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Abstract 

Background:  In recent years, in silico molecular design is regaining interest. To generate on a computer molecules 
with optimized properties, scoring functions can be coupled with a molecular generator to design novel molecules 
with a desired property profile.

Results:  In this article, a simple method is described to generate only valid molecules at high frequency ( > 300, 000 
molecule/s using a single CPU core), given a molecular training set. The proposed method generates diverse SMILES 
(or DeepSMILES) encoded molecules while also showing some propensity at training set distribution matching. When 
working with DeepSMILES, the method reaches peak performance ( > 340, 000 molecule/s) because it relies almost 
exclusively on string operations. The “Fast Assembly of SMILES Fragments” software is released as open-source at 
https://​github.​com/​UnixJ​unkie/​FASMI​FRA. Experiments regarding speed, training set distribution matching, molecular 
diversity and benchmark against several other methods are also shown.
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Introduction
In recent years, there has been a surge of methods devel-
oped for in silico molecular generation. Mostly using 
deep neural networks [1–18], but not only [19–24]. Some 
authors use much simpler methods and the present con-
tribution falls into this category. Notably, Polischuk [19, 
25] uses molecular fragments and generates only valid 
molecules, while allowing some control [25] over the 
molecular diversity, novelty and synthetic complexity of 
the generated molecules. Kwon et al. [20] use direct cross-
over and mutation operators over SMILES strings, com-
bined with Conformational Space Annealing [26]. Their 
method does not require a training set but can generate 
invalid SMILES. Yoshikawa et  al. [27] use a population-
based grammatical evolution approach (ChemGE). While 
their method is fast and inherently parallel, it requires an 
initial population of molecules and can generate invalid 

SMILES. Nigam et al. [21] generate molecules by Gibbs 
sampling of SELFIES [28]. Their approach generates only 
valid molecules and does not require a training set. How-
ever, it requires translating molecules to/from SELFIES 
[28] (a recently developed linear encoding of molecular 
graphs). Brown et  al. [23], Jensen et  al. [22] and Leguy 
et al. [24] use a genetic algorithm over molecular graphs. 
Jensen’s method [22] doesn’t require task-specific model 
training and generates only valid molecules. Leguy et al. 
[24] use an evolutionary algorithm sequentially building 
a molecular graph using seven mutation operators. Their 
method also does not require a training set and generates 
only valid molecules.

The hereby proposed method works directly at the 
SMILES level. It generates only valid SMILES and 
thus valence-correct molecules. Simplified Molecular 
Input Line Entry System (SMILES [29]) is a molecu-
lar file format specifying a linear encoding of molecular 
graphs. SMILES are a compact way to store molecules 
on computers. The format is supported by all chemo-
informatics toolkits and hence widespread. For rather 
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small molecules, SMILES are human-readable. For the 
remaining of this article, it is only necessary to know that 
SMILES are strings made of balanced parentheses (indi-
cating possibly nested branches of a linearized tree data 
structure), bracket atoms (an atom between brackets car-
ries special properties1), digits indicating ring opening 
and closures on the molecular graph plus other charac-
ters listing atoms and the bonds between them. For more 
details, see the Open SMILES specification [30] or the 
seminal paper [29]. On the other hand, DeepSMILES [31] 
is a recently proposed variant of SMILES, designed to 
ease in-silico molecular generation by making it harder 
to generate syntactically invalid SMILES (also one of 
the goals of SELFIES [21]). DeepSMILES allows two 
options: (i) avoiding branch opening parentheses and/
or (ii) avoiding ring opening numbers. In this study, only 
the DeepSMILES flavor without ring opening numbers is 
considered.

In the experiments, to quantify molecular diversity in 
a dataset and the molecules generated from it, the count 
of unique Bemis-Murcko scaffolds [32] (Fig. 1) is moni-
tored. In the remaining of this article, the datasets used, 
the method itself as well as computational experiments 
are presented and discussed.

Methods
The GuacaMol de Novo molecular design benchmark
GuacaMol [33–36] consists in a benchmark suite for 
molecular generators. The benchmark tasks measure the 
fidelity of models to reproduce the property distribution 
of a training set made of ChEMBL [37] 24 molecules2, the 
ability to generate novel molecules, the exploration and 

exploitation of the chemical space and several optimiza-
tion tasks. In this study, since no molecular optimization 
was performed, only the molecular generation task was 
used. GuacaMol allows to compare performance against 
a few methods with published results, using a variety of 
metrics. All metrics are normalized; zero being the worst 
score and one the best.

GuacaMol metrics: Validity [33]: measures if the gener-
ated molecules are realistic (e.g. SMILES is valid accord-
ing to RDKit [38]). Uniqueness [33]: assesses whether a 
model generates unique molecules (i.e. few or no dupli-
cate canonical SMILES). Novelty [33]: assesses whether a 
model generates molecules which are not present in the 
training set. Fréchet ChemNet Distance [39]: measures 
how close the distributions of generated molecules are to 
training set ones. Kullback-Leibler (KL) divergence [40]: 
measures how well a probability distribution approxi-
mates another one. For this benchmark, the probability 
distributions of several physicochemical descriptors [33] 
are compared. This metric also captures molecular diver-
sity (given a physicochemical property distribution, the 
generated molecules should be as diverse as training set 
ones).

Some methods with published GuacaMol results 
[33]: Random sampler [33]: a baseline model only ran-
dom sampling the training set. SMILES LSTM [3, 33]: a 
Long-Short-Term Memory (LSTM) neural network that 
predicts the next character for partial SMILES strings. 
Graph MCTS [22, 33]: Jensen’s Graph-based Monte Carlo 
Tree Search molecular generator. AAE: an Adversarial 
AutoEncoder [41, 42]. ORGAN: Objective-Reinforced 
Generative Adversarial Network [41–43]. This deep-
learning model architecture combines a generator and 
a discriminator network to generate molecules. VAE: 
a Variational AutoEncoder [41, 42]. This deep learn-
ing model learns a representation of molecules as latent 

Fig. 1  Folic acid (left) and its Bemis-Murcko scaffold (right)

1  Like explicit hydrogens, a formal charge or a specific isotope number.
2  I.e. only molecules which have been synthesized and wet-lab tested.
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vectors in a continuous space. The network architec-
ture includes an encoder network that converts SMILES 
strings to latent vectors, and a decoder performing the 
reverse operation.

Datasets
In the experiments, three datasets were used, in addition 
to the dataset internal to the GuacaMol benchmark. For 
the molecular generation speed benchmark, a random 
sample of one million molecules [44] from the GDB-13 
[45] was used as the training set, so that results can be 
compared to the published results of Arús-Pous et al. [8]. 
For the molecular diversity and training set distribution 
matching experiments, two more datasets were used. 
To represent drug-like molecules, a bootstrap sample of 
100,000 molecules was drawn from ChEMBL-28 [37]. To 
represent natural products, a bootstrap sample of 20,000 
molecules was drawn from the Traditional Chinese 
Medicine Database at Taiwan [46] (this database is much 
smaller than ChEMBL).

The hereby proposed method is parameterized by a 
molecular fragmentation scheme and an atom typing 
scheme. Any molecular fragmentation scheme can be 
used, as long as it doesn’t cut rings (e.g. BRICS [47] or 
RECAP [48]). Many atom typing schemes could be used.

Fragmenting molecules In the experiments, the fol-
lowing ad-hoc fragmentation scheme was used to 
identify then select some cleavable bonds. Only sin-
gle bonds between heavy atoms not in rings can be 

selected. Furthermore, the bond must not be connected 
to a stereo center nor involved in cis-trans isomerism 
(an attempt at preserving the stereochemistry of frag-
ments, if present). Cleaved bonds are chosen randomly 
without replacement from this list, in order to obtain 
n fragments. By default, a fragment molecular weight 
(MW) of 150Da is used and the recommended number 
of fragments for molecule m is given by:

This fragment weight parameter is just used as a hint to 
decide in how many fragments the given molecule must 
be cut (it is not strictly enforced). Since the fragmentation 
process is controlled by a random seed, if one requires 
more fragments from a given dataset, doing several 
passes with different seeds generates more fragments. As 
in Arús-Pous [9], randomized SMILES are used (instead 
of canonical ones) so that the same molecule does not 
always result in the same set of fragments (e.g. which 
fragment is a prefix of the SMILES, is the fragment writ-
ten from left-to-right or the opposite). Duplicate frag-
ments are not removed, because the fact that a fragment 
is found multiple times correlates with the natural occur-
ring frequency of this fragment in a dataset. Also, remov-
ing duplicates might require a canonicalization step and 
would only be required (to reduce memory usage) if one 
is fragmenting a truly huge dataset.

num_frags(m) = round

(

MW (m)

150

)

Fig. 2  Two fragmentations of folic acid (vitamin B 9 ). Under each mixture of fragments, the (not canonical but randomized) SMILES and 
corresponding DeepSMILES-without-ring-openings are shown. Tagged cleaved bonds (in black) are the wildcard atom pairs [x*][y*] with the isotope 
numbers x and y encoding atom types directly to the left and right of the cleaved bond. Colors indicate the seed fragment (in green), the first 
branch fragment (in orange) and the second branch fragment (in purple)
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Typing atoms In experiments and as in previous work 
[49], the following atom typing scheme inspired from 
atom pairs [50] was used: an atom ai in molecule m is 
identified by the tuple

where � is the number of pi electrons, e the chemical ele-
ment symbol, h the number of bonded heavy atoms and f 
the formal charge. Stereochemistry is ignored.

Extended bond typing While the bond order (BO) is a 
natural bond typing scheme, to better preserve some of 
the structure of a molecular training set3, it is useful to 
extend bond typing to make it more precise. Assuming bj 
is a bond in molecule m between atoms ai and ai+1:

Note that if type(ai) ≠ type(ai+1) , the bond is directed. 
In fact, several published methods use some kind of 
extended bond typing scheme (eMolFrag [51], CReM [19, 
25]).

Tagging cleaved bonds Once some bonds have been 
selected for cleavage, this can be encoded into a valid 
SMILES string where unspecified atoms (the ‘*’ character 
in SMILES notation) are introduced and isotope num-
bers are used to encode the atom types of the atoms sur-
rounding a cleaved bond. For example, tagging a cleaved 
bond in the SMILES for ethanol (’OCC’) would give: 
‘O[2*][1*]CC’. Where isotope numbers one and two are 
indexes into an atom type dictionary (a mapping from 
integer to atom type). In the following, if a fragment is 
a prefix of a SMILES string, it is called a “seed fragment”. 
All other fragments are called “branch fragments”.

Fragmenting molecules with tagged cleaved bonds A 
SMILES string with tagged cleaved bonds can be trans-
formed into a mixture of fragments. This is not strictly 
necessary, as long as the molecular fragment assembler 
can recognize tagged cleaved bonds. However, this is use-
ful to visualize the fragments with a 2D molecular viewer. 

type(ai) = (�, e, h, f )

type(bj) = (type(ai),BO(bj), type(ai+1))

The SMILES ‘O[2*][1*]CC’ becomes ‘O[2*][1*].[2*][1*]
CC’. When extracting a fragment from a SMILES with 
tagged cleaved bonds, care must be taken to not extend 
the fragment past (or shorter than) its SMILES branch 
nesting depth. i.e. the nesting of parentheses pairs inside 
the SMILES string must be taken into account (Fig. 3).

Indexing molecules with tagged cleaved bonds For 
fast molecular generation, it is necessary to index all 
the fragmented molecules first. All seed fragments are 
stored into an array. Each branch fragment is stored into 
a hash-table of arrays where the prefix tagged cleaved 
bond is used as a key and the remaining of the fragment 
is appended to the array of all values for this key. For a 
fragment with several cleaved bonds, the first cleaved 
bond appearing in the fragment’s SMILES (when reading 
it from left to right) will determine under which cleaved 
bond type this fragment is registered. Our method uses 
randomized SMILES rather than canonical ones, in order 
to avoid any bias that could be introduced by the canoni-
calization procedure.

Generating molecules In essence, some kind of Markov 
sampling of the previously created data structure is per-
formed, until the generated string has no tagged cleaved 
bond left. The algorithm is: (i) a seed fragment is uni-
formly drawn from the array of seed fragments. (ii) as 
long as the string under construction contains tagged 
cleaved bonds, each of them is deleted and replaced by 
a uniformly drawn fragment from the array of frag-
ments with the tagged cleaved bond as the key. When 
generating the right flavor of DeepSMILES, such a frag-
ment assembly algorithm can be performed using almost 
exclusively string operations. However, when generating 
SMILES, an extra step renumbering ring opening and 
closure numbers is required, to avoid number collisions 
between rings from different fragments.

Software implementation Typing atoms and bonds, 
selecting and tagging cleaved bonds is done by a Python 
script using RDKit [38]. For performance and correctness 
reasons [52], indexing fragments and fragment assembly 
is done by an OCaml [53] program reading SMILES with 
tagged cleaved bonds. The program is named FASMIFRA 
for “Fast Assembly of SMILES Fragments”.

Fig. 3  First line: SMILES string with tagged cleaved bonds. Second line: SMILES branch nesting depth of each character from the first line (0: not in 
a branch; 1: inside a branch; 2: inside a branch inside a branch, etc). Third line: S characters mark the “seed fragment”. T (resp. U) characters mark the 
first (resp. second) tagged cleaved bond. B marks the only heavy atom of the first “branch fragment”. C characters mark the atoms and bonds of the 
second “branch fragment”. The second “branch fragment” starts at SMILES branch nesting depth 2. This fragment cannot continue once the nesting 
depth becomes lower. The corresponding fragmented molecule can be seen on Fig. 2 right

3  Also, to prevent molecular generation from creating new/never-seen bonds 
and so to favor the synthesizability of the generated molecules.
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Results
To assess the model training speed and molecular gen-
eration frequency of the proposed method, the 1M 
GDB-13 molecules sample [44] from Arús-Pous [8] was 
used and 2B molecules were generated (same proto-
col). The training set was fragmented (with a fragment 
molecular weight decreased from 150 to 50Da, because 
GDB-13 molecules are quite small) , then molecules 
were generated from those fragments (Fig.  4). Tests 
were run using a single core of an Intel Core i7 CPU 
@ 2.7GHz, with 12 cores and 16GB or RAM, under 
Ubuntu Linux 20.04 LTS.

To assess diversity of the generated molecules, as 
well as training set distribution matching, a sample of 
100k molecules from ChEMBL-28 and a sample of 20k 

molecules from TCM@Taiwan were used. After molec-
ular fragmentation of each set, the same number of 
molecules was generated (100k and 20k). The number 
of unique Bemis-Murcko scaffolds in each training and 
generated set is reported, along with the number at the 
intersection of those sets (Table 1).

To assess if the method is capable of training set dis-
tribution matching, those training and generated sets 
were projected into an eight dimensional space, where 
dimensions are quite unrelated (molecular weight, cal-
culated LogP, #aromatic rings, topological polar surface 
area, #rotatable bonds, synthetic accessibility score [54], 
hydrogen bond acceptors and hydrogen bond donors). 
Then, the overlap between the training set and the cor-
responding generated set histogram was quantified using 
the Jaccard index (equation (1)). Let X and Y be two his-
tograms with the same number of bins (n).

A Jaccard index of zero means no overlap between two 
histograms, while one means perfect similarity (Fig. 5).

Results on the GuacaMol molecular generation bench-
mark can be seen in Table 2 and Fig. 6.

Discussion
Model training frequency (Fig.  4). RNN [8] is the slow-
est method, with ∼ 30 molecule/s (70 epochs; 8 min/
epoch; 1M training set molecules). Plus, RNN used four 
CPUs and one GPU, so the per CPU processing fre-
quency is much lower. Molecular fragmentation (2755 
molecule/s) or cleaved bond tagging (proposed method; 
2479 molecule/s); both written in Python using RDKit 
and running on a single CPU core have a more reason-
able, and comparable, processing frequency.

Model sampling frequency (Fig. 4). Assembly of molec-
ular fragments in Python using RDKit is the slowest 
method here ( ∼1685 molecule/s). Editing a molecu-
lar graph (RWMol class in RDKit) is not so efficient. 
RNN is reasonably fast upon model sampling ( ∼9167 
molecule/s); although requiring four CPUs and one GPU. 
On the other hand, the proposed method of fast assembly 

(1)J (X ,Y ) =
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Fig. 4  Model training (left) and sampling speed (right). RNN: 
Recurrent Neural Network (numbers cited from literature [8]); Frag 
(train): molecular fragmentation (Python/RDKit); Tag: tagging cleaved 
bond (proposed method, Python/RDKit); Frag (sampling): assembly 
of molecular fragments using molecular graph operations (Python/
RDKit); Smi: fast assembly of SMILES fragments (proposed method, 
OCaml). Dsmi: fast assembly of DeepSMILES fragments (proposed 
method, OCaml); Tag is the model training prerequisite of Smi and 
Dsmi sampling. All methods use a single CPU, except RNN which uses 
four CPUs and one GPU

Table 1  Molecular diversity assessed via the number of unique Bemis-Murcko scaffolds at the intersection between datasets

ChEMBL_train (100k) ChEMBL_gene (100k) TCM_train (20k) TCM_gene (20k)

ChEMBL_train (100k) 25135 8466 (23957 new ∼= 74%) 979 982

ChEMBL_gene (100k) 8466 (23957 new ∼= 74%) 32423 802 891

TCM_train (20k) 979 802 6056 2713 (5726 new ∼= 68%)

TCM_gene (20k) 982 891 2713 (5726 new ∼= 68%) 8439
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of SMILES fragments reaches high sampling frequencies 
( ∼300599 SMILES-encoded molecule/s; ∼348636 for 
DeepSMILES).

GuacaMol benchmark (Table  2) In this benchmark, 
while FASMIFRA is one of the simplest methods (prob-
ably just after the Random sampler baseline model), a 
balanced performance profile is observed. As expected, 
FASMIFRA generates only valid molecules (Validity = 

1.0). The only metric in which FASMIFRA is not great 
is Novelty (0.7); meaning that sometimes generated 
molecules are part of the training set. But, FASMIFRA 
being a fragment-based method, this was expected. 
Especially, extended bond typing constrains which 
fragment can be connected to which, effectively limit-
ing the number of combinations which can be obtained 
from a fragment library. On the other hand, a negative 

Fig. 5  Distribution reproduction experiments’ histograms. Traditional Chinese Medicine database at Taiwan: training set in blue (TCMtrain), 
generated set in cyan (TCMgene). ChEMBL training set in red (CBLtrain), generated set in orange (CBLgene). The Jaccard index between the training and 
generated set histograms is shown in the legend (T = x)
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control experiment was performed, where extended 
bond typing was turned off, which showed that while 
doing this improves the Novelty metric (from 0.702 to 
0.947), this is at the detriment of training set distribu-
tion matching (KL_divergence is decreased from 0.959 
to 0.855; FCD is decreased from 0.814 to 0.397). This 
negative control experiment shows that FASMIFRA 
is not a random molecular generator. Other methods 
which perform very well in the GuacaMol benchmark 
are the Random sampler baseline, but it cannot gener-
ate new molecules (Novelty = 0.0). The SMILES LSTM 
and the VAE are also very balanced and show good 
performance across all metrics. Compared to FASMI-
FRA, the Graph MCTS is lacking on the KL_divergence 
(0.522) and FCD metrics (0.015). The AAE is lacking on 
the FCD metric (0.529). The ORGAN is lacking on the 
Validity (0.379), KL_divergence (0.267) and FCD met-
rics (0.0). However, and to their defense, some of these 
methods might perform molecular optimization while 
FASMIFRA cannot (it would need to be coupled to a 
genetic algorithm or simulated annealer).

Molecular diversity (Table  1 and Novelty line in 
Table 2). In terms of Bemis-Murcko scaffolds, the pro-
posed method generates a significant fraction of new 
scaffolds (74% in the generated set for ChEMBL; 68% in 
the generated set for TCM@Taiwan). With both data-
sets, generating molecules resulted in an increase of the 
number of unique Bemis-Murcko scaffolds in the gen-
erated set, compared to the training set (Table  1). As 
expected, the ChEMBL dataset (drug-like molecules) 
and the TCM@Taiwan dataset (natural products) are 
very different (Table  1 and Fig.  5). For example, both 
training sets share less than 1000 scaffolds.

Training set distribution matching (Fig. 5 and KL_diver-
gence and FCD lines in Table 2). The method shows some 
propensity at training set distribution matching. For 
example, the minimum, median and maximum Jaccard 
indexes between histograms are (0.71, 0.805 and 0.88) for 
ChEMBL and (0.77, 0.845 and 0.93) for TCM@Taiwan.

On the positive side, this method is conceptually sim-
ple. Fragmenting molecules is reasonably fast (left of 
Fig.  4). Indexing fragments and generating molecules 
is extremely fast (right of Fig.  4). Only syntactically 
valid (Deep)SMILES encoded molecules are generated 
(Validity line in Table 2).

On the negative side, this method does require a 
training set. See the introduction for methods which 
don’t. Also, the method doesn’t create new rings. How-
ever, a medicinal chemistry technique is readily appli-
cable in order to reasonably alter the generated rings 
[55]. If the training set contains molecules which can-
not be fragmented (e.g. only made of fused rings), such 
molecules only contribute one seed fragment, without 
any attachable branch fragment (i.e. they might be cop-
ied as is from the training set to the generated set upon 
molecular generation). The method can generate dupli-
cate molecules. Canonicalizing the produced SMILES 
would allow to detect and eventually filter those out.

Conclusion
In this article, a simple method to generate molecules 
from molecular fragments was described. The method 
can work with any molecular fragmentation scheme, 
as long as rings are not opened/broken. Several experi-
ments were presented, evaluating model training speed, 
molecular generation frequency, molecular diversity 
and training set distribution matching. The proposed 
method can be used as-is in genetic algorithm or simu-
lated annealing fragment-based molecular generators. 
Our prototype software implementation is released 
under the GPL license. The technique may also be use-
ful for dataset augmentation and demonstrates that 
DeepSMILES proposed useful simplifications to the 
SMILES syntax. We are not working on it and it might 
be difficult, but an interesting extension might be to 
support molecular fragmentation schemes which hap-
pen to open/break rings.

Table 2  Comparison of several molecular generators in the GuacaMol [33] distribution learning benchmark

Random sampler: baseline model; SMILES LSTM: Long-Short-Term Memory DNN for SMILES strings; Graph MCTS: Graph-based Monte Carlo Tree Search; AAE: 
Adversarial AutoEncoder; ORGAN: Objective-Reinforced Generative Adversarial Network; VAE: Variational AutoEncoder; FASMIFRA: Fast Assembly of SMILES Fragments 
(proposed method); Negative control: FASMIFRA without extended bond typing (any fragment can be connected to any other fragment)

Benchmark Random sampler SMILES LSTM Graph MCTS AAE ORGAN VAE FASMIFRA Negative control

Validity 1.000 0.959 1.000 0.822 0.379 0.870 1.000 1.000

Uniqueness 0.997 1.000 1.000 1.000 0.841 0.999 0.994 0.959

Novelty 0.000 0.912 0.994 0.998 0.687 0.974 0.702 0.947

KL_divergence 0.998 0.991 0.522 0.886 0.267 0.982 0.959 0.855

FCD 0.929 0.913 0.015 0.529 0.000 0.863 0.814 0.397
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Fig. 6  100 FASMIFRA-generated molecules during the GuacaMol benchmark (ChEMBL 24 training set)
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