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Abstract 

In recent years, individual and collective human intelligence, defined as the knowledge, skills, reasoning and intui-
tion of individuals and groups, have been used in combination with computer algorithms to solve complex scientific 
problems. Such approach was successfully used in different research fields such as: structural biology, comparative 
genomics, macromolecular crystallography and RNA design. Herein we describe an attempt to use a similar approach 
in small-molecule drug discovery, specifically to drive search strategies of de novo drug design. This is assessed with 
a case study that consists of a series of public experiments in which participants had to explore the huge chemical 
space in silico to find predefined compounds by designing molecules and analyzing the score associate with them. 
Such a process may be seen as an instantaneous surrogate of the classical design-make-test cycles carried out by 
medicinal chemists during the drug discovery hit to lead phase but not hindered by long synthesis and testing times. 
We present first findings on (1) assessing human intelligence in chemical space exploration, (2) comparing individual 
and collective human intelligence performance in this task and (3) contrasting some human and artificial intelligence 
achievements in de novo drug design.
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Introduction
In the last decade, different citizen science initiatives 
have been promoted to solve complex scientific problems 
using crowdsourcing and gamification [1–3]. To achieve 
its objectives, these initiatives make use of individual and 
collective human intelligence, defined as the knowledge, 
skills, reasoning and intuition of individuals and groups. 
Probably the most known projects of this type, developed 
as on-line video games, are: Foldit, Phylo, CrowdPhase, 
Udock and EteRNA. Foldit predicts protein structures 
[4–7] and deals with de novo protein design [8]; Phylo [9] 
answers multiple sequence alignment questions of com-
parative genomics; CrowdPhase [10, 11] addresses ab ini-
tio phasing issues of macromolecular crystallography; 
Udock [12, 13] tackles protein–protein docking puzzles 

and EteRNA [14, 15] solves in  vitro RNA design prob-
lems. The commonality of these approaches is that they 
address complex problems with many degrees of freedom 
where computational approaches struggle to find optimal 
solutions between the huge number of possible ones.

In the field of small-molecule drug discovery a prob-
lem of this type is represented by the drug design pro-
cess. Actually, designing an ideal drug corresponds to 
finding an optimal molecule in the chemical space. This 
is an extremely hard task inter alia because the chemical 
space is huge and finding a specific molecule therein is a 
needle-in-a-haystack problem.

The chemical space, defined as that abstract entity 
containing the sum of all drug-like small-molecules, is 
awfully large. A rigorous method to estimate its extent 
doesn’t exist. The probably most cited size is 1060 differ-
ent molecules, whereas the real number should be some-
where between 1023 and 10180 [16–22]. What extent of 
the chemical space has already been explored? To date: 
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108 molecules have been already synthesized1,  2; 1011 
molecules constitute the largest systematic enumera-
tion of all the synthetically accessible molecules up to 17 
atoms [23]; and 1013 synthetically accessible molecules 
can be virtually screened [24]. Although reaching such 
amounts constitutes certainly a great achievement, this 
is almost insignificant in respect to the total number of 
possible molecules.

An efficacious way to explore and exploit the chemical 
space without the need of enumerating huge amounts of 
molecules is using de novo molecular designers. These 
are automatic in silico techniques that create molecules 
from scratch, optimizing certain previously defined 
requirements (i.e. molecular properties) [25]. Any de 
novo designer is composed of three elements: a scoring 
strategy, the method with which molecules are evalu-
ated; an assembly strategy, the approach with which 
molecules are built; and a search strategy, the technique 
with which molecules are searched in the chemical 
space [26]. Many automatic de novo systems have been 
designed, implemented and tested since almost three 
decades. They use different scoring strategies (i.e. struc-
ture-based [27–29], ligand-based [30, 31]; both coupled 
with single- and multi-objective optimization approaches 
[32, 33]), assembly strategies (e.g. atom/bond-based, 
fragment-based, reaction-based) and search strategies 
(e.g. Machine Learning [34–39], Genetic Algorithms [30, 
40–42]). Although several of these methods have shown 
promising results, their validation has not been consist-
ent. To solve this problem a suite of benchmarks for de 
novo molecular design has been recently proposed [43].⁠

The three constitutional elements of de novo designers 
(i.e. search, assembly and scoring strategies) are not spe-
cific of the in silico approach but are general character-
istics of the molecule design process. Actually, the same 
components are part of the classical design-make-test 
optimization cycles used by medicinal chemists in drug 
discovery with which initial hit molecules are optimized 
to leads. Indeed de novo designers carry out virtual 
design-make-test cycles in silico.

Until today only timid attempts have been made to 
address drug design using crowdsourcing. Recently some 
trials were done by integrating many experts in order 
to: enhance chemical libraries through the “wisdom of 
crowds” [44], model molecular complexity from a crowd-
sourced medicinal chemist perspective [45], predict 
solubility in place of machines [46], and assess quality of 

molecules generated by automatic algorithms in Turing-
inspired tests [47]. All such activities are related to scor-
ing strategies of de novo drug design but no endeavor has 
been made (as far as we know) to deal with the other two 
elements: the assembly and the search strategies.

Herein we describe an attempt to use individual and 
collective human intelligence as search strategies of de 
novo drug design and quantify their performance. To 
our knowledge this is the first time that artificial intel-
ligence is substituted by human intelligence in an in sil-
ico, de novo drug design process. The authors are aware 
that the term “artificial intelligence” is vague and some-
times misused. However, in this work we have chosen 
to use this term as a generalization of any computa-
tional-based approach that involves a learning activ-
ity (e.g. machine learning, genetic algorithms). This 
was also done to highlight the juxtaposition between 
human and artificial intelligences, 2 fundamentally dif-
ferent phenomena.

The case study consisted of a series of public experi-
ments addressed to the scientific community where 
each participant had to explore the chemical space both 
individually and collectively. From a practical point of 
view, each participant had to draw and modify molecu-
lar structures in a web application in order to maximize 
a score. Thereby, they had to start the chemical space 
exploration from scratch, meaning from a single car-
bon atom, which could be extended and modified to 
nearly any molecular structure. Each change of structure 
resulted in a new score. Drawn molecules were saved 
with their score and could be selected for further modi-
fications by the users. The final objective for participants 
was to maximize the score.

Participants of this case study engaged in 2 types of 
experiments: individual and collective ones. The main 
difference between these 2 experiment types is that while 
in the individual experiment a participant can access and 
modify only her/his molecules, in the collective one she/
he can do so with the molecules of all participants, mak-
ing the search collective.

As the first study or its kind, we used a molecular 
similarity function as a score for the chemical space 
exploration. This is a typical first step before using more 
complex, multi-objective functions (e.g. constituted by 
different machine learning models) that are more suitable 
for drug discovery programs. In fact molecular similar-
ity is a surrogate for machine learning models and has 
two big advantages: on one side it is easily interpret-
able; and on the other side the successful design of the 
predefined target molecule, towards which the similarity 
functions achieve their maximum, can be unequivocally 
determined.

1  As 26/03/2021 PubChem contains 109,816,593 compounds. https://​www.​
ncbi.​nlm.​nih.​gov/​pccom​pound?​term=​all%​5Bfilt%​5D&​cmd=​search.
2  As 26/03/2021 CAS registry contains more than 180 million unique 
organic and inorganic chemical substances (https://​www.​cas.​org/​suppo​rt/​
docum​entat​ion/​chemi​cal-​subst​ances).

https://www.ncbi.nlm.nih.gov/pccompound?term=all%5Bfilt%5D&cmd=search
https://www.ncbi.nlm.nih.gov/pccompound?term=all%5Bfilt%5D&cmd=search
https://www.cas.org/support/documentation/chemical-substances
https://www.cas.org/support/documentation/chemical-substances
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The final objectives of this case study were:

1)	 Assess human intelligence in chemical space explora-
tion problems

2)	 Compare individual vs collective human intelligence 
performances in molecule design

3)	 Contrast human intelligence with artificial intelli-
gence results obtained in de novo drug design

Methods
This section describes the methodology used to design, 
carry out and analyze this case study. Details about the 
software application used for the study and its implemen-
tation are reported in Additional file 1.

Experiment settings and circumstances
The case study3 consisted of a series of public experi-
ments where each participant should find a specific, 
predefined target molecule in the chemical space. This 
was supposed to be done by designing molecules from 
scratch, following a molecular score that indicates how 
close the solution is. Participants were invited to engage 
in two experiments: an individual design and a collective 
design experiment. In the first one they searched the tar-
get molecule individually by competing with other par-
ticipants, while in the second one they did it collectively 
by collaborating amongst each other.

The scientific community was invited to take part in 
this case study through social networks (i.e. Twitter, 
LinkedIn). A web-based application, which is further 
described in Additional file 1, was developed for this case 
study. Before being invited to the experiments, partici-
pants were asked to create an account on our application 
and undertake simple learning steps in the Sandbox, the 
application area where one can learn how to draw, save 
and access molecules. Participants that fulfilled the Sand-
box requirements were consecutively invited to an indi-
vidual and a collective design experiment. The beginning 
of an experiment was scheduled only once at least 10 par-
ticipants were available. At least 24 h before the experi-
ment started, the participants were notified by an e-mail 
system which is described in Additional file 1. Different 
experiments could be launched and run at the same time 
by randomly selecting participants between those who 
fulfilled the Sandbox requirements. The duration of each 
experiment was set to the first occurring event, being 
either the discovery of the target molecule or a time limit 
of 2 weeks. None of the participants was involved simul-
taneously in the two experiments associated to them.

Collective but also individual design experiments were 
run with groups of people for two main reasons. First, 
the settings of the two experiment types were supposed 
to be maintained as similar as possible. Second, in this 
way participants had access to the experiment common 
ranking that worked as a motivation factor to drive the 
molecular search.

From a practical point of view, the main difference 
between an individual and a collective design experi-
ment is that while in the former a participant has only 
access to the molecules generated by her/himself, in the 
latter she/he has access at any moment to all the mole-
cules generated by all the participants of the experiment, 
dynamically.

The target molecules
In order to assess the human capacity of exploring the 
chemical space but also compare it to that of automatic 
de novo methods, five benchmarks were selected from a 
recently published benchmark suite [43] for de novo drug 
design. As explained in "Comparison with automatic de 
novo designers" section, these benchmarks are based on 
five target molecules of five different complexity levels. 
For each of these complexity levels, one individual and 
one collective design experiment were planned, resulting 
in a total of 10 experiments.

Nevertheless, using the published target molecules of 
the five selected benchmarks with humans may bring 
to potential disputes. First, participants of the experi-
ments may be aware of such benchmarks and the target 
molecules used therein. Second, using exactly the same 
target molecule for one individual and one collective 
design experiment may be questionable, as participants 
of the first experiment may be in contact with partici-
pants of the second and could reveal the identity of the 
target molecules ahead of time. Third, as the target mol-
ecules of such benchmarks are approved drugs, they may 
be known by participants. To overcome such problems 
while ensuring the validity of the comparison with the 
benchmarks, 10 complexity-equivalent molecules were 
selected from ChEMBL database [48–52] between com-
pounds that didn’t reach clinical phases.

The choice of such target molecules was dictated by 
2 contrasting and opposite necessities. On one side the 
target molecules should represent pharmacology-rele-
vant compounds, typical of the biological active space, 
that have already been synthesized and their utility have 
been experimentally proven. This would suggest to use 
approved drugs or at least investigational compounds 
that have reached the clinical development phase. On 
the other side the target molecules should be unknown 
to the participants. This would imply to use completely 
virtual, non-existing molecules that potentially can 3  http://​molom​ics.​com/​explo​re.

http://molomics.com/explore
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be synthetically unaccessible. Our choice represents a 
trade-off between such contrasting cases. Indeed, select-
ing synthesized (i.e. non-virtual) compounds, typical of 
the pre-clinical, biologically active space maximizes the 
pharmacological relevance of the compounds while mini-
mizing the probability that the participants know them.

To ensure the complexity equivalence between the cho-
sen molecules and those used in original benchmarks, 
the following parameters were set to be the same: num-
ber of heavy atoms, number of aliphatic and aromatic 
rings, molecular fingerprints cardinality (i.e. the number 
of bits with a non-zero count in the molecular finger-
prints) and the number of molecular fingerprints (i.e. the 
sum of all the individual fingerprints count). In this way, 
both a size- and complexity-equivalence were warranted. 
Target molecule complexity level is defined on the basis 
of fingerprints cardinality.

The original benchmark molecules and complexity-
equivalent ones are shown in Table 1. Possible criticism 
about the design of the experiments is discussed in Addi-
tional file 1. The target molecules structures are provided 
in SMILES format in Additional file 2.

Molecular score
Every molecule designed in the system by participants 
was associated to a single-value molecular score. In all 
the experiments this score corresponded to the Tani-
moto similarity [53] towards its target molecule, linearly 
normalized in the 0–1000 range. The similarity was cal-
culated using 1024-hashed, count-based, diameter-4, 
extended connectivity fingerprints (i.e. ECFC4_1024 
[54]) as implemented in CDK [55–58] (version 1.5.13). 
The choice of such fingerprints was motivated by 2 main 
reasons. First, they represent regularly used, general 
purpose molecular fingerprints. Second, these finger-
prints are the same used by the selected benchmarks. 
It has to be noted that such information was not shared 
with participants. The only two things they knew about 
the molecular score were its range and the fact that the 
higher the score, the closer the target molecule. The same 
molecular score but not normalized in the 0–1000 range 
was used for de novo design benchmarks comparison.

Experiment data, scoring and analysis
Each molecule created in the system may have been 
drawn starting from scratch or from another molecule 
already in the system. For each created molecule, the fol-
lowing information was stored inter alia: its structure, 
its score, its creator, its date and time of creation and the 
molecule from which it derived (if any). With this infor-
mation it was possible to calculate different parameters 
to do a complete analysis of the experiments.

•	 Maximum score reached The principal parameter 
used for the analysis is the maximum score reached 
in an experiment, represented by the top-1 molecular 
score calculated as explained in section  "Molecular 
score". The maximum score reached is a measure of 
the efficacy achieved in an experiment.

•	 Number of generated molecules An interesting 
parameter for evaluating the efficiency reached in 
experiments is the number of generated molecules. 
This corresponds to the number of unique molecules 
that are generated (and hence tested) to reach the 
final results. Uniqueness of molecules is calculated 
on basis of InChIKey, the hashed code derived from 
the standard InChI [59], the IUPAC International 
Chemical Identifier.

•	 Time played Another interesting parameter to evalu-
ate the efficiency achieved in experiments is the time 
played, that is the total time spent by participants 
in designing molecules. Time played is computed 
considering the sum of the time frames between all 
the molecules designed by a participant. To avoid 
accounting for idle times, frames greater than 1 min 
were omitted.

•	 Scaffold/molecule ratio It is a parameter that can give 
information about how focused the molecular search 
is. This is the ratio between the number of unique 
molecules and unique scaffolds generated during 
one experiment. Scaffolds were defined according to 
Murko’s definition [60] as calculated by RDKit.4

•	 Number of molecule evolution steps Participants gen-
erate molecules in different design sessions, mean-
ing at different moments of time. A design session 
includes all the molecules that are generated start-
ing from scratch or from a certain molecule already 
in the system. The number of molecule evolution 
steps corresponds to the number of different design 
sessions needed for a certain molecule to be created. 
This is a particularly important and useful parameter 
for eventually found target molecules.

•	 Collaboration degree It is defined as the percentage of 
experiment participants that are involved in the crea-
tion of a certain molecule. It is a particularly impor-
tant and useful parameter for eventually found target 
molecules.

•	 Leader changes It is the number of times a new leader 
was recorded during an experiment, representing the 
events when a new participant overtakes the current 
highest score and search front.

4  RDKit: Open-source cheminformatics. http://​www.​rdkit.​org.

http://www.rdkit.org


Page 5 of 16Cincilla et al. J Cheminform           (2021) 13:80 	

Table 1  Target molecules of the selected benchmarks and their corresponding complexity-equivalent target molecules used in this 
case study

For each complexity level, the common complexity features of the target molecules are reported. “Cardinality” is the number of bits with a non-zero count in the 
fingerprints of target molecules, while “# fingerprints” is the sum of all individual counts

Complexity 
level

Complexity features Benchmark target molecule Individual experiments target 
molecule

Collective experiments target 
molecule

L1 # heavy atoms: 17
# aliphatic rings: 0
# aromatic rings: 1
cardinality: 33
# fingerprints: 45

 
Albuterol

 
T8
(CHEMBL460262)

 
T9
(CHEMBL1159712)

L2 # heavy atoms: 26
# aliphatic rings: 0
# aromatic rings: 3
cardinality: 41
# fingerprints: 71

 
Celecoxib  

T13
(CHEMBL1566732)

 
T32
(CHEMBL461573)

L3 # heavy atoms: 30
# aliphatic rings: 2
# aromatic rings: 2
cardinality: 51
# fingerprints: 85

 
Thiothixene

T15
(CHEMBL1352527)

T14
(CHEMBL1259158)

L4 # heavy atoms: 30
# aliphatic rings: 2
# aromatic rings: 2
cardinality: 53
# fingerprints: 87  

Aripiprazole

 
T19
(CHEMBL370628)

 
T20
(CHEMBL554907)

L5 # heavy atoms: 31
# aliphatic rings: 2
# aromatic rings: 2
cardinality: 54
# fingerprints: 86

 
Troglitazone

 
T45
(CHEMBL2098358)

 
T44
(CHEMBL1529981)
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Comparison with automatic de novo designers
In order to compare molecule design driven by human 
intelligence with that guided by artificial intelligence 
(i.e. de novo designers), this case study was oriented 
on GuacaMol [43], a recently published benchmark 
suite for de novo molecular design. There, two types 
of benchmarks are proposed. First, the distribution-
learning benchmarks that evaluate whether a specific 
method can reproduce the distribution of a certain 
molecule set. Second, the goal-directed benchmarks 
that evaluate whether a specific method can gener-
ate individual molecules with predefined features (i.e. 
molecules can be scored individually). The use of Gua-
caMol goal-directed benchmarks allows to compare 
the molecular search strategy of humans with that of 
some recent de novo designers considered state-of-
the-art in the field. These systems represent a variety 
of searching methods as: genetic algorithms (GA) [61], 
Long-Short Term Memory recurrent neural networks 
(LSTM) [62] and Monte Carlo Tree Search (MCTS) 
[63] applied to two molecular representations: graph-
based and SMILES-based [64, 65]. In total the follow-
ing five baseline models are considered in GuacaMol 
for goal-directed benchmark: smiles_ga [66], graph_ga 
[42], graph_mcts [42], smiles_lstm [38] and best_of_
dataset. Where: the first four are named after the used 
molecular representation and the used searching algo-
rithm type, while the fifth is a database virtual screen-
ing. This last represents the minimal score and only 
de novo search strategies that score higher have an 
advantage over simple virtual screening.

The first five goal-directed benchmarks of GuacaMol 
were selected, consisting of the three rediscovery and 
the two similarity benchmarks reported in Table 2.

The aim of a rediscovery benchmark is to evaluate 
the rediscovery (i.e. re-design) of a single target mol-
ecule of interest, while that of a similarity benchmark 
is to evaluate the generation of many molecules that 
are closely related to a single target molecule. The 
scoring function used in the first case is the Tanimoto 
similarity [53] to the target molecule calculated using 
ECFC4 fingerprints, while the second one uses the 
same scoring function adjusted with a 0.75-threshold 

modifier. As described in the original publication [43], 
such modifier assigns a full score (i.e. 1.0) to values 
above a given threshold t (in this cases 0.75) while val-
ues smaller than t decrease linearly to zero. Finally, 
rediscovery benchmarks base their score on the top-1 
molecule generated during the design, while similarity 
ones on the top-1, top-10, top-100 molecules and their 
average.

Results and discussion
Participation
After the scientific community was called to engage in 
the case study as described in section  "Experiment set-
tings and circumstances", the participation results 
reported in Table 3 were obtained. A total of 118 partici-
pants completed the sign up process; 91 of them accessed 
the Sandbox, where they could learn the basics of the 
application; 71 completed the Sandbox requirements 
and were invited to the experiments; 46 took finally part 
in the experiments and 31 of them resulted to be very 
active, drawing more than 100 molecules each.

46 participants of the initial 118 who signed up (i.e. 
39%) engaged in the experiments but 71 out of 91 (78%) 
who accessed the Sandbox could correctly complete its 
requirements. This means that loss of participants in 
relation to the possible difficulty of using the application 
(i.e. 20) represents only 28% of all drop outs, highlight-
ing the ease of participating in the case study. The choice 
to demand the completion of the Sandbox requirements 
before letting the participants access the challenges 
allowed them to learn the basics of the application and 
practice with it without tampering with the data gener-
ated in the experiments.

Table 2  Benchmarks selected from GuacaMol [43]

“Scoring” refers to the number of top molecules considered in the score calculation

Benchmark name Benchmark type Scoring function Scoring

Celecoxib rediscovery Rediscovery sim(Celecoxib, ECFC4) Top-1

Troglitazone rediscovery Rediscovery sim(Troglitazone, ECFC4) Top-1

Thiothixene rediscovery Rediscovery sim(Thiothixene, ECFC4) Top-1

Aripiprazole similarity Similarity Thresholded(0.75) sim(Aripiprazole, ECFC4) Top-1, top-10, top-100

Albuterol similarity Similarity Thresholded(0.75) sim(Albuterol, ECFC4) Top-1, top-10, top-100

Table 3  Participation results

Event Participants

Sign up process completion 118

Sandbox access 91

Sandbox completion 71

Participation in challenges 46

High activity in challenges (> 100 drawn molecules) 31
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Each of the 71 participants that completed the Sand-
box requirements was invited to one individual and one 
collective experiment. The average invitation was 12 par-
ticipants per experiment while the average engagement 
(people who draw at least 1 molecule) was 7.

To achieve the highest number of participants, it was 
opted to keep participant profiling as basic as possible. 
The participants were asked for the following informa-
tion: their full name, their e-mail address, and if they 
studied chemistry/biotechnology/biology or a related 
discipline so that they feel comfortable in sketching 
molecular structures (condition for which participants 
were denoted here as “skilled participants”). Only eight 
non-skilled participants completed the sign up process, 
but none of them completed the Sandbox necessary to 
participate in the experiments. In order to achieve simi-
lar levels of human knowledge in the individual and 
collective settings, participants were invited to both 
experiment types. 83% of people who participated in the 
collective experiments also participated in the individual 
ones (see Additional file 1). Finally, it’s worth to mention 
that no single participant in collective experiments over-
performed compared to the others so that the hypothesis 
that a single participant drove the full collective experi-
ment could be excluded.

The case study successfully recruited dozens of active 
participants which allowed an acceptable analysis of the 
observed tendencies and behaviors. Although achiev-
ing hundreds or even thousands of active participants 
would certainly be favorable to obtain more statistically 
significant results, such ideal situation is very difficult to 
achieve. A first difficulty is getting into contact and moti-
vating enough skilled participants to enroll in and drive 
the experiments. In this respect even for very success-
ful scientific games as Foldit, that achieved thousands of 
sign-ups, most of the puzzles, comparable to our experi-
ments, were basically led by less than 10 people per puz-
zle (5 people being the median and 6 the mean) [4]. Such 
few participants were those who improved the experi-
ment score. Another difficulty, triggered to enable collec-
tive design dynamics, was that in our case people should 
participate synchronously in the experiments during at 
most 2 weeks.

Communication of these first results could, as in case 
of other scientific on-line games, raise the participation 
number in future challenges to further support the statis-
tical significance.

Finding the target molecules
In total, 10 different experiments were conducted to 
assess human search strategy in chemical space explora-
tion: five individual and five collective ones. Results are 
reported in Table 4.

The first very important result is that in several 
experiments participants were able to find the target 
molecule (i.e. score = 1000), that is one specific, prede-
fined molecule among the almost infinite possibilities 
in the huge chemical space. As far as we know, this is 
the first time that such a study, quantifying molecule 
search strategy of humans, is conducted. This result 
is particularly important considering the following 
circumstances:

1)	 Participants searched the chemical space from 
scratch by drawing molecules starting from a simple 
carbon atom.

2)	 As molecules are drawn and manipulated on an 
atom/bond level, participants had absolute freedom 
to potentially reach any organic drug-like molecule of 
the chemical space.

3)	 Participants searched the chemical space simply by 
following a single-value molecular score indicating 
how close they were to the target molecule. They 
didn’t receive any additional hint or information and 
had to build their own logic behind it.

Target molecules of five different complexity levels 
were searched. In individual design experiments, par-
ticipants could only find the most simple target molecule 
(i.e. T8). Anyway, in the cases of the two most complex 
targets (i.e. T19 & T45), they got close and reached scores 
of 931 and 802, corresponding to a Tanimoto molecular 
similarity of 0.931 and 0.802, respectively. In contrast, in 
collective design experiments participants could find the 
target molecule in all the cases.

The scoring function that should be followed in a real 
drug design program aiming to reach lead compounds 
would certainly be more complex than the simple simi-
larity function used in such experiments. Indeed it 
should consider not only the compounds capacity of 
interacting with the biological target of interest but also 
their pharmacokinetics (i.e. ADME) and toxicity (T) pro-
file, elements that can be predicted in silico by machine 
learning models. The choice of using a similarity func-
tion in this case study was dictated by two main reasons: 
(i) it is a surrogate for machine learning models and if a 
de novo molecular generator doesn’t work using similar-
ity functions, probably it will have difficulties in working 
with more complex functions (this is also why similarity 
functions are used as basic functions in de novo design 
benchmarking). (ii) the interpretation of the results is 
easy and the achievement of the target molecule can be 
unequivocally determined. Using a similarity function is 
therefore a useful first step to take before searching more 
complex scenarios which results have an undoubted 
intrinsic value.
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Individual vs collective molecule design
Experiment results are reported in Table 5.

The following observations can be made on the basis of 
the results:

1)	 Collective design seems more efficacious than individ-
ual design While in the five individual design experi-
ments the target molecule was found only in the sim-
plest case, all the five collective design experiments 

Table 4  Target and best (i.e. most similar) molecules designed by participants in individual and collective experiments

Complexity 
level

Individual design Collective design

Target molecule Best molecule achieved Target molecule Best molecule achieved

L1

 
T8

 
Score = 1000

 
T9

 
Score = 1000

L2

 
T13

 
Score = 722

 
T32

 
Score = 1000

L3

 
T15

 
Score = 605

 
T14

 
Score = 1000

L4

 
T19

 
Score = 931

 
T20

 
Score = 1000

L5

 
T45

 
Score = 802

 
T44

 
Score = 1000
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were successful. This suggests a higher efficacy of col-
lective molecule design in respect to individual one.

2)	 Collective design seems more efficient than individual 
design Collective design succeeded in finding the tar-
get molecule not only by generating (and hence test-
ing) less molecules but also by needing less playing 
time. There is just one case where the collective design 
generated more molecules and took more playing 
time than the individual one: the experiment target-
ing the most complex target molecule (i.e. complexity 
level L5). Nevertheless, as the individual search could 
not find the target molecule, it cannot be concluded 
that in this case individual design was more efficient.

3)	 Collective search is at least as broad as the individual 
one One concern about collective design may be that, 
given a certain number of molecules, it generates less 
scaffolds in respect to the individual design. This may 
happen as at any moment in time all participants may 
center their search around the best molecule (or cur-
rently few best molecules) so that fewer scaffolds are 
generated. This hypothesis seems to be incorrect as it 
only holds up in two out of five cases, which can be 
seen on basis of the scaffold-molecule ratio reported 
in Table 5.

4)	 Designing complexity Interestingly, the number of 
molecules needed by collective design to reach the 
target molecule does not correlate with its compu-
tationally estimated complexity. Similarly, in case of 
individual experiments the maximum score achieved 
does not inversely correlate with the target complex-
ity metrics as it could be expected. This may indicate 
that the designing complexity experienced by humans 
differs from the one computationally defined.

5)	 Collaboration The collaboration degree of target 
molecules in collective design experiments ranges 
from 50 to 100%, so at least half of the participants 
of an experiment helped to achieve a target molecule. 
Similarly, the percentage of participants who created 
forefront molecules in collective experiments ranges 
from 83.3% to 100% (see Additional file 1: Table S2). 
A forefront molecule is the top-1 scored molecule 
of an experiment at a certain moment in time. This 
highlights the shared effort of the participants made 
in collective experiments to search for target mole-
cules. In two of the four experiments where collective 
design was more efficacious than individual design, 
more leader changes are observed. Interestingly, the 
difference is particularly large in case of the two most 
complex targets (i.e. 15 vs 7 and 13 vs 3 for collec-
tive vs individual experiments with target molecule 
complexity level L4 and L5, respectively). It can be 
hypothesized that leader changes in collective design 
is beneficial for reaching the objective.

The evolution steps of the target molecule (defined in 
Methods) achieved in the five successful collective design 
experiments ranged from 9 to 29 while their collabora-
tion degree ranged from 50 to 100%. As the possibility 
to collaborate is the only setting difference between the 
individual and collective experiments, the high collabora-
tion degree in the creation of the target molecules may be 
the cause for the higher efficacy achieved in the collec-
tive experiments. To illustrate such features, the genesis 
of target molecule T20 is reported in Fig. 1.

Target molecule T20 was generated in 20 evolution steps 
through the collective work of seven out of the eight par-
ticipants of this experiment. While the general trend of 
molecule evolution is positive, meaning the score of the 
resulting molecule in each design session is higher than 
the starting molecule, there are evolution steps in the gen-
esis of target T20 where the score remains equal (steps 10, 
11 and 14) or even decreases (steps 8 and 15). The transit 
through molecules with scores lower than the experiment 
maximum may represent the exit mechanism from local 
maxima.

To better understand the differences between individual 
and collective design, experiments related to complexity-
level-L4 target molecules (i.e. T19 & T20) are compared.

The top-score achieved by each user along the whole 
molecule design activity of L4-complexity targets experi-
ments is represented in Fig. 2.

A first consideration is that it seems easier for partici-
pants to rise the molecule score from 0 to around 550, 
than from around 550 to 1000. This is an expected behav-
ior. On one side this may be due to the fact that similarity 
may rise quickly when some common functional groups 
are initially added to the structure. On another side, how-
ever, this behavior may also reflect a general feature of 
the chemical space search: it is more difficult to design an 
optimal molecule (i.e. max score) than a sub-optimal one.

Two main differences emerge from the comparison of 
the two plots reported in Fig. 2:

•	 While in the individual design experiment all the par-
ticipants started the design activity from molecules 
with a score close to 0, in the collective design one 
all but the first started exploring the chemical space 
from already designed molecules with higher scores.

•	 While the number of leader changes in the individual 
challenge is limited (i.e. 7), in the collective challenge 
it is significantly higher (i.e. 15) as everybody can 
start from the highest scoring molecule.

To understand the structural diversity of the molecules 
generated during a design experiment, their distribu-
tion in the chemical space can be examined. For such a 
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Fig. 1  Genesis of target molecule T20. The target molecule is created (i.e. rediscovered) in 20 evolution steps through the collective design efforts 
of seven out of eight participants of this experiment. The individual contributions to the target molecule creation are represented by different 
colors. Some intermediate generated molecules are also shown

Fig. 2  Molecule best scores (y-axis) achieved by participants during individual (left) and collective (right) design experiments of L4-complexity-level 
target molecule. Molecule creation order (x-axis) is the order in time by which user-based-top-1 molecules were created. A user-based-top-1 
molecule is the highest scoring molecule of a single user in an experiment
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Fig. 3  Chemical space explored by each participant during an individual (left) and a collective (right) design experiment. Molecules are described 
by 1024-hashed ECFC4 fingerprints and represented using a t-SNE visualization. The molecules generated by each participant are represented by 
a different color. The target molecule is represented by a yellow point highlighted by a halo. The same plot colored by molecule creation order, 
instead of by participant, is reported as figure S2

Fig. 4  Comparison of human individual and collective design 
experiments with in silico de novo designers reported in the 
GuacaMol publication. [43] Benchmark scores are explained in 
section "Comparison with automatic de novo designers"

purpose, molecules are first characterized using the same 
descriptors with which the molecular score was calcu-
lated (i.e. 1024-hashed ECFC4 fingerprints) and then 
plotted in Fig. 3 using t-SNE (i.e. t-distributed stochastic 
neighbor embedding).[67].

The following observations can be made about the 
chemical space plots:

•	 While in the individual design experiment it seems 
that specific participants explored specific, focused 
parts of the chemical space, in the collective design 
one the molecules generated by each user are more 
spread in the chemical space.

•	 In the individual design experiment only one partici-
pant came close to the target molecule, while in the 
collective design one at least four of them.

Comparison with automatic de novo designers
As described in section  "Comparison with automatic 
de novo designers" this study was designed to compare 
the search strategy of humans with automatic de novo 
designers. For such a purpose a recently published de 
novo design benchmark [43] was chosen that includes 
results from different automatic methods. Its usage 
allows also to dissipate any possible doubt that could 
have arisen if we would have used internal automatic de 
novo systems for comparison.

The results of both individual and collective human 
design activity for the five selected benchmarks are 
reported in Fig. 4 and Table 6 together with those of the 

state-of-the-art in silico methods published in the origi-
nal benchmark article [43].

Human collective design performed optimally along 
all the five tested benchmarks. This is also the case for 
the two best automatic systems (i.e. smiles_lstm [38] 
and graph_ga [42]). Human individual design performed 
more poorly than collective design but still fairly well. 
Actually, in case of the similarity benchmarks, it achieved 
almost the optimal scores (i.e. 1.0 and 0.99 in experiments 
with targets of L4 and L1 complexity level, respectively), 
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5  This is the only method for which a reliable number of scoring function calls 
is reported in the original publication (private communication with authors).

Table 6  Comparison of human individual and collective design experiments with automatic de novo designers reported in the 
GuacaMol publication [43]

Benchmark scores are explained in section "Comparison with automatic de novo designers". The final score is equivalent to the top-1 score in rediscovery benchmarks 
and to the average of top-1, top-10 and top-100 scores in the similarity ones

Complexity 
level

Benchmark type Final score
Top-1 score
(Top-10 score)
(Top-100 score)

Human 
individual

Human 
collective

smiles_lstm graph_ga smiles_ga graph_mcts best_of_chembl

L2 Rediscovery 0.72 1.0 1.0 1.0 0.732 0.355 0.505
0.72 1.0 1.0 1.0 0.732 0.355 0.505

L3 Rediscovery 0.61 1.0 1.0 1.0 0.598 0.311 0.456
0.61 1.0 1.0 1.0 0.598 0.311 0.456

L5 Rediscovery 0.80 1.0 1.0 1.0 0.515 0.311 0.419
0.80 1.0 1.0 1.0 0.515 0.311 0.419

L1 Similarity 0.99 1.0 1.0 1.0 0.907 0.749 0.719
1.0 1.0 1.0 1.0 1.0 0.80 0.765

1.0 1.0 1.0 1.0 1.0 0.758 0.726

0.96 1.0 1.0 1.0 0.72 0.689 0.664

L4 Similarity 1.0 1.0 1.0 1.0 0.834 0.380 0.595
1.0 1.0 1.0 1.0 0.856 0.428 0.609

1.0 1.0 1.0 1.0 0.838 0.376 0.601

1.0 1.0 1.0 1.0 0.807 0.335 0.576

while in the case of the rediscovery benchmarks it per-
formed worse than the two best in silico systems, but bet-
ter than two out of the three other approaches.

In the cases where the benchmark maximum score of 
1.0 is not reached, the relation between the complex-
ity of the target molecules and the achieved efficacy is 
analyzed. Here, efficacy is determined by how close the 
final achieved score is to the maximum (i.e. 1.0). Inter-
estingly, automatic methods correlate inversely with the 
estimated complexity levels of the target molecules while 
this is not true for human individual design. More spe-
cifically, this occurs in rediscovery benchmarks (L2, L3 
and L5) where smiles_ga = 0.732, 0.598, 0.515, graph_
mcts = 0.355, 0.311, 0.311 and human_individual = 0.72, 
0.61, 0.80, respectively. This also occurs in similarity 
benchmarks (L1 and L4) where smiles_ga = 0.907, 0.834; 
graph_mcts = 0.749, 0.380; human_individual 0.99, 1.0, 
respectively. While for the automatic methods the molec-
ular design difficulty seems to correlate with the compu-
tationally estimated complexity of target molecules, this 
does not hold up for human design activity.

Human vs machine learning pace
A possible measure for the learning pace of the search 
strategy is the number of times the molecular scoring 
function has been accessed for finding a particular target 
molecule. The higher the number, the slower the learning 

pace. In case of human-driven de novo design described 
herein, this is the number of moves carried out by partic-
ipants to reach the target molecule. This corresponds to 
all the (non-unique) molecules generated in the experi-
ments. This number is larger than the number of gener-
ated unique molecules reported in Table  5, because it 
also considers repetitions. In other words, if the same 
molecule has been drawn five times, it will count as five 
scoring function calls.

The number of scoring function calls carried out by 
individual and collective human intelligence are reported 
in Table  7 together with those of Long-Short Term 
Memory recurrent neural networks (lstm_smiles) [38], 
reported5 in the GuacaMol [43] publication. Human indi-
vidual design results are only reported for the experiment 
where participants reached the target molecule.

It can be seen that the number of scoring function calls 
carried out by humans (in both the individual and collec-
tive design mode) are more than one order of magnitude 
lower than those of the artificial neural network. These 
results suggest that humans may have a larger learning 
pace than the considered AI method. The learning pace is 
related with the efficiency. To determine whether this is a 
result limited to this case or a general tendency, a larger 
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set of experiments should be carried out and compared 
to several other machine-based methods. Such an in-
depth analysis is beyond the scope of this work.

Interestingly, while the number of scoring function 
calls needed by artificial intelligence (i.e. lstm_smiles) to 
reach the target molecule correlates with its complexity 
level, this does not occur with human intelligence. This 
observation was also done for efficacy as described above.

This trend should be taken with caution as other AI 
methods could work differently. The raw data for all the 
case study experiments is provided in Additional file 3.

Conclusions
In the last decade individual and collective human intelli-
gence were used in combination with computer algorithms 
to solve complex scientific problems. These are prob-
lems with many degrees of freedom where computational 
algorithms alone struggle to find the best solution. This 
approach was successfully used in different research fields 
as comparative genomics, structural biology, macromo-
lecular crystallography and RNA design. Here we described 
an attempt to use a similar approach in small-molecule 
drug design. More specifically we assessed the human 
search strategy in chemical space exploration problems 
where specific, predetermined molecules had to be found 
between the almost infinite possibilities. Finally, results 
were compared to those obtained by different automatic de 
novo designers assessed in a recently published benchmark 
suite. This allows to have a first direct comparison between 
human and artificial intelligence in de novo drug design.

The here explained case study focused on the usage of 
a similarity function as design scoring. Although this is 
certainly a simplification in respect to a drug discovery 
scenario where more complex multi-objective scoring 
functions should be used, the molecular similarity is a sur-
rogate for machine learning models and have the advantage 

of producing easily interpretable results where the achieve-
ment of predefined target molecules can be unequivocally 
determined. In this respect, this study should be regarded 
as a first necessary step towards the usage of the same 
approach with more complex scoring functions.

From the results, the following conclusions can be 
drawn:

1)	 The search strategy linked to human intelligence can 
be successfully used in chemical space exploration in 
silico. Indeed, it is able to find unique, predefined tar-
get molecules, having a molecular complexity equiv-
alent to that of approved drugs, between the huge 
amount of possibilities. This supports the usage of 
human search capability coupled to in silico molecule 
evaluation systems in drug design.

2)	 Collective human molecular design seems to be both 
more efficacious and more efficient than individual 
molecular design. This supports the development of 
collaborative drug design tools that allow to create 
synergies between different players of this field and 
reach better drugs.

3)	 Compared to artificial intelligence systems, the 
search efficacy of human collective intelligence 
seems to be at least as good as the best artificial intel-
ligence approaches. In contrast, human individual 
intelligence ranks average. Considering the search 
efficiency, these first results suggest that human 
intelligence may have a higher learning pace than 
artificial intelligence. Nevertheless, this observation 
needs to be further explored and validated with addi-
tional experiments and their comparison to a larger 
number of AI systems. Such an in-depth analysis is 
beyond the scope of this work.

Additionally, some results may suggest that human intel-
ligence perceives molecular complexity differently than 
artificial intelligence but also in this case more experiments 
will be needed to confirm such finding. If confirmed, this 
would support a combined use of the two intelligences in 
order to reach better drugs. An example of the combined 
use of these 2 intelligences would be an integrated molecu-
lar de novo designer where, given a certain complex scoring 
function (i.e. different from molecular similarity), the evo-
lution of molecules is guided by a hybrid human-artificial 
search strategy. Each of the 2 components of such system, 
meaning humans and machines, can learn and take advan-
tage from the molecular proposals of the other. This can 
lead to new, structurally diverse, in silico-optimized mol-
ecules not otherwise achievable. Summarizing, we expect 
that the regions of the chemical space reachable with 
such an hybrid system (and the potential optimal mol-
ecule therein contained) are not reachable by non-hybrid 

Table 7  Number of scoring function calls needed to reach the 
target molecules of five different complexity levels

Human individual design results are only reported for the experiment where 
participants reached the target molecule
a Target molecule not reached

Complexity 
level

Number of scoring function calls to reach the 
target molecule

lstm_smiles Human 
individual

Human collective

L1 132,838 3614 1956

L2 132,846 –a 4271

L3 138,209 –a 5404

L4 139,221 –a 4591

L5 140,339 –a 12,118



Page 15 of 16Cincilla et al. J Cheminform           (2021) 13:80 	

approaches guided by each of the 2 “pure” search strategies. 
In our group we are currently working on two main top-
ics: the extension of the current study with more complex, 
multi-objective scoring functions; and the implementation 
of the just mentioned hybrid de novo designer.
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