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Abstract 

The intelligent choice of extractants and entrainers can improve current mixture separation techniques allowing bet-
ter efficiency and sustainability of chemical processes that are both used in industry and laboratory practice. The most 
promising approach is a straightforward comparison of selectivity at infinite dilution between potential candidates. 
However, selectivity at infinite dilution values are rarely available for most compounds so a theoretical estimation 
is highly desired. In this study, we suggest a Quantitative Structure–Property Relationship (QSPR) approach to the 
modelling of the selectivity at infinite dilution of ionic liquids. Additionally, auxiliary models were developed to over-
come the potential bias from big activity coefficient at infinite dilution from the solute. Data from SelinfDB database 
was used as training and internal validation sets in QSPR model development. External validation was done with the 
data from literature. The selection of the best models was done using decision functions that aim to diminish bias in 
prediction of the data points associated with the underrepresented ionic liquids or extreme temperatures. The best 
models were used for the virtual screening for potential azeotrope breakers of aniline + n-dodecane mixture. The sub-
ject of screening was a combinatorial library of ionic liquids, created based on the previously unused combinations of 
cations and anions from SelinfDB and the test set extractants. Both selectivity at infinite dilution and auxiliary models 
show good performance in the validation. Our models’ predictions were compared to the ones of the COSMO-RS, 
where applicable, displaying smaller prediction error. The best ionic liquid to extract aniline from n-dodecane was 
suggested.
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Introduction
The separation of liquid mixture components is impor-
tant both in industry and laboratory processes [1]. The 
most common separation method is distillation, however 
it cannot be applied to azeotropes or compounds that 
decompose at higher temperatures. Extractive distillation 
can be a good choice in case of azeotrope mixtures [2]. 
Thermally unstable compounds can be separated through 
liquid–liquid extraction [3]. Both extraction and extrac-
tive distillation require a chemical to act as an extractant/
entrainer. The choice of the extractant is very important, 

however there are limited options for an intelligent selec-
tion with no prior experimental knowledge and it is 
mostly based on the comparison of the dipole moments 
of the solute, raffinate and extractant [4]. The intelligent 
entrainer choice for the breaking of the two-component 
mixture is usually based on the selectivity at infinite dilu-
tion ( S∞ ) value for the entrainer [5]. S∞ value is calcu-
lated from infinite dilution activity coefficients (IDACs) 
that are determined via gas chromatography [6]:
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where γ∞
1,z is the IDAC of compound (1) in the solvent 

(z), nz is the mole number of the solvent stationary phase 
component inside the column, R is the ideal gas con-
stant, T  denotes the temperature of the oven, Vn is the 
net retention volume, B11 refers to the second virial coef-
ficient of the solute in the gaseous state at temperature 
T  . The molar volume of the solute is denoted by V 0

1  , B13 
represents the mutual virial coefficient between the sol-
ute 1 and the carrier gas helium (index 3), V∞

1  represents 
the partial molar volume of the solute at infinite dilution 
in the solvent (extracting agent) and P0

1 is the probe vapor 
pressure at temperature T  . The factor J  amends for the 
influence of the pressure drop alongside the column. P0 
is the outlet column pressure. The formula is applied to 
calculate IDAC for both solute and raffinate and derive 
S∞ for the system at a defined pressure and temperature:

where γ∞ are the IDACs of a solute (1) and a raffinate 
(2) in the solvent. If S12∞ ≫ 1, then the solvent is a good 
potential entrainer. There are certain limitations of this 
approach. For example, if S12∞ is a result of huge γ 2

∞ being 
divided by still relatively high γ 1

∞ , this would indicate 
that the solvent cannot separate the components, even 
though the S12∞ will still be ≫ 1.

We have previously created the online database for the 
selectivities at infinite dilution and illustrated that S∞ 
can, to some extent, be an indicator of the selectivity in 
liquid–liquid extraction as well [7]. Database contains 
approximately 250 extracting solvents for two-compo-
nent systems that are comprised of 154 unique chemi-
cals at different temperatures, mounting up to 1.6 million 
log10[S∞ ] values. The solute, raffinates and solvents in 
the database belong to different chemical classes and the 
log10[S∞ ] values vary considerably, however there are still 
an enormous data gaps because of the absent experimen-
tal data on certain combinations of the above-mentioned 
components. While adding new experimental data to the 
database is possible, the data size at certain point might 
exceed any hosting capacity. Moreover, this data can be 
compiled only if someone carries out an experiment to 
determine the IDACs for both mixture component for 
the same solvent at the same temperature. This might 
consume less time and resources, than the direct vapor–
liquid or liquid–liquid equilibria approach to determine 
the respected selectivity, however a considerable amount 

(1)

lnγ∞
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(

nzRT

VnP
0
1
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1 ×
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1
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1

RT
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(2)S12∞ =
γ 2
∞

γ 1
∞
,

of experimental work is still required for this task. The 
viable alternative would be to use computational meth-
ods for the prediction of the S∞.

The common approach for the S∞ prediction is pre-
dicting the IDAC for the solute and raffinate at the same 
temperature and pressure separately and use those values 
to derive S∞ . There have been numerous approaches for 
S∞ prediction for the liquid solutes based on very dif-
ferent principles, such as solvation models (SM) [8, 9], 
group contribution method (GCM) [10, 11], Conductor-
like Screening Model for Real Solvents (COSMO-RS) 
[12] and Quantitative Structure–Activity Relationship 
(QSPR) [13–16]. SM and GCM require prior knowledge 
of experimental and thermodynamic parameters of sol-
ute and solvent (e.g. dispersion constant, molar volume of 
the solvent), which makes them less applicable to the in 
silico design of the extractants. COSMO-RS is an ab ini-
tio method that calculates chemical potentials, which 
can be used to predict the value of IDAC, so it does not 
require prior knowledge of the thermodynamic/experi-
mental constants. COSMO-RS might be the most com-
monly used model for IDAC prediction at the moment. 
It allows to somewhat interpret the interactions between 
solvent and solute, however the model itself is quite com-
plicated to use. In fact, its application usually requires 
some quantum chemical expertise and experience. More-
over, COSMO-RS is a commercial software which lim-
its its use. QSPR models do not require any information 
about the compounds, apart from their chemical struc-
tures, that are used to compute independent variables 
known as molecular descriptors. QSPR models are purely 
data-driven and can be used to predict large quantity 
of data rather fast. There have been several attempts to 
make QSPR models for IDAC prediction, in most cases 
they were strictly local, either being restricted to a cer-
tain solute (e.g. water [14]) or a certain type of solvent 
(e.g. Ionic liquids (ILs) with the imidazole-based cation 
[15]). However, there were two attempts to make global 
QSPR models that can predict IDAC for various combi-
nation of solvent and solutes. In the first approach [16], 
a deep artificial neural network is trained on 215 ILs that 
act as solvents and 112 solutes. The output of the model 
is an IDAC prediction that fills the data gaps in solute vs. 
solvent data matrix. This type of output has an implicit 
Applicability Domain (AD) restriction, making it impos-
sible to predict any solute or solvent if it was not in the 
training set. The authors claim that their dataset ‘…rep-
resent most of known IL cation/anion and conventional 
solute families’, however there might be new types of sol-
utes/solvents discovered in the future. Moreover, the var-
iation of the side chain in the cation allows to easily create 
new homologous ILs that could not be predicted by the 
model, although QSPR as a method does not have such 
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restriction. The second study [13] describes the  use of  3 
machine-learning methods (multiple linear regression, 
artificial neural network, support vector machine) to 
model even larger IDAC data. The models have good per-
formance statistics, however there are several concerning 
issues, such as the fact that some molecular descriptors 
seem to be based on experimental data (e.g. dipolarity–
polarizability obtained based on gas–liquid chromatogra-
phy retention data on polar stationary phases). Internal 
validation data is used for the model parameters optimi-
zation (early stopping for ANN and kernel parameter σ2 
for SVM) and small test set size (10%). Also, AD is not 
defined for the models at all, thus making it impossible 
to understand what solutes or solvents would be too 
different from the training data to be reliably predicted 
by any model. The fact that 2 IDACs bear 2 prediction 
errors, which can make the final prediction even more 
erroneous, is another issue that might occur when try-
ing to use IDAC predictions to calculate S∞ . To the best 
of our knowledge, S∞ has never been directly modeled 
using QSPR approach before. Regardless of whether S∞ 
is predicted directly or from IDACs, there is another pit-
fall in using the results to choose the best extractants or 
entrainers. It was discussed in our previous article [7], as 
a big IDAC issue, i.e. a situation when a high S∞ value 
is achieved by dividing very big IDAC by a smaller, yet 
big IDAC. The common chemistry knowledge indicates 
that in this case the separation of two-component mix-
ture by the examined solvent is impossible and big IDAC 
issue has to be taken into account when the decision on 
extractant selection is made.

ILs seem to be the focus solvents when it comes to 
QSPR modeling of the IDAC. The reason for this lies in 
IL’s ‘sustainable’ properties such as low flammability haz-
ard, [17] negligible vapour pressure at standard working 
conditions, [18] and moderate viscosities [19]. IL’s simul-
taneously have high structural variability and consist of 
well-defined types of ions. This creates opportunities for 
intelligent molecule design and should be a good working 
framework for QSPR approach, that relies on determina-
tion of structure–property patterns.

The modelling of S∞ for ILs is not a trivial QSPR prob-
lem. In classic QSPR, one data point corresponds to one 
chemical. The S∞ value for every data point is deter-
mined by the cation, anion, solute, raffinate and tempera-
ture ( T  ), with the atmospheric pressure implied in this 
case. This makes the task at hand a modelling of a mix-
ture property of 4 components with a varying non-struc-
tural parameter ( T  ). Mixture and parameter-dependent 
properties pose additional modelling challenges, such 
as molecular descriptor choice [20], test set selection 
[21–23], error estimation [22], model sensitivity to the 

parameter impact [24] and AD definition [22]. Most 
machine-learning algorithms tend to optimize the model 
around successful average predictions, so the model 
might end up only predicting well data points associated 
with the most common IL, solute, T  or other parameters. 
An appropriate model optimization must be done in 
order to avoid that.

In this study, the QSPR model for predicting log10[S∞] 
for ILs was developed and additional big IDAC classifi-
cation model was done to flag unreliable results. The 
developed models were used to predict the best possible 
breakers of aniline + dodecane azeotrope.

Materials and methods
Data standardization and curation
SelinfDB [7] is the source of data for model develop-
ment and internal validation. The data comprises names 
of cations, anions, solutes and raffinates, as well as, tem-
perature, log10[S∞] and bigIDAC flag. The decimal loga-
rithm is important for scaling the property to the orders 
of magnitude that reflect the extracting potential better, 
than the absolute values. The SMILES format chemical 
structure representation of cation and anion was taken 
from Additional file 1: Table S1 Electronic supplementary 
information (ESI) of Paduszyński [25]. This type of rep-
resentation for solutes and raffinates was generated with 
OPSIN software [26] from components names. Next, the 
non-IL data was removed from the dataset. Structure 
representation was standardized using Chemaxon Stand-
ardizer [27]: standardization rules are described in [22].

QSPR model development
Then, molecular descriptors were generated separately 
for each component (cation, anion, solute, raffinate) using 
Chemaxon cxcalc plug-in [28]. Molecular descriptors 
chosen in this study reflect components physico-chem-
ical nature (e.g. logP, Polar surface area) and structural 
features (e.g. number of rotatable bonds, number of aro-
matic atoms). Full list of molecular descriptors can be 
found in Additional file 1: Table S1.

The QSPR model development was done using Artifi-
cial Neural Network (ANN) machine-learning method 
from Keras in R language environment [29–31] for both 
log10[S∞] and bigIDAC flag property. Models developed 
in this study have both fixed and tunable parameters, the 
latter required for assuring the best performance. The 
fixed parameters are:

•	 Number of hidden layers (2)
•	 Activation functions (parametric relu and relu for 

hidden layers. For output layers, sigmoid in case of 
log10[S∞] or linear for bigIDAC flag modelling)
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•	 Metric for error assessment (mean absolute error for 
log10[S∞] and binary cross-entropy for and bigIDAC 
flag)

•	 Batch size (2000)
•	 Number of iteration cycles (500)

The tunable parameters are:

•	 Weight initializer (glorot, lecun and he options for 
generating values based on uniform distribution)

•	 Number of nodes in hidden layers (100 and 200 for 
the first hidden layer; 10, 20, 40 for the second one)

•	 Optimization function (rmsprop, adamax, adadelta, 
sgd)

The in-built keras optimization finds the most opti-
mal values for the weights in layers, however it does 
not affect tunable parameters. The best option for the 
tunable parameters were determined using exhaustive 
search. The criterion for the best option was model’s 
predictivity of the optimization set. The optimization 
set was formed by setting aside the part of the dataset 
and not using it during model development. The opti-
mization set must reflect the structural diversity of the 
data and also challenge the model algorithm, however 
it should not contain chemicals that are too structurally 
different from the training set, since that will make suc-
cessful predictions impossible. Two steps were taken in 
order to assure a good tradeoff between having familiar 
and unfamiliar patterns in the optimization set. Firstly, 
the data points selection was done on the IL-out basis, 
i.e. all data points from the same IL must be present 
either in the training or in the optimization set. How-
ever, the cation or anion from the IL may be a part of 
both sets. Secondly, the IL selection was done based on 
the Euclidean distance between ILs in the descriptor 
space, similar to the procedure described in [22]. The 
selection was done as follows: the Euclidean distance in 
the descriptor space for all ILs is calculated using SARA 
software [32, 33]. Then, median distance is found for 
every IL. Next, the median distance of the median dis-
tances is found and used as a threshold (Eq. 3). Finally, 
the first 10% of ILs that had median values higher than 
the threshold and the first 10% of ILs that had median 
values lower than the threshold are selected for the 
optimization set.

where Thr is a threshold value, dij is Euclidean distance 
between the i-th compound to the j-th compound in the 
data subset ( i = j = number of compounds in the subset).

(3)Thr = median
j=1

(

median
i=1

(

dij
)

)

,

The assessment of models predictivity in this case is 
challenging due to dataset size and the fact that it’s a 
mixture property, thus decision functions were used 
to select the best model for both properties. In this 
study, decision functions are geometric means of other 
metrics. The log10[S∞] metrics include Mean Absolute 
Error ( MAE ) for overall prediction accuracy, Aver-
aged Mean Absolute Error per IL ( MAEIL ) for predic-
tion accuracy across extractants, difference between 
observed and predicted covariances of property and 
temperature ( �Cov

(

log10[S∞], T
)

 ) to assure that mod-
els reflect temperature-dependency of the property, 
the difference between the ranges of observed and pre-
dicted values ( �range ) to assure that model does not 
simply average all predictions and mispredict extreme 
values:

where n is the number of data points, yi is predicted val-
ues and xi is observed values for the i-th data point

where k is the number of compounds in the optimization 
set, n is the number of data points per compound, xji is 
the experimental values for the j-th compound. yji is the 
predicted values for the j-th IL for the i-th data point.

where n is the number of data points, yi is predicted val-
ues and xi is observed values, x is average observed value, 
y is average predicted value, Ti is temperature of i-th data 
point, T  is the average temperature.

The decision function for log10[S∞] is as follows:

The metrics used for bigIDAC flag model performance 
assessment included Balance Accuracy ( BA ) to assure 
correct predictions of both normal and problematic data 
points and Accuracy per IL ( AccIL ) for the reasons men-
tioned in MAEIL description:
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where TP is data points that have big IDAC flag that are 
predicted to have big IDAC flag, TN  is data points that do 
not have big IDAC flag that are predicted not to have big 
IDAC flag, FN  is data points that have big IDAC flag that 
are predicted not to have big IDAC flag, FP is data points 
that do not have big IDAC flag that are predicted to have 
big IDAC flag. AccIL formula is similar to the MAEIL one, 
only applied to bigIDAC flag binary data.

The decision function for bigIDAC flag is as follows:

The geometric mean approach was used to ensure 
that every metric performance is contributing equally 
to the decision function value. Best models are the ones 
with the lowest and highest decision function value for 
log10[S∞] and bigIDAC flag optimisation set predictions, 
respectively.

Cross‑validation scheme examination
The secondary objective of this study was to exam-
ine the influence of the internal validation set size on 
model’s predictivity. The examination was done by 
building models with 20, 50 and 80% of the QSPR-
ready SelinfDB data in the validation set as a part of 
the fivefold random cross-validation procedure, ensur-
ing that every data point will be present in the vali-
dation set at least one time. The 5 models developed 
for the respective folds were used to predict opti-
mization set with the final result being an averaged 
prediction for each data point. The selection of the 
optimized parameters was done in case of every CV 
split approach. The input molecular descriptors for the 
training + internal validation sets were scaled using 
linear scaling with variable range [34], making every 
descriptor value reside within 0–1 limits. The round-
ing of the scaled descriptors was done up to the first 
digit after the decimal point. The derived linear coeffi-
cient and free term were used to scale the optimization 
set. The Applicability Domain (AD) was determined 
using the Bounding box method: a p-dimensional 
hyper-rectangle defined on the basis of maximum and 
minimum values of each descriptor used to build the 
model [35]. In other words, every descriptor value of 
examined compound must be within the range of the 
corresponding descriptor from the training set. The 
AD definition was applied to the unscaled descriptors, 
i.e. a data point is considered to be within AD if each 
of its descriptor value is within the training set value 
range of a respective descriptor.

(9)BA =
(

TP

TP + FN
−

TN

TN + FP

)/

2,

(10)DfbigIDAC flag = 2
√

BA× AccIL.

External validation
Models predictivity was assessed using external test 
set. This set was composed from the IDAC data for ILs 
found in literature between years 2018 and 2020. The 
list of publications is given in Additional file 1: Table S2. 
The calculation of log10[S∞], duplicate removal and other 
data processing was done as described in [7]. Molecular 
descriptors for known components, i.e. cations, anions, 
solutes and raffinates, that were present in SelinfDB, were 
copied from the training and optimization set; descrip-
tors for new components were calculated using cxcalc 
plugin in the same manner as it was for the training and 
optimization set. Descriptor scaling, averaging prediction 
for the final result and determination of the AD for the 
external test set was done in the same manner as it was 
for the optimization set, however only the optimal mod-
els from every CV split were used for external test set 
predictions. The external test set predictivity was used as 
a criterion for choosing the best of the best models for 
both log10[S∞] and bigIDAC flag. These models were 
used to demonstrate the potential of QSPR approach by 
predicting the azeotrope-breaking potential of ILs from 
computational combinatorial library on separation of 
the aniline + dodecane mixture at 298  K. The computa-
tional combinatorial library was created by generating 
all possible combinations of cations and anions present 
in the SelinfDB and external test set and then removing 
the ILs that have been previously used. An azeotrope 
containing aniline [36] was chosen because aniline has 
not been present in a previously used datasets and can 
show the potential of the models to give deal with novel 
compounds.

Virtual screening
Additionally, the log10[S∞] prediction results for the 
optimization set were compared to the COSMO-RS pre-
dictions from [25] COSMO-RS log10[S∞] was created 
by choosing predicted IDAC data from column IDAC 
(calcd) of Table 4 in ESI of Paduszyński article [25]. Then, 
log10[S∞] was calculated in the same manner as SelinfDB 
data.

A Linux (Centos 6) cluster with SLURM was used for 
the ANN development, optimization and external test 
set prediction, as well as prediction of aniline + dodecane 
breakers. The nodes were Intel Xeon E5-2630 CPUs and 
NVIDIA GeForce GTX TITAN X GPUs. NVIDIA CUDA 
libraries, that were needed for running keras and tensor-
flow, are version 10.1 (Fig. 1).

Results and discussion
Data standardization, curation and model development
The IL data from SelinfDB has 1,614,570 data points, 
describing 226 extracting solvents for two-component 
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systems. The number of data points was reduced to 
1,413,780 after verification of some structure-descriptor 
calculation failures. The median of the median of the 
median optimization set selection resulted in 308,433 
data points (42 ILs) set aside for the optimisation set. The 
results of the optimization are given in Tables 1 and 2.

All of the optimization set data points were within 
AD. The ANN tunable parameter values for the best 
log10[S∞] and bigIDAC models are given in Additional 

file  1: Table  S3. The results show good predictivity for 
both log10[S∞] and BigIDAC models. The ‘per IL’ sta-
tistics are worse in terms of absolute error for log10[S∞] 
models—this has been observed in previous QSPR stud-
ies of equilibria-based properties [22] and is concordant 
with the fact that some systems tend to be predicted less 
accurately due to noise in experimental data or unusual 
behaviour [21].

Fig. 1  Workflow scheme

Table 1  Optimization set prediction statistics for log10[S∞]

Split (CV. %) MAE MAE per IL Range Covariance Decision

log10[S∞] 20 0.119 0.170 0.24 5.23E−06 0.0126317

50 0.128 0.173 0.01 0.00014608 0.0134264

80 0.132 0.177 0.66 3.83E−06 0.0155686

Table 2  Optimization set prediction statistics for bigIDAC flag

Split (CV. %) Sensitivity Specificity BA Acc Acc (per IL) Decision

bigIDAC 20 0.868 0.956 0.912 0.929 0.944 0.928

50 0.845 0.965 0.905 0.928 0.941 0.923

80 0.869 0.950 0.909 0.925 0.934 0.922
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Models’ validation
The results of the best models for log10[S∞] were com-
pared to the results from COSMO-RS. Due to the dupli-
cate removal procedure described in [7], the COSMO-RS 
log10[S∞] values could not be calculated for all data 
points in the optimization set, however they have 99.85% 
overlap, which we believe is sufficient for the compari-
son. COSMO-RS prediction had the following statistics: 
MAE of 0.203, MAE per comp of 0.272, range difference 
of 1.64, covariance difference of 0.029207799 and a deci-
sion function of 0.226805763. This is significantly less 
accurate, than our predictions.

After the best models from every CV approach were 
selected, they were used to predict the external test set 
that has 511,496 data points: 42 ILs, 6778 mixtures 
retrieved from 28 articles. The prediction results are 
given in Tables 3, 4, and 5.

All of the test set data points were within AD. Test set 
predictions are worse, than the optimization ones, both 
in terms of error (e.g. MAE, MAPE, BA) and decision 
function, with the exception of Accuracy for bigIDAC 
models. Nonetheless, models’ performance in the exter-
nal validation is quite good, including the classification 
interpretation of log10[S∞] results.

Test set data for main and auxiliary properties have 
shown better results for having less data points in the 
CV set, which is contrary to the optimization results. The 
test set evaluation is a better approach for the assessment 

of predictive ability than optimization set, however this 
fluctuation can be attributed to the chance due to rand-
omization before CV split or random number generation 
for the initial weights generation. In order to examine this 
possibility, 4 more models with optimized hyperparam-
eters were generated for 80% CV split and their perfor-
mance on the external test set was averaged. Confidence 
interval (Eq. 11) must be calculated to test whether 20% 
CV split test prediction result can be achieved by random 
deviation from 80% CV split test set results:

where CI is a confidence interval, MAE is an average 
MAE of 5 80% CV split models, z0.95 is a Z-score of 95% 
confidence level, σ(MAE) is a standard deviation of MAE 
of 5 80% CV split models, n is the number of optimized 
models. The calculation result is 
0.164 ± 1.96× 0.002√

5
= [0.162; 0.166] CI . The 20% CV 

result is out of the CI, so the difference in performance is 
less likely to be achieved randomly.

The efficiency of the final model’s ability to predict 
log10[S∞] can be further illustrated by the distribution of 
the absolute error (Fig. 2). It is clear that more than 90% 
of data points from the external test set have a prediction 
error of less than 0.5 log10[S∞], i.e. half of the order of 

(11)CI = MAE ± z0.95 ×
σ(MAE)

√
n

,

Table 3  Test set prediction statistics for log10[S∞]

Split (CV. %) MAE MAE per IL Range Covariance Decision

log10[S∞] 20 0.180 0.204 1.46 0.000377 0.066979

50 0.179 0.205 1.1 0.001127 0.08218

80 0.164 0.190 0.49 0.002173 0.075874

Table 4  Categorical interpretation of test set prediction statistics for log10[S∞]

Split (CV. %) Acc Sensitivity Specificity BA PPV NPV

log10[S∞] 20 0.962 0.887 0.974 0.930 0.839 0.983

50 0.962 0.848 0.979 0.914 0.862 0.977

80 0.968 0.872 0.983 0.927 0.886 0.980

Table 5  Test set prediction statistics for bigIDAC flag

Split (CV. %) Sensitivity Specificity BA Acc Acc (per IL) Decision

BigIDAC 20 0.811 0.978 0.895 0.934 0.921 0.908

50 0.813 0.978 0.895 0.934 0.923 0.909

80 0.802 0.985 0.894 0.937 0.924 0.909



Page 8 of 10Klimenko and Carrera ﻿J Cheminform           (2021) 13:83 

magnitude for S∞. The results for the training and inter-
nal validation are given in Table 6.

Virtual screening
The (computational) combinatorial library of ILs was cre-
ated using all possible combinations of cations and anions 

from the SelinfDB and external test set. Only 249 out of 
5200 (4.8%) combinations were experimentally tested. 
The combinations that were previously explored were 
discarded. The rest (4951 ILs) have been used to predict 

Fig. 2  Absolute error distribution (X-axis) in the external test set predicted by the best log10[S∞] model

Table 6  Training and internal validation statistics for the best of 
the best log10[S∞] and BigIDAC models

Mean ± sd

log10[S∞]

 MAE (TrS) 0.11 ± 0.02

 MAE (Val) 0.12 ± 0.02

BigIDAC

 BinCross (TrS) 0.01522 ± 0.00222

 BinCross (Val) 0.02479 ± 0.00297

 Acc (Val) 0.98895 ± 0.00063

Table 7  Top 10 ILs suggested for breaking of 
aniline + n-dodecane azeotrope

ILs log10[S∞]

MO-3OH,1_AC 3.96

MO-3OH,1_BF4 3.95

MO-3OH,1_CL 3.95

MO-3OH,1_SCN 3.93

MO-3OH,1_BR 3.92

[(OH)2C3Mpyr]_BF4 3.89

PYR-2OH,1_AC 3.87

MO-3OH,1_PO3H-2 3.86

PYR-2OH,1_SCN 3.83

IM-O1,O1_CL 3.81
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the separation of aniline form n-dodecane acetate. Full 
information on explored and unexplored combinations is 
given in Additional file 2.

log10[S∞] prediction values vary from 0.03 to 3.96. No 
ILs had a bigIDAC warning label assigned. All predic-
tions were within AD. The majority of most promising 
ILs (Table 7) contain 4-(3-hydroxypropyl)-4-methylmor-
pholinium (MO-3OH,1) cation. All cations from top 10 
results contain hydroxy (OH) or methoxy (O1) groups. 
The translation of the codes can be found at https://​selin​
fdil.​dq.​fct.​unl.​pt/​il-​codes-​trans​lation/.

The best candidate for breaking aniline + n-dodecane 
azeotrope is 4-(3-hydroxypropyl)-4-methylmorpholin-
ium acetate (Fig.  3). To the best of our knowledge, this 
IL has never been experimentally tested for the separa-
tion of aniline from n-dodecane, or any other separation 
process.

Conclusions
QSPR models for log10[S∞] and BigIDAC flag developed 
in this study are rather precise and can be used to pre-
dict the extractive potential for unexplored combina-
tions of cation/anion/solute/raffinate/temperature, even 
if they were not present in the original dataset. Several 
ILs are suggested for the breaking of aniline/n-dodecane 
azeotrope. ANN method has been successful in modeling 
with repetitive patterns, such as temperature impact and 
small structure variability of mixture property. The use 
of integral molecular descriptors, rather than fragment 
ones, resulting in lower descriptor space dimensional-
ity, was probably the right choice for the modeling of this 
dataset as well. The increase in the CV fold size led to 
better predictivity of the models in general, possibly due 

to diminished overfit from above-mentioned repetitive 
data being used less in ANN model development.
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