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Abstract 

The majority of primary and secondary metabolites in nature have yet to be identified, representing a major challenge 
for metabolomics studies that currently require reference libraries from analyses of authentic compounds. Using 
currently available analytical methods, complete chemical characterization of metabolomes is infeasible for both 
technical and economic reasons. For example, unambiguous identification of metabolites is limited by the availabil-
ity of authentic chemical standards, which, for the majority of molecules, do not exist. Computationally predicted or 
calculated data are a viable solution to expand the currently limited metabolite reference libraries, if such methods are 
shown to be sufficiently accurate. For example, determining nuclear magnetic resonance (NMR) spectroscopy spectra 
in silico has shown promise in the identification and delineation of metabolite structures. Many researchers have been 
taking advantage of density functional theory (DFT), a computationally inexpensive yet reputable method for the pre-
diction of carbon and proton NMR spectra of metabolites. However, such methods are expected to have some error 
in predicted 13C and 1H NMR spectra with respect to experimentally measured values. This leads us to the question–
what accuracy is required in predicted 13C and 1H NMR chemical shifts for confident metabolite identification? Using 
the set of 11,716 small molecules found in the Human Metabolome Database (HMDB), we simulated both experimen-
tal and theoretical NMR chemical shift databases. We investigated the level of accuracy required for identification of 
metabolites in simulated pure and impure samples by matching predicted chemical shifts to experimental data. We 
found 90% or more of molecules in simulated pure samples can be successfully identified when errors of 1H and 13C 
chemical shifts in water are below 0.6 and 7.1 ppm, respectively, and below 0.5 and 4.6 ppm in chloroform solvation, 
respectively. In simulated complex mixtures, as the complexity of the mixture increased, greater accuracy of the cal-
culated chemical shifts was required, as expected. However, if the number of molecules in the mixture is known, e.g., 
when NMR is combined with MS and sample complexity is low, the likelihood of confident molecular identification 
increased by 90%.
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Introduction
Metabolomics and exposomics involve the large-scale 
study of small molecules found in biological and environ-
mental samples, including endogenous and exogenous 
chemicals, and their molecular breakdown products 
[1–3]. For human studies, understanding the active 
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metabolic pathways and fate of exogenous chemicals is a 
major focus area for improving health through precision 
medicine, as well as an important tool for researching 
and understanding the state of environmental and agri-
cultural conditions [4–7]. Biological and environmental 
samples typically comprise numerous molecules and are 
often in a complex matrix. It is not practical to develop 
or apply sample preparation methods for isolation of 
individual constituents (whether because of concentra-
tion limits, separation difficulty, or project cost limita-
tions). The ability to comprehensively characterize such 
complex samples would result in significant advances in 
multiple scientific fields and enable currently irresolvable 
solutions for the understanding of metabolic pathways 
and biological systems such as active phenotypes/func-
tions, industrial reactions such as they relate to (bio)fuels 
and high-value (bio)products, environmental processes, 
human actions in society, and even earth systems and 
climate.

Using nuclear magnetic resonance (NMR) [8–10], mass 
spectrometry (MS) [11–13], and other tools [14–16], a 
wide range of molecules have been identified and exten-
sively documented in the literature [17–21]. Hundreds of 
thousands of metabolites are now known and their MS/
MS or NMR data are electronically available on pub-
lic and commercial chemical databases [22, 23] such as 
PubChem [24], Royal Society of Chemistry ChemSpider 
[25], ChEMBL by European Molecular Biology Labora-
tory [26, 27], Chemical Entities of Biological Interest 
(ChEBI) [28, 29], DrugBank [30, 31], Biological Magnetic 
Resonance Bank (BMRB) [32] and Human Metabolome 
Database (HMDB) [33], GDB13 [34], The Small Mol-
ecule Pathway Database (SMPDB) [35, 36], Distributed 
Structure-Searchable Toxicity (DSSTox) Database [37], 
E.  coli Metabolome Database (ECMDB) [38, 39], Eco-
Cyc E.  coli Database [40], Food Component Database 
(FooDB) [41], LIPID MAPS In-Silico Structure Database 
(LMISSD) [42], MetaCyc Metabolic Pathway Database 
[43], MolMall [44], Super Natural II [45], The Toxin and 
Toxin Target Database (T3DB) [46, 47], ToxCast [48], 
The Universal Natural Products Database (UNPD) [49], 
ZINC [50]. However, the vast majority of molecules 
that are found in complex biological and environmen-
tal samples are not represented in current identification 
libraries (across multiple analytical platforms) [51, 52]. 
For example, the largest mass spectral library, the Wiley 
Registry and NIST Libraries contain more than 1 million 
mass spectra [53, 54]. HMDB (ver. 4.0) describes 114,260 
metabolites, and of the molecules described in HMDB, 
only a small portion are available for purchase as authen-
tic reference material [55–57]. ZINC 15, a database 
of ~ 1.8 B compounds, currently has 81,519 endogenous 
human metabolite structures, and of these, 9490 (12%) 

are immediately available for purchase [58, 59]. Further-
more, it is hypothesized that 1060 or more molecules are 
structurally feasible (for molecules < 1000  Da) [60–62], 
and much fewer than 1% are available in molecular iden-
tification reference libraries [63–65]. Thus, one cause of 
our current restricted size of small molecule identifica-
tion libraries is due to the limited number of molecules 
available for purchase as authentic reference material. 
Even if all molecules were known and available for pur-
chase, the time and cost to analyze these for building ref-
erence libraries would be prohibitive [66, 67]. The fields 
of metabolomics and exposomics, and small molecule 
identification generally, must overcome the significant, 
longstanding obstacle in the field: the absence of ana-
lytical methods for comprehensive and unambiguous 
identification of small molecules without reliance on ref-
erence data obtained from analysis of chemical standards 
[68–70].

For molecular properties that are consistently calcu-
lable with a known (preferably low) error, it is possible 
to create in silico reference libraries in order to reduce 
reliance on authentic chemical standards [70]. Several 
analytical methodologies, such as those based on chro-
matography coupled with MS[71–73] and NMR [74] 
have demonstrated feasibility for compound identifica-
tion based on predicted properties. NMR’s ability to be 
non-destructive and easily quantifiable makes it a unique 
tool for identifying novel compounds and handling com-
plex metabolite mixtures without the need of chemical 
separation [75]. For example, MS/MS spectra yield rea-
sonable accuracy for predictions of molecular proper-
ties and can be coupled with machine learning methods 
[76] but limited to short lists of small molecules [77, 78]. 
Quantum chemical applications such as infrared spectra 
[79], molecular collisional cross sections (CCS) [80, 81] 
and NMR chemical shifts [82–85], are promising for the 
calculations of molecular attributes. For example, cou-
pling calculated mass and CCS has contributed to suc-
cessful chemical identification of cis/trans isomers [86, 
87], as well as isomers in complex synthetic samples [88]. 
For studies specifically using NMR, quantum chemi-
cal simulations for the prediction of spectra have been 
a valuable tool for the community. In the last two dec-
ades, density functional theory (DFT), an exceptionally 
well-established approach for high-throughput chemical 
calculations with the advantage of high performance for 
less computational cost, has been widely applied to pre-
dict NMR chemical shifts [89–91] of molecules and con-
formers [92–94] in different custom solvent conditions 
[95–97]. Furthermore, structural elucidation is one of the 
most practical uses of NMR, and it is common to utilize 
NMR chemical shift calculations along with experimental 
shifts to identify compound mixtures [98–100] and to aid 
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reassignment of structures or stereostructure assignment 
[101–103].

Currently, the use and acceptance of predicted NMR 
chemical shifts is limited due to an incomplete under-
standing of the required accuracy of such predictions for 
confident molecular identification. It has already been 
demonstrated that heuristic/empirical approaches for 
chemical shift predictions are generally of low accuracy 
compared to quantum chemical calculation-based meth-
ods (e.g. DFT) [83, 104, 105]. For DFT approaches, the 
factors that significantly affect the accuracy of predicted 
13C and/or 1H NMR chemical shifts are the optimization 
level of molecular geometry [106–108], the use of differ-
ent DFT theories [109–112], implicit and explicit solva-
tion models [113–115], unique molecular properties of 
metabolites [116–121], etc. Agreement between pre-
dicted and experimental chemical shifts can be improved 
when (i) the basis set is enlarged [104, 122], (ii) the qual-
ity of the method is improved for geometry optimization 
[123, 124], (iii) a scaling procedure is employed [125, 
126], (iv) conformational sampling is applied [127], and 
(v) solvation is taken into account appropriately [128, 
129]. However, the question of what level of accuracy is 
required for calculated NMR chemical shifts when using 
these as reference spectra for molecular identification 
remains largely unexplored.

In this study, we investigate the accuracy and/or level 
of confidence in predicted NMR chemical shifts required 
to identify small molecules using reference libraries of 
varying size. Specifically, we present a detailed study on 
the role of accuracy in the prediction of 13C and 1H NMR 
spectra for confident metabolite identification in solution 
phase using a chloroform and water continuum model. 
We estimate the minimum and maximum error limits 
which hinder or enable 13C and 1H NMR chemical shift 
predictions to unambiguously identify molecular struc-
tures. In this study, we discuss two cases—simple and 
complex samples—using 11,716 small molecules taken 
from the HMDB [18]. We cover different chemical func-
tional groups and explore the results to provide statistics 
for libraries of different sizes.

Materials and methods
Molecule sets
Two sets of molecules taken from HMDB 4.0 [56] and 
distinguished by their reported partition coefficients 
were simulated, one in water (Set I) and a second in chlo-
roform (Set II) as the solvent. The included compounds 
were not in salt forms, consist only of C, H, O, N, P and 
S atoms, and are in the molecular weight range of 27 
to 500  Da. Set I, the water solvated set, contains 2,723 
molecules (29,489 carbon and 45,426 hydrogen nuclei 
in total across all molecules) and spans a wide range of 

structure-based chemical classes and chemical func-
tionalities including organic acids, organonitrogen com-
pounds, nucleosides, nucleotides, organoheterocyclic 
compounds, carboxylic acids, organooxygen compounds, 
and benzenoids as determined by the hierarchical 
chemical classification scheme, ClassyFire [130]. Set II, 
the chloroform solvated set, contains 8,990 molecules 
(138,535 carbon and 191,327 hydrogen nuclei in total 
across all molecules) and also spans a broad range of 
chemical functionalities including organic compounds, 
organic acids, lipids, benzenoids, and organoheterocyclic 
compounds. Figure 1 compares the number of molecules 
containing a given amount of carbons and hydrogens for 
Sets I and II. The molecules and their geometries in both 
Sets are provided in the Additional file 1.

Computational details
The NMR chemical shifts for all molecules in this study 
were calculated using the In Silico Chemical Library 
Engine (ISiCLE) [131] (see github.com/pnnl/isicle for 
the latest version of ISiCLE). ISiCLE is an automated 
pipeline for high-accuracy chemical property calcula-
tion, implemented using the Snakemake workflow man-
agement system [132]. This pipeline takes SMILES [133] 
(a line notation representation of molecule structure) as 
input, generates initial 3D molecular conformations, and 
subsequently optimizes this initial structure and calcu-
lates chemical properties through quantum chemistry 
via NWChem [134] (an open-source, high-performance 
computational chemistry software developed at PNNL). 
For this study, all molecules were initially optimized in 
solvent using the computationally inexpensive B3LYP 
[135, 136] with 3-21G basis set [137–139]. We chose 
this level of theory due to our available computational 
resources, particularly considering the treatments for the 
geometry optimization of over 11 k molecules. It is known 
that the 3-21G basis set for geometry optimization is not 
adequate to obtain high accuracy in NMR chemical shift 
calculations [127, 140, 141], but in this study it is only 
used to simulate NMR spectral data in order to obtain a 
reasonable representative distribution of (likely moderate 
accuracy) chemical shifts. Assessment of the best compu-
tational approaches to maximize accuracy of NMR chem-
ical shift calculations is beyond the scope of this study. To 
test whether the NMR spectral data is statistically affected 
or not by using any other DFT method, the isotropic 
shielding values of 5 randomly chosen molecules in dif-
ferent shapes and sizes from Sets I and II were calculated 
using 3 different DFT methods. The shielding values were 
observed to be shifted in the same direction following 
the same pattern. Further details are given in Additional 
file 2. The inclusion of solvent is via the COnductor-like 
Screening MOdel (COSMO) [142] solvation modeling. 
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NMR isotropic shieldings were calculated for all opti-
mized molecules at the B3LYP/cc-pVDZ [139, 143] level 
of theory. Based on our previous assessment [131], this 
method provides reliable chemical shifts [112] and yields 
isotropic shieldings with a reasonably low computational 
cost [144]. The gauge-invariant atomic orbital (GIAO) 
approach [145] was used to compute 13C and 1H NMR 
chemical shifts. The computed chemical shifts are pro-
vided in Additional file (available upon author request).

Algorithm
Various scoring approaches have been proposed for 
the analysis of chemical shifts and comparisons of DFT 
methods. The most common criteria in the literature 
quantifying the agreement between calculated and 

experimental data are mean absolute error (MAE) (Eq. 1), 
root mean square error (RMSE) (Eq. 2), corrected mean 
absolute error (CMAE) (Eq.  3), and correlation coeffi-
cients (e.g., the Pearson correlation coefficient).

(1)MAE =

∑N
i=1

∣

∣δexp − δcalc

∣

∣

N

(2)RMSE =

√

∑N
i=1

(

δexp − δcalc

)2

N

(3)CMAE =

∑N
i=1

∣

∣δexp − (δcalc − b)/m
∣

∣

N

Fig. 1  Histograms depicting the number of molecules in each set for a given number of carbon atoms in a Set I and b Set II, and hydrogen atoms 
in c Set I and d Set II
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where δexp is the experimental chemical shift, δcalc is the 
calculated chemical shift, N is the number of nuclei, and 
m and b denote slope and intercept of the calculated 
shifts with respect to experimental shifts.

To identify the compounds in a mixture, our approach 
follows the steps in the flowchart presented in (Fig. 2). In 
Step I, NMR chemical shifts of all molecules are calcu-
lated as described above. Since we do not have experi-
mental NMR data for the 11 thousand molecules in our 
two sets, in step II we create representative NMR data 
for comparisons: the calculated NMR spectra (gener-
ated in Step I) are considered as surrogate experimental 
shifts data and new lists of chemical shifts are created 
synthetically by adding Gaussian distributed noise. 
Although the error distributions of NMR chemical shifts 
were reported to also obey a student t-distribution in 
other studies [131, 146–149], we assume errors for both 
carbons and protons follow a Gaussian distribution [144, 
150] with mean µ and standard deviation σ. Unless other-
wise stated, the mean is assigned as 0, since the errors of 
scaled 13C and 1H NMR chemical shifts are equally likely 
to be positive or negative [144, 147]. In this study, σ is 
taken in the range of 0.5–50 ppm and 0.1–10 ppm for 13C 

and 1H chemical shifts with increment of 0.05 ppm and 
0.01 ppm, respectively. Simply, we assume that our initial 
(non-noise-added) calculated chemical shifts (“surrogate 
experimental data”) represent the distribution, but not 
necessarily the accuracy of authentic experimental chem-
ical shifts, and that the addition of zero-mean Gaussian 
noise to create synthetic data with a defined error allows 
us to explore how the accuracy of real calculated chemi-
cal shifts can affect identification rates. This approach is 
similar to that taken in other successful studies [151–153]

In Step III, each molecule taken from the computed 
data is searched back against the surrogate experimen-
tal data. First, the experimental chemical shifts of an 
unknown molecule are matched to the computed chemi-
cal shifts of every single molecule to find the best match, 
based on minimizing the distance between two sets of 
chemical shifts. To do this, we used the Munkres assign-
ment algorithm [154–156], which gives the minimum 
distance score (i.e. error) of two sets, within a feasible 
computational time bounded by a polynomial expres-
sion [157]. The Munkres algorithm minimizes the total 
error or summation of squared differences between each 
assignment. It is based on the following principle:

Fig. 2  Flowchart for the identification of the compounds in a mixture
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Let S1 and S2 be two separate lists of chemical shifts 
consisting of N and M elements, respectively. Let us con-
struct an M-by-N matrix

where si is the mth element of S1, bj is the nth element 
of S2 and M ≤ N. We have M elements to be assigned 
to N elements on a one-to-one basis where the assign-
ments constitute an independent set of the M-by-N 
matrix. Then, the Munkres algorithm models an assign-
ment problem, which returns the least-sum of elements 
of the matrix, choosing only one element from each row 
and column. In our case, this indicates the best possible 
matching, which will be used in the next step.

In Step IV, for each molecule, to determine which 
set of experimental data best matches to the com-
puted one, the similarity of two sets of assigned chemi-
cal shifts is quantified by a distance score. There is no 
perfect score (i.e. zero error) between two sets (e.g., in 
practice, there is always some amount of error expected 
between experimental and computed shifts). A critical 
issue is finding a method to quantify the error such that 
it always yields the best match at the top when the list 
of scores are sorted from most to least likely. In addi-
tion to the most popular ways to express chemical shift 
errors (i.e. MAE and RMSE), we believe that an indica-
tion of how confident a matching set is can be expressed 
better in terms of RMSE and probability. Smith et  al. 
performed a sophisticated systematic study for address-
ing the issue of the best parameter, and proposed DP4 
[147], which is used when experimental NMR data is to 
be used to identify one molecule out of an arbitrarily 
large library of many possible structures. DP4 is based 
on conditional probability and/or Bayes’ theorem—the 
key factor increasing the certainty of results. While we 
found DP4 to give slightly better rankings for pure sam-
ples than RMSE, we also found it to be computationally 
much more intense than RMSE. We also believe DP4 is 
not convenient for ranking matches in impure/complex 
samples. Therefore, we use RMSE in this study. Further 
details are given in Additional file 1.

Note that the RMSE ranges differ for carbon and pro-
ton. For the cases when carbon and proton are used 
together for identifying molecules, each RMSE is calcu-
lated separately and their geometric means are taken to 
get a single score for the molecule. The geometric mean 
is used to normalize the RMSEs, so the error associated 
with carbon does not dominate that of the proton for 
cases where both nuclei are used together.







(s1 − b1)
2
· · · (sM − b1)

2

...
. . .

...

(s1 − bN)
2
· · · (sM − bN)

2







Finally, in Step V, all resulting scores are sorted in 
ascending order, yielding a list of molecules starting 
from the most likely to the least likely to be found in 
the mixture. The ranks and scores of each molecule are 
reported. In this study, a rank of 1 (top of list) is syn-
onymous with positive molecule identification.

For this study, we considered the case when (1) pro-
ton chemical shifts are used alone for identification, (2) 
carbon chemical shifts are used alone, and finally, (3) 
when both nuclei are used together.

The automated workflow and all scripts, written in 
Python, are provided in Additional file 4.

Results and discussion
Robust and comprehensive metabolite identification 
using calculated NMR chemical shifts requires assess-
ments of the accuracies of the in silico approaches used 
and that must have validated error ranges. We investi-
gated the level of accuracy required to identify small mol-
ecules in NMR libraries. We performed a comprehensive 
analysis on the extent of accuracy in the predicted 13C 
and 1H NMR chemical shifts using 11,716 small mol-
ecules taken from the HMDB. We analyzed the limits 
(upper and lower) of error for confident metabolite iden-
tification. in two solution phases: chloroform and water. 
We discussed the possible error ranges in predicted 
NMR chemical shifts allowing to achieve reasonably con-
fident identification in 2 types of samples: (i) pure uni-
form sample, and (ii) complex sample. We performed our 
runs for 190 different error ranges (i.e. σ, Gaussian stand-
ard deviation) and repeated the experiments 16 times 
for each case. Unless otherwise stated, all analyses were 
performed for each molecule in the two sets. We report 
the average results for i) 13C chemical shifts alone, ii) 1H 
chemical shifts alone, and iii) 13C and 1H chemical shifts 
used together for identification. We report the average 
percentage of molecules successfully identified (i.e. rank 
is 1) for Set I (water soluble molecules) and Set II (chloro-
form soluble molecules).

Case I: Pure sample
In this case, let us assume we have a spectrum from 
a single compound and an array of carbon (13C) and/
or proton (1H) NMR chemical shifts. This case involves 
selecting only the molecules having the exact number of 
carbon and/or proton chemical shifts from the database 
to match the experimental spectrum. This narrows the 
list of candidate molecules.

Figures 3 and 4 show the identification results of 90% 
to 100% of the molecules of both sets in the top 10 hits 
(Top 10) for carbons and protons used independently. 
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As an example, for identifying 90% of the molecules in 
the first hit (Top 1), 13C chemical shift errors should be 
below 3.2 and 3.6 ppm for Set I and Set II, respectively. 
Likewise, for 1H chemical shifts, when the MAE is at 
most 0.38  ppm for the both sets, there is a 90% chance 
that the correct identification will be made as the first hit. 
It is possible to correctly identify 99% of the molecules 
when the noise is at most 1.1–1.2 and 0.16–0.17 ppm for 
13C and 1H chemical shifts, respectively. The molecule of 
interest has a chance to be among the first two candidate 
matches (Top 2) when 13C and 1H chemical shift errors 
are 0.53 ppm and 0.21 ppm, and 0.14 ppm and 0.02 ppm 
for Set I and Set II, respectively. However, for these sets 
of molecules, 100% of identification is not possible when 
13C and 1H chemical shifts are used alone. The higher 
quality versions of Figs. 3 and 4, and the full list including 
50–100% of identification is given in the Additional file 
(available upon author request).

Figure 5 shows where the molecules rank in identifica-
tion lists for a comprehensive identification analysis for 
Set I and Set II, plotted against carbon and proton errors 
when 13C and 1H data are used together for identification. 
The plots show how the probability of a molecule being 
correctly identified changes with chemical shift errors. 

The contour lines represent different levels of identifica-
tion with respect to carbon (y-axis) and proton (x-axis) 
errors. The color bars show the ranking distributions 
along the ranges of carbon (0–50 ppm) and proton errors 
(0–10 ppm). The contour lines are represented in a recip-
rocal relationship (Eq. 1) (see Additional file 3 for further 
information). Therefore, on each contour line, it is pos-
sible to have a list of combinations for a range of carbon 
and proton errors. For example, for 90% of identification, 
the carbon and proton errors (ppm) could be (3 and 10), 
(5 and 0.92), or (6 and 0.7), respectively, out of many com-
binations. This reciprocal relationship also gives a trade-
off between the carbon and proton errors such that it is 
possible to skip expensive 13C chemical shifts over highly 
accurate 1H chemical shifts, and vice versa.

Each contour line has an optimum point which rep-
resents a trade-off point (reported in Table 1). At these 
points on the curves, the cumulative errors of carbon 
and proton are minimum (note that ranges for carbon 
and proton errors are normalized). A fascinating but 

(4)MAE(13C) = a/(MAE(1H)− b)+ c

Fig. 3  Averaged percentages of molecules being identified within the first 1, 2, 5, and 10 candidate molecules at different Gaussian standard 
deviation (σ) values (ppm) for Set I and Set II when 13C NMR chemical shifts are used alone

Fig. 4  Averaged percent of molecules being identified within the first 1,2,5, and 10 candidate molecules at different Gaussian standard deviation 
(σ) values (ppm) for Set I and Set II when 1H NMR chemical shifts are used alone



Page 8 of 14Yesiltepe et al. Journal of Cheminformatics           (2022) 14:64 

not unexpected observation here is that the chances 
of molecules being successfully identified are doubled 
when 13C and 1H chemical shifts are used together. 
Thus, compared to the previous case when 13C and 
1H chemical shifts are used independently, using more 
information increases the chance of successful iden-
tification. The full list of trade-off points including 
50–99% is reported in the Additional file (available 
upon author request).

It is observed the ranks range from 1 to 7 for Set I 
and 1 to 16 for Set II. The difference in ranges source 
from different sized molecule sets and differences in 

Fig. 5  Mean of ranks with respect to the carbon and proton errors and contour lines for the different level of identification ratios when carbons and 
protons are used together for a, b Set I (water soluble molecules) and c, d Set II (chloroform soluble molecules). b and d are the zoomed versions of 
a and c, respectively. The color bars represent the rankings

Table 1  Optimum trade-off MAEs at different Gaussian standard 
deviation (σ) values (ppm) for Set I and Set II when 13C and 1H 
NMR chemical shifts are used together for identification

Percentile (%) Set I (Water soluble 
molecules)
σ (ppm)

Set II (Chloroform 
soluble molecules)
σ (ppm)

13C 1H 13C 1H

99 2.02 0.30 1.64 0.43

95 4.21 0.57 4.44 0.53

90 6.16 0.72 5.82 0.70
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standard deviation and variance of 13C and 1H chemi-
cal shifts. The standard deviations of ranks are shown 
in the Additional file 2.

Case II: Impure sample
A continuing grand challenge for NMR-based metabo-
lomics is dealing with the spectral complexity in analy-
sis of mixtures. An NMR spectra can have a combination 
of thousands of distinct resonances belonging either 
to the main compound or to impurities. Here, we used 
an approach very similar to a quantitative metabo-
lomics approach in which identification and quantifica-
tion are based on the underlying assumption that any 
given sample spectrum is the sum of individual spectra 
of pure metabolites found in the mixture. The spectrum 
of interest is compared to a library of pure compound 
spectra by properly matching and fitting the reference 
peaks. The reference libraries need to be prepared from 
NMR spectra of pure metabolites at a precisely known 
and controlled pH and temperature. Especially, peaks of 
water or some endogenous metabolite are pH, tempera-
ture and salt-sensitive, which frequently leads to errors. 
In this study, we disregarded the effects of pH and tem-
peratures, and distortions, artifacts and noise in signals. 
We performed our analysis based on the assumption that 
the spectrum of every single compound in the mixture is 
a sub-spectrum stored in the reference database.

Let us assume we have an impure sample consisting of 
unknown number of compounds and carbon and/or pro-
ton NMR chemical shift data for the sample. In contrast 

to Case I, here we consider an n-tuple of molecules to be 
the list of candidates in the sample consisting of n num-
ber of molecules. Unlike Case I, the sequence of chemi-
cal shifts to be matched in the reference library do not 
necessarily have the same size of candidates; instead any 
molecule having equal or less 13C and 1H NMR chemical 
shifts in the reference library has a chance to be a can-
didate. For instance, if we have a sample of 2 molecules 
with c1 and c2 number of carbons and h1 and h2 num-
ber of protons, respectively, only the pairs having a sum 
of c1 + c2 carbons and h1 + h2 protons are the candidates 
and the chemical shifts of an atom can only belong to one 
of two candidates.

Compared to Case I, not only does the list of candi-
date molecules expand but matching two sets of data 
of different size is also not straightforward, making 
it even more challenging. Because of this, we did not 
examine this case for different Gaussian noise levels in 
detail as we did in Case I. We performed our runs for 
mixtures of 2 and 3 compounds. We report the results 
of this case only for a specific set of Gaussian noises 
(the optimum trade-off MAEs of 13C and 1H NMR 
chemical shifts reported for Set I in Table  1). Unless 
otherwise specified, we refer the mixtures of 2 and 3 
compounds as pairs and triplets, respectively. In Fig. 6, 
the averaged ranks are shown for molecule pairs and 
triplets for all the optimum MAEs. Compared to the 
case of pure samples (Case I), the probability of iden-
tification decreases from 95 to 0% (pairs) and 6% (tri-
plets) when the 13C and 1H NMR chemical shift errors 

Fig. 6  Average ranks of Case I and Case II with known/unknown number of molecules in samples at optimum points for Set I (water soluble 
molecules)
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are 4.41  ppm and 0.6  ppm, respectively. So, the iden-
tification chance is quite low (green and purple lines 
in Fig.  6) even when the 13C and 1H NMR chemical 
shift errors are low. We then investigated what hap-
pens if the number of compounds in the sample is 
known. At first this seems counter intuitive, but the 
probability of identification is increased to 84% (from 
0%—pairs) and 68% (from 6%—triplets) when the 
13C and 1H NMR chemical shift errors are 4.41  ppm 
and 0.6  ppm, respectively. The average identification 
chances increase by 83% and 91% (blue and black lines 
in Fig.  6). Determining the number of compounds in 
a sample may be possible using additional orthogonal 
data. For example, multidimensional NMR experi-
ments or MS may aid in determining the number of 
high concentration molecular candidates in a sam-
ple. Integrating NMR and MS can provide improved 
identification and quantification of a larger number 
of metabolites, as in Case II. [158, 159]. This is still, 
however, less than Case I by 84% and 93% for pairs and 
triplets, respectively (red line in Fig. 6). Standard devi-
ations of ranks and computational times of runs are 
given in the Additional file 1.

Case II was performed only for the smaller molecule 
set, Set I (water soluble molecules), and not for the 
larger set, Set II (chloroform soluble molecules), due to 
the high computational time demands.

NMR spectroscopy is one of the main methods used 
for identifying the structure of metabolites. Besides the 
usual parameters (i.e. 13C and 1H NMR chemical shifts), 
other major NMR parameters (i.e. spin–spin coupling 
constants and 15  N, 17O, and other nuclei chemical 
shifts) can alternatively be used for structure identifi-
cation. We believe the use of any other property will 
significantly improve molecular identification. In this 
initial study, we did not test the effect of using addi-
tional information that can be collected using NMR 
(e.g., J-couplings and peak shape). However, most cur-
rently available databases provide only 13C and 1H NMR 
chemical shifts, and J-couplings, multi-dimensional 
spectra, etc. are missing for many molecules. There 
is rapid progress in the use of 2D NMR models (i.e. 
COSY, HSQC, and HMBC) which aids interpretation 
of spectrum and leads to less ambiguity in the spectral 
assignments and allows more reliable identification. 2D 
NMR techniques are proven to overcome the problem 
of insufficient spectral resolution and spectral redun-
dancy. 2D NMR experiments provide additional infor-
mation (i.e. couplings between magnetic nuclei) and 
solve the problem of overlapping peaks. Thus, it allows 
identification of metabolites that otherwise remain 
undetected. Multi-dimensional spectra prediction can 
be obtained using spin dynamics simulation libraries 

(i.e. SPINACH [160]) coupled with DFT calculations. 
We are currently assessing the present limits of such 
automated workflows for accelerating confident, accu-
rate, and fast metabolite identification.

Conclusion
Global comprehensive compound identification in com-
plex samples will revolutionize understanding of the role 
of important compounds in chemical, environmental 
and biological studies. A major limitation is that the vast 
majority of metabolites are not available in current iden-
tification libraries, nor available for purchase as authentic 
reference material. It is not economically and practically 
feasible to identify hundreds of thousands of metabo-
lites in laboratories to establish small molecule reference 
libraries. To address this, in silico small molecule librar-
ies are currently the only reasonable solution to move 
toward comprehensive identification of all molecules in 
complex samples.

We performed an extensive statistical analysis on the 
effect of 13C and 1H NMR chemical shift calculation 
errors, in water and chloroform solvents, on the ability 
to make correct identification from in silico libraries. For 
pure samples, the required accuracy levels are feasible, 
promising the establishment of large scale metabolomic 
NMR in silico libraries. 90% or more of these molecules 
in a pure sample can be successfully identified when 
errors of 13C and 1H NMR chemical shifts are below 
6 ppm and 0.5 ppm, respectively. This shows great poten-
tial of future use and reliability of predicted NMR chemi-
cal shifts in molecule identification for pure samples.

Compared to pure sample identification, it may require 
complementary information for complex samples in 
order to correctly identify constituent compounds. The 
water-soluble molecules in a complex sample have a 
chance of 68% and 84% (it is 95% for pure samples) to be 
identified for pairs and triplets, respectively when errors 
of 13C and 1H NMR chemical shifts are below 4.41 ppm 
and 0.6  ppm. The possibility of identification increases 
by 90% when the number of molecules are known 
beforehand, corroborating other findings that significant 
potential for parallel MS analysis [161]. This increased 
confidence in our results indicates the value of adding 
multiple molecular or chemical properties and using 
additional measured or accurately predicted information 
for comprehensive identification of metabolites.

This study provides valuable insight into the practical-
ity and applicability of potential in silico small molecule 
NMR databases. The rapid innovations in metabolite 
identifications through the recent advances in computa-
tion and data integration in both NMR and MS/NMR 
analytical and computational methods will aid the full 
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metabolome composition assignment in complex sam-
ple identification.
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