request. In Django, the view is represented by
a Python function or a method that returns various data
types based on the nature of the request. The view can
also take advantage of the Django templating engine to
dynamically generate HTML pages. In both MVC and
MVT, the model plays a role of a data access layer. The

model represents the tables in the database and facilitates
search and other data operations. GenUI does not use the
Django templating engine, but rather handles all requests
via REST API endpoints that manipulate data in JSON.
This makes the frontend React application completely
decoupled from the backend and also enables other cli-
ents to access the GenUI data in a convenient way by
design (Fig. 2).

The GenUI backend codebase [63] follows the stand-
ard structure of any Django project and is divided into
multiple Python packages that each encapsulate smaller
self-contained parts (Fig. 12B). In GenUI, any package
that resides in the root directory is referred to as the root
package. Root packages facilitate many of the REST API
endpoints (Fig. 2), but they also contain reusable classes
that are intended to be built upon by extensions (see “17”,
for example). In the following sections, some important
features of the backend Python API are briefly high-
lighted. However, a much more detailed description with
code examples is available on the documentation page of
the project [76].

Extensions  Django is known for its strong focus on
modularity and extensibility and GenUI tries to follow
in its footsteps and support a flexible system of plugga-
ble applications. Each of the GenUI root packages con-
tains a Python package called extensions (Fig. 12B). The
extensions package can contain any number of Django
applications or Python modules, which ensures that the
extending components of the GenUI framework are well-
organized and loosely coupled.

Provided that GenUI extensions are structured a cer-
tain way they can take advantage of automatic con-
figuration and integration (see “16”). Before the Django
project is deployed, GenUI applications and extensions
are detected and configured with the genuisetup com-
mand, which makes sure that the associated REST API
endpoints are exposed under the correct URLs. The
genuisetup command is executed with the manage.py
script (a utility script provided by the Django library).

Automatic code discovery  The root packages of the
GenUI backend library define many abstract and generic
base classes to implement and reuse in extensions. These
classes either implement the REST API or define code to
be run on the worker nodes inside Celery tasks. Auto-
matic code discovery uses several introspection functions
and methods to find the derived classes of the base classes
found in the root packages. By default, this is done when
the genuisetup command is executed (see “15”).

For example, if the derived class defines a new machine
learning algorithm to be used in QSAR modelling, auto-
matic code discovery utilities make sure that the new

Page 13 of 17Sicho et al. J Cheminform (2021) 13:73 	

algorithm appears as a choice in the QSAR modelling
REST API and that proper parameter values are col-
lected via the endpoint to create the model. Moreover,
all changes also get automatically propagated to the
web-based GUI because it uses the REST API to obtain
algorithm choices for the model creation form. Thus,
no JavaScript code has to be written to integrate a new
machine learning algorithm. These concepts are also
used when adding molecular generators, dimensionality
reduction methods, or molecular descriptors.

Generic views and viewsets  When developing REST API
services with the Django REST Framework [78], a com-
mon practice is to use generic views and sets of views
(called viewsets). In Django applications, views are func-
tions or classes that handle incoming HTTP requests.
Viewsets are classes defined by the Django REST Frame-
work that bring functionality of several views (such as
creation, update or deletion of objects) into one single
class. Generic views and viewsets are classes that usually
do not stand on their own, but are designed to be further
extended and customized.

The GenUI Python library embraces this philoso-
phy and many REST API endpoints are encapsulated in
generic views or viewsets. This ensures that the function-
ality can be reused and that no code needs to be written
twice, as stated by the well-known DRY (“Don’t Repeat
Yourself”) principle [85]. An example of such a generic
approach is the ModelViewSet class that handles the
endpoints for retrieval and training of machine learn-
ing models. This viewset is used by the qsar and maps
applications, but also by the DrugEx extension. All these
applications depend on some form of a machine learning
model so they can take advantage of this interface, which
automatically checks the validity of user inputs and sends
model training jobs to the task queue.

Asynchronous tasks  Many of the GenUI backend ser-
vices take advantage of asynchronous tasks which are
functions executed in the background without blocking
the main application. Moreover, tasks do not even have to
be executed on the same machine as the caller of the task,
which allows for a great deal of flexibility and scalability
(see “24”).

The Celery task queue [83] makes creating asynchro-
nous tasks as easy as defining a Python function [86].
In addition, some GenUI views already define their
own tasks and no explicit task definition is needed in
the derived views of the extensions. For example, the
compounds root package defines a generic viewset
that can be used to create and manage compound sets.
The import and creation of compounds belonging to
a new compound set is handled by implementing a

separate initializer class, which is passed to the appro-
priate generic viewset class [76]. The initialization of
a compound set can take a long time or may fail and,
thus, should be executed asynchronously. Therefore, the
viewset of the compounds application automatically exe-
cutes the methods of the initializer class asynchronously
with the help of an available Celery worker.

Integration of new features with the two APIs
While a few examples of integrating new features to
the GenUI platform have already been given for both
Python and JavaScript, in this section a brief overview
of all extensible features of the GenUI platform will be
given. The vast majority of the features implemented in
the reference platform presented in this work is realized
through the extension system introduced earlier (see
“15”). Extensions can use a wide selection of cheminfor-
matics and data analysis tools each with their own level
of complexity. Therefore, in this section we discuss the
ease/difficulty of implementing the most common exten-
sions and outline the problems the developers will face
when developing each type of extension on both frontend
and backend. All of the extensible use cases discussed
here are also described in the project documentation
with code examples [76].

Compounds import
Importing sets of compounds from various sources
may require different approaches and as a result differ-
ent kinds of interfaces. Therefore, the GenUI platform
was designed with more flexibility in mind in this case.
However, it also means that more configuration is needed
from the developer. Extending the GenUI backend is
accomplished by creating an extension application that
defines the REST API URLs of the extension as well as
views that will serve the defined URLs. GenUI provides
a generic viewset class that can be derived from to make
this process a matter of a few lines of code. The initial-
izer class that handles the import itself also needs to
be implemented by the developer of the extension, but
an already prepared initializer base class is available in
GenUI as well. Among other things, this base class also
handles molecule standardization and clean up which
ensures unified representation of chemical structures
across data sets. In the frontend API, there is a selection
of React components that can be used to build cards rep-
resenting imported compound sets. The cards need very
little configuration and automatically include metadata
and the list of compounds in the compound set.

QSAR models
The backend model integration API is designed to pro-
vide easy and fast integration of simple machine learning

Page 14 of 17Sicho et al. J Cheminform (2021) 13:73

algorithms even without the need to manually modify the
frontend GUI. Adding a QSAR model can be as simple
as adding a single class to the extension. The responsibil-
ity of this class is to use a machine learning algorithm to
train and serialize a model upon receiving training data
and predict unknown data from the deserialized model
when requested. This class is also annotated with meta-
data about the model to be displayed in the frontend
GUI. Therefore, in the simplest cases no URLs or cus-
tomized GUI components need to be defined. The GenUI
framework itself also performs cross-validation and inde-
pendent set validation and data preprocessing. However,
in many cases customized behavior, novel descriptor or
validation metrics implementations might be necessary
and in that case the developer may be required to define
new URLs, views and modeling strategies. However, also
in this case the GenUI platform attempts to make this
process easier by providing generic viewsets and loosely
coupled base class implementations that the developers
can take advantage of. In addition, the interface to define
molecular descriptors and validation metrics is designed
with reusability in mind and also exposes the imple-
mented features to other QSAR algorithms if needed.

Molecular generators
Molecular generators can be of various types and even
those based purely on DNNs are often of different archi-
tectures and take advantage of diverse software frame-
works. GenUI is designed in a fashion that is agnostic
to the type of algorithm used and it leaves preprocess-
ing of the training data (if any) and the generation of
output solely on the developer of the extension. GenUI
only defines the means to communicate data between the
framework and the generator code. This also means that
integration of a molecular generator requires more cus-
tomization, the extent of which largely depends on the
type of the generative algorithm used. The GenUI model
integration API that is used for integration of QSAR
models can also be used for integration of molecular gen-
erators based on DNNs and is used by the DrugEx exten-
sion. Therefore, integrating contemporary approaches
that are mostly based on DNNs should be easier thanks
to the possibility to follow the example of DrugEx as a
proof of concept. Generators may also have different
requirements on the information displayed in the GUI
and, thus, it is expected that the GUI will be customized
as well. However, if the generator takes advantage of the
GenUI model integration API, this process is significantly
simplified.

Chemical space maps
The dimensionality reduction methods used to create the
chemical space maps shown in the GenUI interface are

handled through the GenUI model integration API as
well. Therefore, integration of these approaches is han-
dled similarly to QSAR models and, thus, it comes with
the same set of requirements and assumptions. Imple-
menting a simple dimensionality reduction method will
likely not require any steps beyond the definition of the
one class that contains the implementing code and algo-
rithm metadata.

Deployment
Docker images
Since the GenUI platform consists of several components
with many dependencies and spans multiple program-
ming languages, it can be tedious to set up the whole pro-
ject on a new system. Docker makes deployment of larger
projects like this easier by encapsulating different parts of
the deployment environment inside Docker images [64–
66]. Docker images are simply downloaded and deployed
on the target system without the need to install any other
tools beside Docker. GenUI uses many official Docker
images available on the Docker image sharing platform
Docker Hub [87]. The PostgreSQL database with built-in
RDKit cartridge [79], Redis [79, 88] and the NGINX web
server [89, 90] are all obtained by this standard channel.
In addition, we defined the following images to support
the deployment of the GenUI platform itself [67]:

1.	 genui-main: Used to deploy both the frontend web
application and the backend services.

2.	 genui-worker: Deploys a basic Celery worker without
GPU support.

3.	 genui-gpuworker: Deploys a Celery worker with GPU
support. It is the same as the genui-worker, but it has
the NVIDIA CUDA Toolkit already installed.

The tools to build these images are freely available [67].
Therefore, developers can create images for extended
versions of the GenUI that fit the needs of their organi-
zations. In addition, the separation of the main applica-
tion (genui-main) from workers also allows distributed
deployment over multiple machines, which opens up
the possibility to create a scalable architecture that can
quickly accommodate teams of varying sizes.

Future directions
Although the GenUI framework already implements
much of the functionality needed to successfully inte-
grate most molecular generators, there are still many
aspects of the framework that can be improved and
the framework is under continuous development. For
instance, it would be beneficial if more sources of molec-
ular structures and bioactivity information are integrated
in the platform besides ChEMBL (i.e. PubChem [91],

Page 15 of 17Sicho et al. J Cheminform (2021) 13:73 	

ZINC [92], DrugBank [93], BindingDB [94] or Probes
and Drugs [95]). Currently, GenUI also lacks features to
perform effective similarity and substructure searches,
which we see as a crucial next step to improve the appeal
of the platform to medicinal chemists. The current ver-
sion of GenUI would also benefit from extending the
sets of descriptors, QSAR machine learning algorithms
and chemical space projections since the performance of
different methods can vary across data sets. Finally, the
question of synthesizability of the generated structures
should also be addressed and a system for predicting
chemical reactions and retrosynthetic pathways could
also be very useful to medicinal chemists if integrated in
the GUI (i.e. by facilitating connection to a service such
as the IBM RXN [96] or PostEra Manifold [97]).

Even though it is hard to determine the requirements
of every project where molecular generators might
be applied, many of the aforementioned features and
improvements can be readily implemented with the
GenUI React components (see “10”) and the Python API
(see “14”). In fact, the already presented extensions and
the DrugEx interface are useful case studies that can be
used as templates for integration of many other chemin-
formatics tools and de novo molecular generators. There-
fore, we see GenUI as a flexible and scalable framework
that can be used by organizations to quickly integrate
tools and data the way it suits their needs the most. How-
ever, we would also like GenUI to become a new useful
way to share the progress in the development of novel de
novo drug design methods and other cheminformatics
approaches in the public domain.

Conclusions
We implemented a full stack solution for integration of de
novo molecular generation techniques in a multidiscipli-
nary work environment. The proposed GenUI software
platform provides a GUI designed to be easily under-
stood by experts outside the cheminformatics domain,
but it also offers a feature-rich REST API for program-
matic access and straightforward integration with auto-
mated processes. The presented solution also provides
extensive Python and JavaScript extension APIs for easy
integration of new molecular generators and other chem-
informatics tools. We envision that the field of molecu-
lar generation will likely expand in the future and that
an open source software platform such as this one is a
crucial step towards more widespread adoption of novel
algorithms in drug discovery and related research. We
also believe that GenUI can facilitate more engagement
between different groups of users and inspire new direc-
tions in the field of de novo drug design.

Acknowledgements
XL thanks Chinese Scholarship Council (CSC) for funding. Computational
resources were supplied by the project "e-Infrastruktura CZ" (e-INFRA
LM2018140) provided within the program Projects of Large Research, Devel-
opment and Innovations Infrastructures.

Availability and requirements
Project name: GenUI; Project Home Page: https://​github.​com/​martin-​sicho/​
genui; operating system(s): Linux; programming language: Python, JavaScript;
other requirements: Docker 20.10.7 or higher; license: MIT license.

Authors’ contributions
GvW suggested the original idea of developing a graphical user interface for
a molecular generator and supervised the study along with DS. MŠ extended
the original idea and developed all software presented in this work. XL is the
author of DrugEx and helped with its integration as a proof of concept. MŠ
and XL also prepared the manuscript, which all authors proofread and agreed
on. All authors read and approved the final manuscript.

Funding
D.S. and M. Š. were supported by the Ministry of Education, Youth and Sports
of the Czech Republic (project number LM2018130). D. S. was further sup-
ported by RVO 68378050-KAV-NPUI.

Availability of data and materials
The complete GenUI codebase and documentation is distributed under the
MIT license and located in three repositories publicly accessible on GitHub:
https://​github.​com/​martin-​sicho/​genui (backend Python code); https://​
github.​com/​martin-​sicho/​genui-​gui (frontend React application); https://​
github.​com/​martin-​sicho/​genui-​docker (Docker files and deployment
scripts). A reference application that was described in this manuscript can be
deployed with Docker images that were uploaded to Docker Hub: https://​
hub.​docker.​com/u/​sichom. However, the images can also be built with the
available Docker files and scripts (archived at https://​doi.​org/​10.​5281/​zenodo.​
48136​25). The reference web application uses the following versions of the
GenUI software: 0.0.0-alpha.1 for the frontend React application (archived at
https://​doi.​org/​10.​5281/​zenodo.​48136​08); 0.0.0.alpha1 for the backend Python
application (archived at https://​doi.​org/​10.​5281/​zenodo.​48135​86).

Declarations

Competing interests
The authors declare that they have no competing interests.

Author details
1 CZ‑OPENSCREEN: National Infrastructure for Chemical Biology, Department
of Informatics and Chemistry, Faculty of Chemical Technology, University
of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech
Republic. 2 CZ‑OPENSCREEN: National Infrastructure for Chemical Biology, Insti-
tute of Molecular Genetics of the ASCR, v. v. i., Vídeňská 1083, 142 20 Prague 4,
Czech Republic. 3 Computational Drug Discovery, Drug Discovery and Safety,
Leiden Academic Centre for Drug Research, Einsteinweg 55, Leiden, The
Netherlands.

Received: 27 May 2021 Accepted: 5 September 2021

References
	1.	 Wang Y, Cheng T, Bryant SH (2017) PubChem BioAssay: a decade’s devel-

opment toward open high-throughput screening data sharing. SLAS
DISCOVERY Adv Sci Drug Discov 22(6):655–666

	2.	 Tetko IV, Engkvist O, Koch U, Reymond J-L, Chen H (2016) BIGCHEM:
challenges and opportunities for big data analysis in chemistry. Mol Inf
35(11–12):615–621

	3.	 Rifaioglu AS, Atas H, Martin MJ, Cetin-Atalay R, Atalay V, Doğan T (2019)
Recent applications of deep learning and machine intelligence on in
silico drug discovery: methods, tools and databases. Brief Bioinform
20(5):1878–1912

https://github.com/martin-sicho/genui
https://github.com/martin-sicho/genui
https://github.com/martin-sicho/genui
https://github.com/martin-sicho/genui-gui
https://github.com/martin-sicho/genui-gui
https://github.com/martin-sicho/genui-docker
https://github.com/martin-sicho/genui-docker
https://hub.docker.com/u/sichom
https://hub.docker.com/u/sichom
https://doi.org/10.5281/zenodo.4813625
https://doi.org/10.5281/zenodo.4813625
https://doi.org/10.5281/zenodo.4813608
https://doi.org/10.5281/zenodo.4813586

Page 16 of 17Sicho et al. J Cheminform (2021) 13:73

	4.	 Hoffmann T, Gastreich M (2019) The next level in chemical space naviga-
tion: going far beyond enumerable compound libraries. Drug Discov
Today 24(5):1148–1156

	5.	 Tetko IV, Engkvist O, Chen H (2016) Does ‘Big Data’ exist in medicinal
chemistry, and if so, how can it be harnessed? Future Med Chem
8(15):1801–1806

	6.	 Davies M, Nowotka M, Papadatos G, Dedman N, Gaulton A, Atkinson
F, Bellis L, Overington JP (2015) ChEMBL web services: streamlin-
ing access to drug discovery data and utilities. Nucleic Acids Res
43(W1):W612–W620

	7.	 Mendez D, Gaulton A, Bento AP, Chambers J, De Veij M, Félix E,
Magariños María P, Mosquera Juan F, Mutowo P, Nowotka M et al (2019)
ChEMBL: towards direct deposition of bioassay data. Nucleic Acids Res
47(D1):D930–D940

	8.	 Polishchuk PG, Madzhidov TI, Varnek A (2013) Estimation of the size of
drug-like chemical space based on GDB-17 data. J Comput Aided Mol
Des 27(8):675–679

	9.	 Drew KLM, Baiman H, Khwaounjoo P, Yu B, Reynisson J (2012) Size estima-
tion of chemical space: how big is it? J Pharm Pharmacol 64(4):490–495

	10.	 Walters WP, Stahl MT, Murcko MA (1998) Virtual screening—an overview.
Drug Discov Today 3(4):160–178

	11.	 Bohacek RS, McMartin C, Guida WC (1996) The art and practice of
structure-based drug design: a molecular modeling perspective. Med Res
Rev 16(1):3–50

	12.	 Lenselink EB, ten Dijke N, Bongers B, Papadatos G, van Vlijmen HWT,
Kowalczyk W, IJzerman AP, van Westen GJP (2017) Beyond the hype:
deep neural networks outperform established methods using a ChEMBL
bioactivity benchmark set. J Cheminform 9(1):45

	13.	 Liu X, IJzerman AP, van Westen GJP (2021) Computational approaches
for de novo drug design: past, present, and future. In: Cartwright H (ed)
Artificial neural networks. Springer, New York, pp 139–165

	14.	 Coley CW (2021) Defining and exploring chemical spaces. Trends Chem
3(2):133–145

	15.	 Opassi G, Gesù A, Massarotti A (2018) The Hitchhiker’s guide to the
chemical-biological galaxy. Drug Discov Today 23(3):565–574

	16.	 Muratov EN, Bajorath J, Sheridan RP, Tetko IV, Filimonov D, Poroikov V,
Oprea TI, Baskin II, Varnek A, Roitberg A et al (2020) QSAR without borders.
Chem Soc Rev 49(11):3525–3564

	17.	 Wang L, Ding J, Pan L, Cao D, Jiang H, Ding X (2019) Artificial intelligence
facilitates drug design in the big data era. Chemometr Intell Lab Syst
194:103850

	18.	 Schneider G, Clark DE (2019) Automated de novo drug design: are we
nearly there yet? Angew Chem Int Ed Engl 58(32):10792–10803

	19.	 Zhu H (2020) Big data and artificial intelligence modeling for drug discov-
ery. Annu Rev Pharmacol Toxicol 60(1):573–589

	20.	 Le TC, Winkler DA (2015) A bright future for evolutionary methods in drug
design. ChemMedChem 10(8):1296–1300

	21.	 Lavecchia A (2019) Deep learning in drug discovery: opportunities, chal-
lenges and future prospects. Drug Discov Today 24(10):2017–2032

	22.	 Schreiber SL, Kotz JD, Li M, Aubé J, Austin CP, Reed JC, Rosen H, White
EL, Sklar LA, Lindsley CW et al (2015) Advancing biological under-
standing and therapeutics discovery with small-molecule probes. Cell
161(6):1252–1265

	23.	 Bian Y, Xie X-Q (2021) Generative chemistry: drug discovery with deep
learning generative models. J Mol Model 27(3):71

	24.	 Zheng S, Lei Z, Ai H, Chen H, Deng D, Yang Y (2020) Deep scaffold hop-
ping with multi-modal transformer neural networks. Theor Comput
Chem. https://​doi.​org/​10.​26434/​chemr​xiv.​13011​767.​v1

	25.	 Stojanović L, Popović M, Tijanić N, Rakočević G, Kalinić M (2020) Improved
scaffold hopping in ligand-based virtual screening using neural represen-
tation learning. J Chem Inf Model 60(10):4629–4639

	26.	 Baskin II (2020) The power of deep learning to ligand-based novel drug
discovery. Expert Opin Drug Discov 15(7):755–764

	27.	 Elton DC, Boukouvalas Z, Fuge MD, Chung PW (2019) Deep learning for
molecular design—a review of the state of the art. Mol Syst Des Eng
4(4):828–849

	28.	 Xu Y, Lin K, Wang S, Wang L, Cai C, Song C, Lai L, Pei J (2019) Deep learn-
ing for molecular generation. Future Med Chem 11(6):567–597

	29.	 Jørgensen PB, Schmidt MN, Winther O (2018) Deep generative models for
molecular science. Mol Inform 37(1–2):1700133

	30.	 Gantzer P, Creton B, Nieto-Draghi C (2020) Inverse-QSPR for de novo
design: a review. Mol Inform 39(4):e1900087

	31.	 Yoshikawa N, Terayama K, Sumita M, Homma T, Oono K, Tsuda K (2018)
Population-based de novo molecule generation, using grammatical
evolution. Chem Lett 47(11):1431–1434

	32.	 Jensen JH (2019) A graph-based genetic algorithm and generative
model/Monte Carlo tree search for the exploration of chemical space.
Chem Sci 10(12):3567–3572

	33.	 Spiegel JO, Durrant JD (2020) AutoGrow4: an open-source genetic
algorithm for de novo drug design and lead optimization. J Cheminform
12(1):25

	34.	 Leguy J, Cauchy T, Glavatskikh M, Duval B, Da Mota B (2020) EvoMol: a
flexible and interpretable evolutionary algorithm for unbiased de novo
molecular generation. J Cheminform 12(1):55

	35.	 Hoksza D, Skoda P, Voršilák M, Svozil D (2014) Molpher: a software frame-
work for systematic chemical space exploration. J Cheminform 6(1):7

	36.	 Schneider G, Fechner U (2005) Computer-based de novo design of drug-
like molecules. Nat Rev Drug Discov 4(8):649–663

	37.	 Li X, Xu Y, Yao H, Lin K (2020) Chemical space exploration based on
recurrent neural networks: applications in discovering kinase inhibitors. J
Cheminform 12(1):42

	38.	 Grisoni F, Neuhaus CS, Hishinuma M, Gabernet G, Hiss JA, Kotera M,
Schneider G (2019) De novo design of anticancer peptides by ensemble
artificial neural networks. J Mol Model 25(5):112

	39.	 Wu J, Ma Y, Zhou H, Zhou L, Du S, Sun Y, Li W, Dong W, Wang R (2020)
Identification of protein tyrosine phosphatase 1B (PTP1B) inhibitors
through de novo evoluton, synthesis, biological evaluation and molecu-
lar dynamics simulation. Biochem Biophys Res Commun 526(1):273–280

	40.	 Polykovskiy D, Zhebrak A, Vetrov D, Ivanenkov Y, Aladinskiy V, Mamoshina
P, Bozdaganyan M, Aliper A, Zhavoronkov A, Kadurin A (2018) Entangled
conditional adversarial autoencoder for de novo drug discovery. Mol
Pharm 15(10):4398–4405

	41.	 Merk D, Friedrich L, Grisoni F, Schneider G (2018) De novo design of bio-
active small molecules by artificial intelligence. Mol Inf 37(1–2):1700153

	42.	 Putin E, Asadulaev A, Vanhaelen Q, Ivanenkov Y, Aladinskaya AV, Aliper A,
Zhavoronkov A (2018) Adversarial threshold neural computer for molecu-
lar de novo design. Mol Pharm 15(10):4386–4397

	43.	 Sumita M, Yang X, Ishihara S, Tamura R, Tsuda K (2018) Hunting for organic
molecules with artificial intelligence: molecules optimized for desired
excitation energies. ACS Cent Sci 4(9):1126–1133

	44.	 Zhavoronkov A, Ivanenkov YA, Aliper A, Veselov MS, Aladinskiy VA, Aladin-
skaya AV, Terentiev VA, Polykovskiy DA, Kuznetsov MD, Asadulaev A et al
(2019) Deep learning enables rapid identification of potent DDR1 kinase
inhibitors. Nat Biotechnol 37(9):1038–1040

	45.	 Sparkes A, Aubrey W, Byrne E, Clare A, Khan MN, Liakata M, Markham M,
Rowland J, Soldatova LN, Whelan KE et al (2010) Towards robot scientists
for autonomous scientific discovery. Autom Exp 2:1

	46.	 Coley CW, Eyke NS, Jensen KF (2020) Autonomous discovery in the chem-
ical sciences part i: progress. Angew Chem Int Ed 59(51):22858–22893

	47.	 Coley CW, Eyke NS, Jensen KF (2020) Autonomous discovery in the chem-
ical sciences part II: outlook. Angew Chem Int Ed 59(52):23414–23436

	48.	 Grisoni F, Huisman BJH, Button AL, Moret M, Atz K, Merk D, Schneider G
(2021) Combining generative artificial intelligence and on-chip synthesis
for de novo drug design. Sci Adv 7(24):eabg3338

	49.	 Henson AB, Gromski PS, Cronin L (2018) Designing algorithms to aid
discovery by chemical robots. ACS Cent Sci 4(7):793–804

	50.	 Dimitrov T, Kreisbeck C, Becker JS, Aspuru-Guzik A, Saikin SK (2019)
Autonomous molecular design: then and now. ACS Appl Mater Interfaces
11(28):24825–24836

	51.	 Schneider G (2018) Automating drug discovery. Nat Rev Drug Discov
17(2):97–113

	52.	 Willems H, De Cesco S, Svensson F (2020) Computational chemistry on a
budget: supporting drug discovery with limited resources. J Med Chem
63(18):10158–10169

	53.	 Chu Y, He X (2019) MoleGear: a java-based platform for evolutionary de
novo molecular design. Molecules 24(7):1444

	54.	 Douguet D (2010) e-LEA3D: a computational-aided drug design web
server. Nucleic Acids Res 38(suppl_2):W615–W621

	55.	 Pastor M, Gómez-Tamayo JC, Sanz F (2021) Flame: an open source
framework for model development, hosting, and usage in production
environments. J Cheminform 13(1):31

https://doi.org/10.26434/chemrxiv.13011767.v1

Page 17 of 17Sicho et al. J Cheminform (2021) 13:73 	

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research ? Choose BMC and benefit from: ? Choose BMC and benefit from:

	56.	 Green DVS, Pickett S, Luscombe C, Senger S, Marcus D, Meslamani J,
Brett D, Powell A, Masson J (2020) BRADSHAW: a system for automated
molecular design. J Comput Aided Mol Des 34(7):747–765

	57.	 Ivanenkov YA, Zhebrak A, Bezrukov D, Zagribelnyy B, Aladinskiy V, Polyko-
vskiy D, Putin E, Kamya P, Aliper A, Zhavoronkov A (2021) Chemistry42:
an AI-based platform for de novo molecular design. arXiv preprint arXiv:​
21010​9050

	58.	 Zhumagambetov R, Kazbek D, Shakipov M, Maksut D, Peshkov VA, Fazli S
(2020) cheML.io: an online database of ML-generated molecules. RSC Adv
10(73):45189–45198

	59.	 Griffen EJ, Dossetter AG, Leach AG (2020) Chemists: AI is here; unite to get
the benefits. J Med Chem 63(16):8695–8704

	60.	 Liu X, Ye K, van Vlijmen HWT, IJzerman AP, van Westen GJP (2019) An
exploration strategy improves the diversity of de novo ligands using
deep reinforcement learning: a case for the adenosine A2A receptor. J
Cheminform 11(1):35

	61.	 MIT License. https://​opens​ource.​org/​licen​ses/​MIT. Accessed 12 Mar 2021
	62.	 GenUI Frontend Application. By Šícho M. https://​github.​com/​martin-​

sicho/​genui-​gui. Accessed 12 Mar 2021
	63.	 GenUI Backend Application. https://​github.​com/​martin-​sicho/​genui.

Accessed 03 May 2020
	64.	 Merkel D (2014) Docker: lightweight Linux containers for consistent

development and deployment. Linux J 2014(239):2
	65.	 Cito J, Ferme V, Gall HC (2016) Using docker containers to improve repro-

ducibility in software and web engineering research. Web engineering
2016. Springer International Publishing, Cham, pp 609–612

	66.	 Docker. https://​github.​com/​docker/​docker-​ce. Accessed 03 May 2020
	67.	 GenUI Docker Files. By Šícho M. https://​github.​com/​martin-​sicho/​genui-​

docker. Accessed 03 May 2020
	68.	 React: A JavaScript library for building user interfaces. By Facebook I.

https://​react​js.​org/. Accessed 16 Dec 2020
	69.	 Vibe: a beautiful react.js dashboard build with Bootstrap 4. By Salas J.

https://​github.​com/​NiceD​ash/​Vibe. Accessed 03 May 2020
	70.	 Tétreault-Pinard ÉO (2019) Plotly JavaScript open source graphing library
	71.	 Chart.js: simple yet flexible JavaScript charting for designers & develop-

ers. https://​www.​chart​js.​org/. Accessed 03 May 2020
	72.	 ChemSpace JS. https://​opens​creen.​cz/​softw​are/​chems​pace/​home/.

Accessed 03 May 2020
	73.	 Schaduangrat N, Lampa S, Simeon S, Gleeson MP, Spjuth O, Nantasena-

mat C (2020) Towards reproducible computational drug discovery. J
Cheminform 12(1):9

	74.	 van der Maaten L, Hinton G (2008) Visualizing data using t-SNE. J Mach
Learn Res 9:2579–2605

	75.	 Poličar PG, Stražar M, Zupan B (2019) openTSNE: a modular Python library
for t-SNE dimensionality reduction and embedding. bioRxiv, p 731877

	76.	 GenUI Python Documentation. https://​martin-​sicho.​github.​io/​genui/​
docs/​index.​html. Accessed 12 Mar 2021

	77.	 Foundation DS (2019) Django (Version 2.2)

	78.	 Encode OSS L (2019) Django REST Framework
	79.	 Debian-based images containing PostgreSQL with the RDKit cartridge.

https://​hub.​docker.​com/r/​infor​matic​smatt​ers/​rdkit-​cartr​idge-​debian.
Accessed 03 May 2020

	80.	 RDKit: open-source cheminformatics toolkit. By http://​www.​rdkit.​org/.
Accessed 03 May 2020

	81.	 Django RDKit. https://​github.​com/​rdkit/​django-​rdkit. Accessed 03 May
2020

	82.	 Bento AP, Hersey A, Félix E, Landrum G, Gaulton A, Atkinson F, Bellis LJ,
De Veij M, Leach AR (2020) An open source chemical structure curation
pipeline using RDKit. J Cheminform 12(1):51

	83.	 CELERY: Distributed Task Queue. https://​github.​com/​celery/​celery.
Accessed 03 May 2020

	84.	 Redis: in-memory data structure store. By https://​github.​com/​redis/​redis.
Accessed 03 May 2020

	85.	 Hunt A, Thomas D (2000) The pragmatic programmer: from journeyman
to master. Addison-Wesley Longman Publishing Co. Inc, Boston

	86.	 Celery: get started. https://​docs.​celer​yproj​ect.​org/​en/​stable/​getti​ng-​start​
ed/​intro​ducti​on.​html#​get-​start​ed. Accessed 16 Dec 2020

	87.	 Docker Hub. https://​hub.​docker.​com/. Accessed 16 Dec 2020
	88.	 Redis: Docker official images. By https://​hub.​docker.​com/_/​redis.

Accessed 03 May 2020
	89.	 NGINX web server. By https://​github.​com/​nginx/​nginx. Accessed 03 May

2020
	90.	 NGINX: official Docker images. By https://​hub.​docker.​com/_/​nginx.

Accessed 03 May 2020
	91.	 Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, Li Q, Shoemaker BA,

Thiessen PA, Yu B et al (2019) PubChem 2019 update: improved access to
chemical data. Nucleic Acids Res 47(D1):D1102–D1109

	92.	 Irwin JJ, Sterling T, Mysinger MM, Bolstad ES, Coleman RG (2012)
ZINC: a free tool to discover chemistry for biology. J Chem Inf Model
52(7):1757–1768

	93.	 Wishart DS, Knox C, Guo AC, Shrivastava S, Hassanali M, Stothard P, Chang
Z, Woolsey J (2006) DrugBank: a comprehensive resource for in silico drug
discovery and exploration. Nucleic Acids Res 34(suppl_1):D668–D672

	94.	 Gilson MK, Liu T, Baitaluk M, Nicola G, Hwang L, Chong J (2016) BindingDB
in 2015: a public database for medicinal chemistry, computational chem-
istry and systems pharmacology. Nucleic Acids Res 44(D1):D1045–D1053

	95.	 Skuta C, Popr M, Muller T, Jindrich J, Kahle M, Sedlak D, Svozil D, Bartunek
P (2017) Probes & drugs portal: an interactive, open data resource for
chemical biology. Nat Methods 14(8):759–760

	96.	 IBM RXN for Chemistry. https://​rxn.​res.​ibm.​com/. Accessed 12 Mar 2021
	97.	 PostEra Manifold. https://​poste​ra.​ai/​manif​old/. Accessed 12 Mar 2021

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

http://arxiv.org/abs/210109050
http://arxiv.org/abs/210109050
https://opensource.org/licenses/MIT
https://github.com/martin-sicho/genui-gui
https://github.com/martin-sicho/genui-gui
https://github.com/martin-sicho/genui
https://github.com/docker/docker-ce
https://github.com/martin-sicho/genui-docker
https://github.com/martin-sicho/genui-docker
https://reactjs.org/
https://github.com/NiceDash/Vibe
https://www.chartjs.org/
https://openscreen.cz/software/chemspace/home/
https://martin-sicho.github.io/genui/docs/index.html
https://martin-sicho.github.io/genui/docs/index.html
https://hub.docker.com/r/informaticsmatters/rdkit-cartridge-debian
http://www.rdkit.org/
https://github.com/rdkit/django-rdkit
https://github.com/celery/celery
https://github.com/redis/redis
https://docs.celeryproject.org/en/stable/getting-started/introduction.html#get-started
https://docs.celeryproject.org/en/stable/getting-started/introduction.html#get-started
https://hub.docker.com/
https://hub.docker.com/_/redis
https://github.com/nginx/nginx
https://hub.docker.com/_/nginx
https://rxn.res.ibm.com/
https://postera.ai/manifold/

	GenUI: interactive and extensible open source software platform for de novo molecular generation and cheminformatics
	Abstract
	Introduction
	Implementation
	Software architecture
	Frontend
	Graphical user interface (GUI)
	Projects
	Compounds
	QSAR models
	Generators
	Maps

	JavaScript API
	Model components
	REST API components

	Backend
	Python API
	Extensions
	Automatic code discovery
	Generic views and viewsets
	Asynchronous tasks

	Integration of new features with the two APIs
	Compounds import
	QSAR models
	Molecular generators
	Chemical space maps

	Deployment
	Docker images

	Future directions

	Conclusions
	Acknowledgements
	References

