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Abstract 

We present several workflows for protein-ligand docking and free energy calculation for use in the workflow manage-
ment system Galaxy. The workflows are composed of several widely used open-source tools, including rDock and 
GROMACS, and can be executed on public infrastructure using either Galaxy’s graphical interface or the command 
line. We demonstrate the utility of the workflows by running a high-throughput virtual screening of around 50000 
compounds against the SARS-CoV-2 main protease, a system which has been the subject of intense study in the last 
year.
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Introduction
Computational techniques are commonly used to assess 
the affinity of small druglike molecules to a biological 
target molecule, typically a protein, in a process known 
as virtual screening. Virtual screening is a complex, 
multi-step process which needs to be performed at a 
high-throughput level of thousands or millions of input 
molecules. As a result, workflow management systems 
such as KNIME [1], CWL [2], Nextflow [3] or Galaxy [4] 
prove useful to organize analyses, allowing automation 
and parallelization of commonly used steps and avoiding 
tedious manual repetition.

In previous work, we published a range of cheminfor-
matics [5] and molecular dynamics tools [6] via the Gal-
axy platform. Galaxy provides a range of useful features, 
including a convenient web-based graphical interface, stor-
age of essential metadata such as tool parameters, and easy 

construction and execution of workflows from compo-
nent tools, either on the command line or via the graphi-
cal interface. Reproducibility of analyses is ensured by the 
installation of software dependencies using BioConda 
[7], conda-forge [8], or BioContainers [9]. In addition, we 
pointed out that using Galaxy provides access to vast pub-
lic compute infrastructures, including GPU resources for 
molecular dynamics calculation, such as the denbi and 
STFC clouds which underpin the European Galaxy server, 
https://​usega​laxy.​eu, a distinctive feature which distin-
guishes Galaxy from other workflow management systems.

Here, we present several new workflows for protein-
ligand docking, molecular dynamics and free energy cal-
culation. These workflows are constructed out of simpler 
building blocks (the component Galaxy tools) and can be 
either used directly or modified as templates for other 
similar calculations. We demonstrate the utility of these 
workflows by running them at high scale on a system 
which has attracted much recent attention, namely the 
main protease (Mpro) of the SARS-CoV-2 virus.

The main protease of the SARS-CoV-2 virus has been 
intensively studied since the beginning of the global 
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pandemic, with the first crystal structure released in Janu-
ary 2020 [10]. Subsequent experimental work, involving 
some of the authors, revealed the crystal structures of 
Mpro in complex with 96 different fragment structures, 
including non-covalent hits as well as hits covalently 
bound to the vital Cys145 residue in the protease bind-
ing site [11]. Fragment hits were also found located at the 
interface between the Mpro dimers. Here we focus our 
attention on the 22 non-covalent hits bound within the 
protease active site, excluding two (denoted x1086 and 
x0887) which bind to other pockets of the protein (the 
chemical structures of the fragments studied are depicted 
in Additional file 1: Fig. S1). We use these 22 hits as the 
basis for generating a list of candidate compounds using 
the Fragalysis [12] fragment network, a reimplementation 
of the Fragment Network concept originally developed by 
Astex Pharmaceuticals [13]. These compounds are then 
docked using rDock against each of the crystallographic 
structures from the fragment screen. The resulting docked 
structures are validated against the original fragment 
structures using the SuCOS [14] measure and scored 
using the TransFS [15] deep learning-based method. 
Based on these scores, the compounds can be ranked and 
the most promising of them (around 200) used for fur-
ther free energy calculations. These are performed using 
the MMGBSA technique, using an ensemble of a total of 
5 ns of simulation time per compound. Subsequently we 
take the 50 top-scoring compounds from the MMGBSA 
simulations and perform more computationally expen-
sive dcTMD (dissipation-corrected targeted molecular 
dynamics) [16, 17] calculations, requiring a total of 50 ns 
of simulation time per compound.

The three workflows themselves (docking and scoring, 
MMGBSA calculations, and dcTMD calculations) can be 
flexibly applied to any system, not only Mpro. To facili-
tate usage by other users in the future, they have been 
deposited in the Intergalactic Workflow Commission 
(IWC) [18], a curated repository for Galaxy workflows. 
To ensure reliability and reproducibility, the workflows 
are packaged together with tests which are run via con-
tinuous integration (CI). If tests are successful and the 
submission is approved by an IWC review, the submitted 
workflows are deployed to Dockstore [19] and Workflow-
Hub [20], two recently developed platforms for sharing 
scientific workflows. Links for access are provided in 
Additional file 1: Table S2.

Methods
Three main workflows have been developed as part of 
this work: an initial protein-ligand docking and scoring 
workflow, in which hypothetical protein-ligand struc-
tures are generated and ranked; a relatively low-cost free 
energy calculation workflow, based on the MMGBSA 

technique, which is run on the most promising of the 
docked complexes; and a more costly free energy calcula-
tion technique, based on the recently published dcTMD 
method. Subsequent analysis of molecular interactions 
and plotting of data is performed outside Galaxy. Images 
of the active site are generated using VMD [21].

Protein‑ligand docking and scoring
The inputs for the docking and scoring workflow consist 
of a protein structure for docking and a list of candidate 
compounds. The initial list of candidates is generated 
with the Fragalysis fragment network API, using the 22 
selected fragment hits as inputs to be extended, generat-
ing molecules that are close neighbours of the starting 
molecules in the fragment network.

For those initial candidates, various charge forms 
between pH 4.4 and 10.4 are enumerated using Dimor-
phiteDL [22]. A single three-dimensional conformer for 
each of these forms is then produced using OpenBabel 
[23] as the starting structure for docking. The main task 
of the workflow, after enumerating charge forms and 
conformer generation, is to dock each of the enumer-
ated conformers into the binding sites of the fragment 
crystal structures to generate numerous docking poses, 
using the open source rDock software [24]. The workflow 
makes use of the Galaxy’s collection feature to split the 
initial list of compounds and process the resulting chunks 
in parallel, essential given the large amount of poses gen-
erated. Pocket definition for the docking was achieved by 
the so-called ‘Frankenstein ligand’ technique of combin-
ing atomic coordinates from all fragments into a single 
hybrid molecule for use as a reference ligand.

Docking produced a large number of poses, which were 
then evaluated using two measures. Firstly, the SuCOS 
measure is used to assess the overlap between the puta-
tive binding position of the compound and each of the 
experimental fragment crystal structures. The aim is 
to validate the docked poses and to ensure they share a 
similar conformation and position to at least one of the 
experimental crystallographic structures. Secondly, the 
TransFS tool, based on a deep learning model trained on 
a variety of molecular interactions, is used to score each 
of the poses.

A schematic of the workflow is provided in Fig. 1. For 
our concrete use case, we provide an initial list of 53,787 
compounds, which are generated by the Fragalysis frag-
ment network. After charge enumeration and conformer 
generation, this value is expanded to 219,247, or around 4 
conformers per compound. For each of these, 25 docking 
poses are generated, giving a total of over 5 million poses.

It should be noted that this workflow is run separately 
for each of the fragment crystal structures, i.e. 22 times, 
corresponding to a total of over 120 million docking 
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poses. Poses are thus validated against a single fragment 
during the SuCOS scoring stage. As a result, for each 
fragment, we obtain a separate list of poses which are 
ranked only on the basis of their overlap with that sin-
gle fragment. All poses are also scored using the TransFS 
tool.

A customizable subworkflow is responsible for filtering 
the poses based on the assigned scores. Filtering proceeds 
by selecting the top 5000 compounds for each fragment 
(around 0.1%) by SuCOS score. As a rule of thumb, a SuCOS 
score of over 0.5 is acceptable; thus, all poses which dif-
fer substantially in conformation and position from the 
experimental structures are discarded. This subset of poses 
with high SuCOS scores is then filtered further in one of 
three ways: (1) selecting all with SuCOS > 0.6 and TransFS 
> 0.9, (2) selecting all with SuCOS > 0.7 and TransFS > 0.8, 
(3) for all fragments where these two filtering steps resulted 
in less than 3 outputs, the top 3 poses based on TransFS 
scores are selected. By applying this complex filtering, we 
obtain a range of poses which score highly for both TransFS 
and SuCOS measures, as well as ensuring a wide chemical 
diversity of poses with all of the component fragments rep-
resented. The filtering is implemented using the sdsort and 
sdfilter commands which are provided alongside rDock.

A tutorial describing the docking and scoring workflow is 
available via the Galaxy Training Network [25] at https://​bit.​
ly/​31vAZ​pI.

MMGBSA free energy workflow
The list of compounds obtained after application of the 
docking and scoring workflow comprises around 210 mol-
ecules. To obtain a low-cost assessment of the free energy 
of binding for each of the poses, we perform MMGBSA cal-
culations, using GROMACS [26] to perform the molecular 
dynamics simulations and AmberTools [27] for the calcula-
tions themselves.

Firstly, a subworkflow for system parameterization is 
used to prepare the selected ligands for MD simulation. 

The docked poses are converted from SDF to MOL2 
format and parameterized using the GAFF forcefield 
[28], using tools based on AmberTools and acpype 
[29]. Meanwhile, the protein structure is parameterized 
with the AMBER99SB forcefield, using a tool based on 
GROMACS’s pdb2gmx. Using the tagging system pro-
vided by Galaxy, each of the poses is annotated with its 
respective SuCOS and TransFS value, together with 
the identity of its parent fragment. These metadata are 
inherited by datasets produced in subsequent analysis, 
allowing quick overview of all data for any particular 
compound.

Solvent (water represented with the TIP3P model) and 
sodium or chloride counterions are added as required to 
neutralize the system, before performing energy mini-
mization. The molecular dynamics simulations them-
selves are performed using GROMACS with a timestep 
of 1 fs at a temperature of 300 K. 100 ps of equilibration 
simulations (50 ps under the NVT ensemble followed 
by 50 ps under the NVT ensemble) are performed with 
constraints on the protein atoms. The production simu-
lations (length 200 ps) are then performed under the 
NVT ensemble. For each compound, an ensemble of 20 
simulations are performed, taking advantage of Galaxy’s 
collection functionality to create a list of datasets and 
apply a tool over the entire list as a single workflow step. 
The size of the ensemble is configurable as a workflow 
parameter. The production simulations are then used as 
a basis for the MMGBSA calculations and a mean across 
the ensemble is calculated. An schematic of the entire 
workflow is provided in Fig. 2. It should be noted that the 
entropic component to the free energy is not included in 
the calculations, so the values generated represent only 
the enthalpy of binding.

One of the major reasons to use the Galaxy platform 
for executing these workflows is that all data, as well as 
the parameters used for all simulations, are preserved 
in public Galaxy histories, ensuring full reproducibility. 

Fig. 1  Schematic of the docking and scoring workflow

https://bit.ly/31vAZpI
https://bit.ly/31vAZpI
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Links to all histories are provided in the Additional 
file 1.

dcTMD free energy workflow
As a further demonstration of the capabilities of our 
tools, and the flexibility of the Galaxy platform which 
allows them to be combined in numerous different 
ways, we have designed a third workflow which makes 
use of the recently published dcTMD free energy tech-
nique. The main aim of dcTMD is to provide insight 
into the kinetics of protein-ligand dissociation; a drug 
candidate which has a low rate of dissociation from the 
target protein and thus a high residence time [30] in the 
binding site will be preferred to a candidate which dis-
sociates quickly. The theoretical background, with com-
parisons against various common benchmark systems, 
was provided in two previous publications [16, 17]; the 
physical basis of the method is described in detail in 
those two works. The main advantage of the dcTMD 
method is its provision of free energy and friction pro-
files for protein-ligand dissociation, with even sam-
pling of the entire reaction coordinate, including areas 
of high free energy which are infrequently sampled at 
equilibrium and inherently difficult to study.

The process entails simulation of an ensemble of 
constraint targeted molecular dynamics (TMD) simu-
lations, in which a constraint pulling force is applied 

between two atom groups (typically, the ligand and part 
of the protein) to separate the two groups at constant 
velocity. The pull groups used for Mpro simulations 
are depicted in Fig.  3. By applying a weighted average 

Fig. 2  Schematic of the MMGBSA workflow. A modular subworkflow for system parameterization is shared with the dcTMD workflow; see Fig. 4 for 
details

Fig. 3  Pull groups for the TMD simulations (image depicts the x0397 
structure). Group 1 (cyan) consists of the ligand non-hydrogen atoms. 
Group 2 (green) consists of a selection of alpha-carbons in the Mpro 
active site. During the course of the TMD simulation, the two groups 
are pulled apart by means of a constant constraint force
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across the ensemble, based on an approximation of the 
Jarzynski equality [31], free energy and friction profiles 
for the system at equilibrium can be calculated, despite 
the fact the ensemble is made up of non-equilibrium 
simulations.

In order to streamline the process of performing 
dcTMD calculations, we have developed a complete 
Galaxy workflow for both simulation and the subse-
quent calculations. This workflow functions similarly to 
the MMGBSA workflow, in that it represents the MD 
ensembles using Galaxy collections, the size of which 
can be parameterized using a workflow parameter. For 
dcTMD simulations, an ensemble size of around 100 
is recommended [32]; we therefore set ensemble size 
to 100 for each ligand. MD simulations are performed 
using GROMACS using a timestep of 1 fs at a tempera-
ture of 300 K. 80 ps equilibration is performed under the 
NPT ensemble with restraints on the protein atoms for 
each simulation, followed by a 500 ps production TMD 
simulation under the NPT ensemble without restraints, 
in which the two pulling groups are separated with a 
velocity of 1 m/s - in other words, the ligand ends the 
simulation at 500 pm from its initial position bound in 
the active site. Pulling simulations are achieved using the 
PULL code incorporated into GROMACS. As the Mpro 

binding site is rather shallow, this simulation length is 
sufficient to sample the entire dissociation pathway. 
As for the MMGBSA workflow, all data, as well as the 
parameters used for all simulations, are published in Gal-
axy histories linked in the Additional file 1.

An essential part of the dcTMD process is pathway 
separation. One of the core assumptions of the dcTMD 
protocol is Gaussianity of the work profile of the ensem-
ble, which is acceptable if the ligand takes a uniform 
path between the bound and unbound state, but breaks 
down if the ligand is able to take multiple paths out of 
the binding site. Therefore, it is essential to carry out an 
analysis to determine whether distinct paths are present 
in the ensemble. Galaxy tools are also provided to align 
the TMD trajectories according to the protein atoms 
and perform hierarchical clustering based on the RMSD 
between ligand positions. The user then has the option 
to inspect the clusters manually and to apply the dcTMD 
calculation again to a subcluster of the ensemble.

A schematic of both the main dcTMD workflow and 
the optional pathway separation is provided in Fig. 4. Our 
main aim in calculating the dcTMD free energy profiles is 
to obtain a value for the maximum free energy reached, 
which heavily influences the kinetics of dissociation. The 
position of this barrier on the reaction coordinate is also 

Fig. 4  Schematic of the dcTMD workflow
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of interest; by inspecting the free energy and friction pro-
files generated in combination with the TMD trajecto-
ries, links can be made between features of the profiles 
and events along the unbinding coordinate.

Workflow execution
The workflows detailed here required a high number 
of executions, particularly in the case of the MMGBSA 
workflow, which was invoked over 200 times. Galaxy pro-
vides a graphical web-based interface for tool and work-
flow execution, as well as to inspect outputs, but this is 
of limited use for a project like this one, which requires 
workflows to be executed several hundred times.

Fortunately, command-line tools are available to auto-
mate this process, by providing programmatic access 
to Galaxy’s API. Workflows are invoked using the com-
mand line tool Planemo [33], modifying the input files for 
each run. This can easily be scaled up using a simple shell 
script containing a for loop. The Python library BioBlend 
[34] was also used extensively to move and organize data-
sets, run individual tools, and restart paused workflows.

Table 1 summarizes execution statistics for each of the 
workflows. A summary of the number of compounds 
studied in each step is provided by Table 2.

Results and discussion
Docking
We have assembled three different workflows which can 
be applied sequentially for virtual screening of a pro-
tein. In particular, we have demonstrated the use of these 
workflows by running them on the SARS-CoV-2 main 
protease. A key point is that these workflows consist of 
simple building blocks which can be simply disassem-
bled and recombined to allow different types of analyses 
and calculations than those covered here. Of the 50000 
compounds in our original library, we have identified 
around 210 docking poses which are scored highly by the 
TransFS measure, as well as matching the conformations 

and positions of the component fragments well. For these 
compounds, we have performed MMGBSA calculations 
based on ensembles of MD simulations. Additionally, we 
demonstrate a more computationally intensive dcTMD 
workflow on a subset of around 50 highly scoring com-
pounds. A summary table is provided in Table 3.

Figure  5a and  b shows distributions of TransFS and 
SuCOS scores per fragment. TransFS scores cluster 
around a modal value of 0, with a small minority of com-
pounds scoring highly; the 99th percentile lies at 0.61, 
but the distributions of scores are similar for all the frag-
ments (Additional file  1: Table  S1). The single exception 
is x1093, for which all compounds score effectively 0; the 
reason for this is difficult to identify, due to the black box 
nature of the TransFS method, so the TransFS filtering 
is simply skipped for this fragment. Unlike TransFS, the 
SuCOS scores are very unevenly distributed, depending on 
the compound’s parent fragment. It can be observed, for 
example, that in general smaller fragments such as x0995 
score highly, which is unsurprising, as a smaller fragment 
can fulfil the conditions for overlap more easily. When fil-
tering compounds based on SuCOS score, this should be 
taken into account, else an unwanted bias towards these 
smaller fragments is introduced.

Figure  5c demonstrates that the SuCOS and TransFS 
scores are orthogonal, allowing effective filtering of the 
compounds on two different measures. While the top 
right corner of Fig. 5c is relatively sparsely occupied, there 
are enough compounds present there to select a reason-
able number of candidates which score highly on both 
measures for further study. However, because of a differ-
ence between SuCOS score distribution between the dif-
ferent fragments, applying a crude cutoff would ensure 
certain fragments were heavily overrepresented, while 
others would remain completely unrepresented. We there-
fore have developed the more complex filtering workflow 
described in the Methods section, to ensure all fragments 
receive some representation in the filtered dataset.

Table 1  Summary of workflow resource usage

Values for resource usage are approximate and can vary substantially between workflow invocations

Workflow CPU time / h GPU time / h Data storage / GB Number of executions Datasets 
created

Docking and scoring 3000 1 80 22 6000

MMGBSA 30 2 3 209 893

dcTMD 112 14 6 50 1726
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MMGBSA
It is interesting to note that the strongest binders, accord-
ing to the MMGBSA calculations, were those com-
pounds derived from the x0397 fragment (Fig. 6). x0397 
is notable as the only fragment which induces a confor-
mational change in the protein; on binding, it displaces 
the sidechains of the Cys145 and His41 catalytic resi-
dues and allows access to an additional subpocket (S1’) 
to which other fragments cannot bind. Considering the 

Fig. 5  a and b Distributions of SuCOS and TransFS scores per fragment; the mean values are marked in black. c Scatter plot of SuCOS and TransFS 
scores for all poses. 209 of these are filtered for further screening d All fragments superimposed on the protein structure and colored by the main 
subpocket to which the fragment binds (S1’ red, S1 blue, S2 pink, S3 orange)

Table 2  Number of compounds or poses filtered and studied at 
each stage

Stage Fragments Fragalysis Docking MMGBSA dcTMD

Number of 
compounds

22 53k 120M 209 49

Fig. 6  Plot of MMGBSA enthalpies for poses derived from each of the 
22 fragments (mean marked by the large circles)
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other subpockets, compounds derived from fragments 
located in both subpockets S1 (e.g. x0434, x0678) and 
S2 (e.g. x0395, x0387) score highly. On the other hand 
compounds derived from the three sulfonamide deriva-
tives x0161, x0195 and x0946, which bind in S3, score 
poorly. Figure  7 depicts four fragments bound to each 
of the subpockets, together with a derived docking pose 
superimposed.

Inspection of hydrogen bonds formed during the MD 
simulations reveals a range of different interactions 
formed and a wide variation over the set of fragments, 
as expected. For example, fragment x0678 contains a 
pyridine group which forms a hydrogen bond with the 
side chain of His163, buried within subpocket S1. This 
bond is inherited by several of the compounds derived 
from x0678. Alternatively, for others of the compounds, 
the pyridine ring of x0678 is replaced with a hydroxyl 

or oxime group, which can then form a hydrogen bond 
with the side chain of Glu166, although the bond does 
not exist for the fragment itself. Glu166 is also able to 
form hydrogen bonds with some compounds from its 
main chain amide group, reflecting its key position at the 
entrance to subpocket S1.

As it provides access to S1’, x0397 is also the only frag-
ment which enables significant hydrogen bonding with 
the catalytic cysteine residue.

dcTMD
Various information can be extracted from the TMD 
ensemble. Firstly, free energy profiles can be calculated, 
depicting the free energy of the system relative to the 
bound state at different points on the pulling coordinate. 
Friction profiles can also be calculated, depicting the 

Fig. 7  Ligands (cyan) binding in pockets, overlaid on the parent fragments (green): S1’ a) (x0397; SuCOS 0.65)), S1 b (x0387; SuCOS 0.56), S2 c 
(x0678; SuCOS 0.53) and S3 d (x0161; SuCOS 0.60)
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friction present in the system over a particular point in 
the reaction coordinate. A classic protein-ligand dissocia-
tion free energy profile depicts a peak between the bound 
and unbound state, with the unbound state generally 
higher in free energy than the bound state (for example, 
Fig. 8). The height of the peak is of particular interest, as 
it represents the kinetic barrier to dissociation (Table 3). 
Secondarily, the position of the peak, or any other fea-
tures in the free energy or friction profiles, can provide 
insight into the dissociation pathway, when considered 
together with manual inspection of the TMD trajectories.

For all of the ligands examined, it appears there is only 
a single pathway available for ligand dissociation, thus 
obviating the need to perform the pathway separation 
step. This is not surprising, given that the binding pocket 
of Mpro is fairly close to the protein surface.

Inspecting the TMD trajectories, various other inter-
actions become apparent which were not observed in 
the equilibrium simulations already performed. For the 
ligands located in the S1 and/or S1’ pockets, such as 
those derived from fragments x0397 or x0991, an inter-
action with Asn142 at around 0.25 nm from the binding 

Table 3  Compounds with a maximum dcTMD free energy of over 10 kJ/mol, together with all other calculated scores, and 
interactions inherited from the component fragments

The chemical structures of the compounds are depicted in Additional file 1: Fig. S2. BO backbone oxygen, BN backbone nitrogen, SC side chain, HB hydrogen bond, HI 
hydrophobic interaction

Index dcTMD maximum 
free energy / kJ/
mol

Parent (and other 
component) 
fragments

Distance of dcTMD 
maximum from binding 
site / nm

MMGBSA 
/ kcal/mol

SuCOS TransFS Interactions, with occupancy 
and derived fragment

1 22.41 x0387 (x0434) 0.45 −17.74 0.56 0.94 Cys44BO HB 91.5% (x0387)

Met165 HI 88.5% (x0434)

Gln189 HI 94.5% (x0434)

His41 pi stacking 6.5% (x0387)

2 18.4 x0387 (x0434) 0.34 −25.51 0.54 0.95 Met165 HI 94% (x0434)

His41 pi stacking 44% (x0387)

Gln189 HI 88% (x0434)

3 16.45 x0991 (x0946) 0.24 −29.93 0.64 0.96

4 15.25 x0397 0.24 −31.97 0.65 0 Gly143BN HB 100% (x0397)

Cys145BN HB 83.5% (x0397)

Thr25 HI 10.5% (x0397)

5 14.57 x0397 0.18 −30.74 0.61 0 Gly143BN HB 85.5% (x0397)

Cys145BN HB 89.5% (x0397)

Thr25 HI 62.5% (x0397)

6 13.89 x0434 0.38 −25.42 0.49 0.65 Glu166BN HB 84.5% (x0434)

Met165 HI 64% (x0434)

Gln189 HI 19% (x0434)

7 13.61 x0678 0.73 −26.4 0.53 0.94 His163SC HB 14% (x0678)

Met165 HI 50% (x0678)

Glu166 HI 90% (x0678)

8 11.96 x0305 0.52 −25.07 0.54 0.94 Met165 HI 87.5% (x0305)

Gln189SC HB 13% (x0305)

9 10.95 x0434 0.43 −22.71 0.52 0.68 Gln189 HI 50.5% (x0434)

Met165 HI 10.5% (x0434)

Glu166BN HB 3.5% (x0434)

10 10.57 x0434 (x0387) 0.29 −34.78 0.52 0.77 Glu166BN HB 77.5% (x0434)

Met165 HI 61.5% (x0434)

His163SC HB: 44% (x0434)
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site can be observed. Asn142 protrudes over the active 
site, partially covering the entrance to S1 and S1’, where 
many of the most successful candidate compounds are 
bound. Therefore, exiting from the binding site entails 
overcoming a steric clash with the side chain, as well as 
breaking any transient electrostatic interaction formed 
with the asparagine side chain. In support of this the-
ory, in the TMD trajectories inspected, the dcTMD free 
energy peak observed at around 0.3 nm corresponds to 
the point at which the ligand pushes the side chain aside, 
having already broken the key molecular interactions, 
so that no major obstacles now remain to leaving the 
active site. For fragments exiting from the S2 subpocket, 
an interaction on the other side of the binding pocket is 

frequently observed (Fig.  9), with the short helical sub-
structure between amino acids 44 and 50 evident, in 
particular Ser46, the side chain of which is optimally ori-
ented to face the ligand as it exits the S2 subpocket.

Interactions
In order to validate the results from the dcTMD and 
MMGBSA workflows, the interactions between the pro-
tein binding site and the docked molecule were system-
atically examined. This analysis was conducted outside 
Galaxy using a Python script [35] based on the Open 
Drug Discovery Toolkit (ODDT) [36]. All hydrogen 
bonds and hydrophobic interactions between the crystal-
lographic fragments and the binding site were extracted, 
together with the less frequently occurring salt bridges, π
-stacking and π-cation interactions, and halogen bonds. 
Subsequently, the same script was used to analyse the 
MMGBSA trajectories produced for each pose, filtering 
to include only those interactions present in the frag-
ments. By applying the script to one of the equilibrium 
MD trajectories used for MMGBSA calculation, rather 
than a static structure, an estimate can be obtained of the 
occupancy of an interaction over time, rather than simply 
its presence or absence.

38 interactions were found between the initial 22 frag-
ments and the protein binding site, an average of 1.73 
interactions per fragment. By contrast, averaging over 
the MD trajectories, each compound on average shows 
3.13 interactions with the binding site, demonstrating 
that the method effectively combines multiple fragments 
to increase the number of protein–ligand interactions. 

Fig. 8  Free energy curves derived from dcTMD calculations for two 
of the screened compounds

Fig. 9  a Friction profiles for four selected ligands; the profiles for the ligands binding in subpocket S1/S1’ (red/pink) show a rise starting at 0.2 nm, 
whereas for those binding in subpocket 2 (blue/cyan), this is absent, with an increase being observable instead at 0.3 nm. b Ligands exiting the 
subpocket S1/S1’ at 0.25 nm from the initial binding position (pink), with Asn142 highlighted, and subpocket S2 at 0.33 nm from the initial binding 
position (green), with Ser46 highlighted
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MMGBSA free energies correlate with the number of 
interactions (Fig. 10), so that considering only the subset 
of compounds with MMGBSA of less than -20 kcal/mol 
gives an average of 4.57 interactions.

In addition, a search was also performed for new inter-
actions which do not originate from the crystallographic 
fragments. This yielded very few results. The most com-
mon is a salt bridge between the ligand and Glu166, which 
is present in 11 molecules with an occupancy > 0.5. Others 
are even rarer: the second most common interaction not 
present in the original fragments is a hydrogen bond with 
the backbone nitrogen of Pro168, for which the maximum 
occupancy is 0.45; a total of only 7 have an occupancy > 0.1. 
Considering the chemical diversity of the fragments and 

their distribution through the binding site, it is not surpris-
ing that there is little scope for new interactions to appear, 
but it helps to confirm that the compounds found success-
fully replicate the chemistry of the original fragments.

According to Table  3, the majority of the highest-
scoring compounds have several high-occupancy inter-
actions inherited from the fragments of which they 
are composed. In particular, a hydrophobic interaction 
between Met165 and the ligand is present for almost all 
the compounds - this interaction is also present for 10 of 
the 22 original fragments, due to its crucial position at 
the intersection of the S1 and S2 subpockets. For com-
pounds derived from the x0434 fragment, a hydropho-
bic interaction with Gln189 and a hydrogen bond with 
Glu166 also frequently recurs. For compound 3, on the 
other hand, no interactions can be detected; this is due 
to the fact that no interactions exist, at least according to 
the script used, between the parent fragment x0991 and 
the protein. For the compounds derived from the x0397 
fragment, which allows a change in protein conformation 
and which provided the highest MMGBSA scores, other 
interactions predominate: hydrogen bonds with Gly143 
and Cys145, and to a lesser extent a hydrophobic interac-
tion with Thr25. Both these hydrogen bonds between the 
ligand and the backbone nitrogen atoms of Gly143 and 
Cys145 show a particularly strong relationship with the 
dcTMD free energy score (Fig. 11), and appear only with 
the x0397 fragment.

The dcTMD scores represent the peak of the free 
energy profile of dissociation—thus, a high correlation 
between these interactions and the dcTMD score implies 
they play an important role in raising the barrier to 
debinding, where they are present.

Fig. 10  The average number of interactions observed and the 
free energy as calculated by MMGBSA are correlated ( R2 = − 0.46). 
The weakness of the relationship reflects the high variation in the 
strength and importance of interactions

Fig. 11  Maximum dcTMD free energy scores for compounds which display hydrogen bonding with the peptide backbone at residues Gly143 
( R2 = 0.69 ) and Cys145 ( R2 = 0.85)
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Conclusion
We have presented several new workflows for vir-
tual screening, including protein-ligand docking and 
scoring, an established free energy technique (MMG-
BSA) and a more recently developed free energy tech-
nique (dcTMD), and demonstrated their use with a 
study on the main protease of the SARS-CoV-2 virus. 
These workflows allow us to study a very high num-
ber of initial candidate compounds, before narrow-
ing to a smaller selection which we study using more 
computationally intensive MD techniques. The use 
of these workflows demonstrates the flexibility of 
the GROMACS-based MD tools in Galaxy, which 
can be combined together to create various different 
types of simulation, including non-equilibrium TMD 
simulations.

A key motivation for using the Galaxy platform for 
this kind of study is to enable reproducible, transpar-
ent research. Therefore, all datasets are available in the 
form of published Galaxy histories at https://​usega​laxy.​
eu. Links to the histories are provided in the Additional 
file 1.
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