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Abstract 

Adverse drug-drug interaction (DDI) is a major concern to polypharmacy due to its unexpected adverse side effects 
and must be identified at an early stage of drug discovery and development. Many computational methods have 
been proposed for this purpose, but most require specific types of information, or they have less concern in inter-
pretation on underlying genes. We propose a deep learning-based framework for DDI prediction with drug-induced 
gene expression signatures so that the model can provide the expression level of interpretability for DDIs. The model 
engineers dynamic drug features using a gating mechanism that mimics the co-administration effects by imposing 
attention to genes. Also, each side-effect is projected into a latent space through translating embedding. As a result, 
the model achieved an AUC of 0.889 and an AUPR of 0.915 in unseen interaction prediction, which is competitively 
very accurate and outperforms other state-of-the-art methods. Furthermore, it can predict potential DDIs with new 
compounds not used in training. In conclusion, using drug-induced gene expression signatures followed by gating 
and translating embedding can increase DDI prediction accuracy while providing model interpretability. The source 
code is available on GitHub (https://​github.​com/​GIST-​CSBL/​DeSIDE-​DDI).
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Introduction
Polypharmacy has resulted in an increasing number of 
patients taking multiple drugs simultaneously. This can 
be problematic because drug interactions can alter the 
intended responses. In some cases, it leads to unexpected 
side effects or decreased clinical efficacy. This phenom-
enon is commonly referred to as a drug-drug interaction 
(DDI). Identifying potential DDIs in advance is crucial 
because the most vulnerable people in society (e.g., older 
people and multimorbid patients) are the primary targets 
of polypharmacy.

DDIs are generally found through experimentation. 
However, in vitro and in vivo identification of DDIs are 
largely infeasible, owing to patient safety and ethical 
considerations that increase time and costs. Further-
more, major polypharmacy side effects are difficult to 
identify from small trials and cohorts [1]. Therefore, 
computational approaches have been developed. Many 
computational approaches use datasets retrieved from 
past studies, electronic health records, and social media 
[2–4]. Similarity-based and network-based approaches 
were commonly used in predicting DDIs. Contempo-
rary similarity-based approaches assume that similar 
drugs may have similar interactions. Such similarities 
are obtained based on drug structures, targets, ontolo-
gies, and side effects, which are utilized as features for 
machine-learning training [5–9]. In the case of network-
based approaches, novel interactions are inferred via 
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network analyses. Interactions are predicted using label 
propagation or newly calculated features [10]. Addition-
ally, various graph-embedding algorithms have been pro-
posed using graph analysis, showing potentially effective 
network-based features [11–18].

Recently, deep learning has demonstrated outstanding 
performance in various domains, including DDI predic-
tion tasks. Deep neural networks have been applied to 
prediction models using various drug features. Previ-
ously, DeepDDI, which comprises eight hidden layers, 
was developed to consider the structural similarities 
of two drugs [19]. Another model (i.e., DDIMDL) was 
constructed based on the similarity assumption, and 
its architecture is a multimodal deep neural network 
that comprises separate models of each similarity [20]. 
Unlike traditional approaches that predict the possibil-
ity of interactions, two proposed models are multi-class 
classifiers that indicate interaction types presenting the 
ability of predicting specific side effect types. Addition-
ally, graph neural networks (GNNs) have improved the 
performance of graph- or node-embedding approaches. 
Decagon operated graph convolutional networks on a 
heterogeneous network comprised of DDIs, protein–
protein interactions (PPIs), and drug-target interactions 
[21]. The model updates node features in consideration 
of side-effect-related neighbor nodes and further predicts 
whether drug combinations have interactions. GNNs 
were applied to predict DDIs with consideration of indi-
rect interactions and to represent compound structures 
[22–25]. Moreover, GNNs have been employed on both 
compounds and interactions networks achieving good 
performance [26]. Recently, the National Institutes of 
Health conducted the Library of Integrated Network-
based Cellular Signatures (LINCS) L1000 project, which 
provides drug-induced gene expression profile informa-
tion under various conditions [27]. Transcriptome-level 
information is provided that describes detailed drug 
responses. A recent study proposed an artificial neu-
ral network (ANN) that uses L1000 data [28] for gene 
expression, gene ontology, and compound fingerprint 
information as features. Their proposal includes a multi-
label classification ANN model with three simple hidden 
layers. However, the performance of the model is rela-
tively poor compared with previous deep-learning mod-
els, indicating the need for a more sophisticated method 
of handling transcriptome signals.

Notwithstanding the numerous extant studies, many 
problems are waiting to be solved. First, most studies uti-
lized structures and/or properties of the drug compound 
while less concerning interpretation on molecular levels 
of drug response signals. Because the prediction mod-
els only used features originating from compounds, the 
models cannot capture the characteristics of the DDI 

mechanism derived from drug treatments. Second, pre-
dicting the interactions of new compounds not used in 
training remains a significant challenge. To address these 
issues, we developed a deep-learning strategy for inter-
pretable prediction of DDIs that leverages drug-induced 
gene expression signatures (DeSIDE-DDI). As shown in 
Fig. 1, we designed to predict triplets that represent the 
relationship between one drug pair and one side effect. 
When representing drugs, we use drug-induced gene 
expressions to account for how drugs affect gene expres-
sion changes. To allow the utilization of all possible com-
pounds, we develop a feature generation model. A gate 
unit is then applied to drug features to mimic drug co-
administration effects by imposing attention to impor-
tant genes, which engineers dynamic features of one 
drug when combined with others. Then, each feature is 
projected to each side-effect space in the score calcula-
tion module. The robustness of our models was verified 
through several rigorous tests. Overall, the proposed 
model was confirmed to be an accurate and interpret-
able DDI prediction model for predicting potential side-
effects among drug combinations.

Materials and methods
Datasets
Our model consists of two parts: one of feature genera-
tion and another of DDI prediction. The feature genera-
tion model generates drug-induced gene expression, 
which uses compound structures and property informa-
tion for inputs and outputs predicted gene expressions. 
The gold-standard dataset of the model is the LINCS 
L1000 database [27]. These data contain gene expression 
profiles of multiple cell lines treated with thousands of 
chemicals at different time points and doses. Among the 
different levels of L1000 data, we used the level-5 data, 
which provide differential gene expression signatures. 
First, we extracted signatures of 978 landmark genes that 
were directly measured for confidence. Then, because 
each gene expression signature of a compound was 
taken under various sets of experimental conditions, we 
used “Signature Strength” (SS), which is the representa-
tive signature of a compound showing the most signifi-
cant change [29]. Finally, we selected organic compounds 
and obtained gene expression signatures of 19,156 com-
pounds (Table 1).

To train the DDI prediction model, two DDI datasets 
were used in our study: TWOSIDES and DrugBank [30, 
31]. The TWOSIDES database provides processed poly-
pharmacy side effects retrieved from the US Food and 
Drug Administration adverse reporting systems. We 
downloaded BioSNAP, which is an additionally refined 
dataset of TWOSIDES [32]. We filtered out uncommon 
side effects from the raw data that occurred with less 
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than 500 drug combinations, as performed by previ-
ous studies. Finally, we obtained 4,576,287 interactions 
between 63,472 drug combinations and 963 side effects. 
Also, DrugBank data were used for external validation. 
We downloaded old and new versions of DrugBank (v. 
5.0.0 and 5.1.7). Only DDIs were extracted from the raw 
extended markup-language file, each containing 33,497 
interactions among 1129 drugs and 782,405 interactions 
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Fig. 1  Overview of the drug-drug interaction (DDI) prediction model. A Datasets are preprocessed for each feature generation model and DDI 
prediction model. B Given drug-pair and side-effect data, each drug feature is obtained using a feature generation model and a side effect is 
embedded to latent space; then, drugs pass through neural networks having gated linear units to consider the pair information. Finally, using latent 
representations of drugs and the side effect, the side-effect score is calculated. C The model is evaluated considering three DDI cases. D, E The 
independent dataset from DrugBank is used for external validation

Table 1  LINCS L1000 data statistics of feature generation model

Raw signature information 
(drug-induced only)

Processed

#Compounds 20,413 19,156

#Cell lines 72 58

#Genes 12,328 978

#Response signatures 251M 18M
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among 2616 drugs. The details of data statistics are listed 
in Table 2.

Feature preprocessing
We used compound structures and properties as features 
to train the feature generation model. All compounds 
were standardized using canonical SMILES. Then, the 
Morgan fingerprints and compound properties were 
retrieved using Mordred [33]. Mordred provides 1613 
2-dimensional and 213 3-dimensional compound prop-
erties, and 771 properties were obtained after remov-
ing not-a-numbers. Then, to use the most significant 
features, we performed random-forest feature selection 
and selected the top-100 significant compound proper-
ties (see Additional file 2). Selected features were scaled 
between zero and one for each feature type because the 
range of each feature varied. The above process was com-
pleted for all compounds of LINCS and TWOSIDES, 
and the scaling range was based on LINCS compounds 
because the model was trained with it. In the case of 
external data identifiers (IDs) compound ID (CID) con-
version from DrugBank ID to PubChem CID was done 
for DrugBank compounds to check duplicates between 
datasets. Only compounds having SMILES information 
were extracted, and corresponding interactions were fil-
tered, including mirror pair removal.

Feature generation model
The purpose of the feature generation model is to gener-
ate a vector of drug-induced gene expression given a 
compound. The model was trained with LINCS L1000 
data. Compound structures were represented as finger-
prints and properties were used as input features; each 
value passed a simple dense neural network. Then, both 
latent representations were concatenated to output 
978-dimensional vectors. The model was trained and 
evaluated by the cross-validation method to train with as 
many data points as possible. Owing to the relatively 
small data size compared with the feature dimension, 
various techniques were used to handle overfitting, such 
as the L2 regularizer with batch normalization. Further-
more, the cosine annealing method, a learning-rate 
scheduling method that avoids the local minimum, was 
used. As a loss function, we used the mean-squared error, 

whose formula is: 1n
n
∑

i=1

(

ypred − ytrue

)2
, where ypred and 

ytrue each indicates predicted and actual labels. The spec-
ification of the feature generation model can be found in 
Additional file 1: Table S3.

DDI prediction model
The DDI prediction model takes inputs in the form of 
triplet (i.e., drug i , drug j , and side effect r ). First, drug 
features are engineered through a gating mechanism to 
represent the co-administration effects of drug pairs. 
Drug feature formulation is the process of selecting 
important genes related to interactions between given 
drugs. Here, we applied gated linear units (GLUs) to 
adjust the information flow of each drug feature based on 
drug pairs [34]. GLU is a simple gating mechanism origi-
nally developed for language models to control informa-
tion propagating when passing layers as output gates with 
long short-term memory.

Equation  (1) takes two inputs, A and B , where A is 
the output of the former layer, which is the information 
to propagate, and the other B is the input of the gate σ , 
which controls how much of A to use by applying sig-
moid non-linearity. With the element-wise multiplica-
tion of two parts, it works as an output gate. As shown in 
Fig. 1B, two hidden layers of drug i and drug j were con-
catenated to represent co-administration and the dense 
layer was sigmoid-activated to output the same dimen-
sion as previous layers. Then, the vector is multiplied 
to the previous layer. Through multiplication, the vec-
tor works as a weight vector on gene expression values. 
Finally, an additional dense layer was followed for dimen-
sion reduction. Here, two dense layers, the one before co-
administration module and one for dimension reduction, 
were shared between the two drugs to handle non-direc-
tionality of pairs.

Next, engineered drug features are projected into the 
side-effect space via translating embedding. Here, we 
applied the concept of translating embeddings [35, 36]. 
The embedding space represents each side effect, and 
both head and tail nodes each of which represents the 
start and the end point connected by a relation vector are 
given the drugs. Hence, a drug pair may have positive or 
negative interactions for a given side effect. Therefore, 
we considered a side effect as a relationship between two 
drugs and applied the margin-based loss function, imply-
ing positive pairs of drug combinations are positioned 
closely on the given side-effect space [37]. To train the 
model, we calculated a score and used the margin-based 
loss as described in a previous paper [23]. The score of 

(1)GLU(A,B) = A⊗ σ(B).

Table 2  Data statistics of DDI prediction model

Database #Drugs #Drug 
combinations

#DDI types #Triplets

TWOSIDES 645 63,472 963 4,576,287

DrugBank (ver5.0.0) 1129 33,497 – –

DrugBank (ver5.1.7) 2616 782,405 – –
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a drug pair, di and dj , given side-effect r , is calculated by 
Eq. (2).

where h and t are embedding vectors of entities that are 
drug latent representations, r is an embedding vector of 
a relation, and Mrh and Mrt are mapping matrices mul-
tiplied to h and t to project drug features to side effect 
spaces, respectively. Here, we considered either direction 
because drug combination data do not have directional-
ity. Then, the L2 norm was applied to calculate the dis-
tances. The specification of the DDI prediction model 
can be found in Additional file 1: Table S4.

The final output is the score (distance) of a triplet. 
Therefore, to train the model, a margin-based loss was 
used. The loss is defined as

where Rse represents side effects, Dr represents a set of 
drug pairs given a side effect, r containing both positive 
and negative pairs marked as ±. The classification model 
was trained to derive the scores that differ by the margin 
between positives and negatives.

Experimental setup
To test the robustness of the model in a rigorous way, we 
prepared differently split datasets for each evaluation. 
The first test predicted unknown interactions between 
known drugs (i.e., “unseen” interactions). Here, a known 
drug is the one used to train the model. The second case 
predicted interactions between a known drug and an 
unknown drug, meaning that either drug is seen in the 
model by training. We refer to this case as “one-unseen” 
drug. The last case (i.e., “both-unseen” drug) predicted 
interactions between arbitrary drugs that were not used 
for training the model. The first case contains the objec-
tives of previous studies; thus, we compared our model 
using this condition. However, the latter two cases were 
more challenging because the drugs were not learned by 
the model, resulting in insufficient information during 
the training phase.

We split the dataset based on each case and data type 
for training, validation, and testing. First, for the case 
of unseen interaction prediction, we split the total tri-
plets into training and testing at a ratio of nine-to-one. 
Then, 1% of the training set was sampled for validation 
(see Additional file 1: Fig. S1). Moreover, negative triplets 
were obtained for each set by randomly sampling dj for 
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each ( di, r ) as in a previous study [21]. The negatives were 
sampled so that the ratio of positives to negatives to be 
equal (see Additional file1: Table  S7, Fig. S2, and Addi-
tional file 3). Triplets were selected to be exclusive to all 
sets. Moreover, the reversed pairs are considered for all 
datasets, because drug pairs do not have directionality—
drug 1–drug 2 and drug 2–drug 1 should have the same 
side effects.

For evaluation, we compared the prediction perfor-
mance with previous studies—one is the first paper for 
predicting polypharmacy side effects using graph convo-
lutional networks, and the other utilized the L1000 data 
[21, 28]. Especially we implemented the ANN model to 
predict with our dataset because the proposed architec-
ture can be applied for ‘one-unseen’ and ‘both-unseen’ 
cases.

The parameters of each model are listed in Additional 
file 1: Table S5, S6. In the feature generation model, we 
compared the performances of models with different 
lengths of fingerprints, and the best case was selected. 
The different embedding sizes in the DDI model were 
tested, but there were no significant differences in perfor-
mance. Moreover, different sizes of input features were 
tested on DDI model to examine whether the size of gene 
expression features affects model performance. As shown 
in Additional file  1: Fig. S11, the original features per-
formed the best despite its dimension and also allowed 
feature analysis.

External validation process
We downloaded and preprocessed two versions of Drug-
Bank (versions 5.0.0 and 5.1.7) for external validation. We 
first predicted potential DDIs using the old version (v. 
5.0.0, released 2016) and evaluated the prediction perfor-
mance against the new version (v. 5.1.7, released 2020) by 
checking if the predicted potential DDIs can be found in 
the new version. For this purpose, the 603,259 unknown 
drug pairs obtained to exclude positive pairs from all 
possible drug combinations of DrugBank 5.0.0 drugs 
were predicted. The input of our model was designed 
to intake a triplet of two drugs and their corresponding 
side effects, whereas the DrugBank provides DDI infor-
mation with no explicit side-effect terms (see Additional 
file 1: Tables S1, S2). Therefore, to manage the knowledge 
discrepancy of the two databases, we constructed posi-
tive and negative DDI datasets for DrugBank using the 



Page 6 of 12Kim and Nam ﻿Journal of Cheminformatics            (2022) 14:9 

following procedures. First, to construct the positive DDI 
dataset, we collected drug pairs that were reported as 
having side effects. Next, for the negative DDIs, the nega-
tive drug pairs were obtained by excluding positive drug 
pairs from all possible drug combinations. Then, to eval-
uate prediction results with a triplet form of representa-
tion from our model, we referred to the average number 
of side effects of the drug pair in TWOSIDES and used 
the average value as the cutoff for determining the DDI 
positive (see Additional file  1: Fig. S13). The average 
number of side effects for each drug pair was ~ 65; thus, 
hence pairs having more than 65 side effects were labeled 
“positive” and “negative” otherwise.

Results and discussion
Performance evaluation of gene‑expression generation 
model
The feature generation model was trained using the entire 
LINCS L1000 dataset, and the performance was evalu-
ated by how closely it predicted the actual expression val-
ues. We used the Pearson correlation coefficients between 
the golden standards and predicted expression values as 
an evaluation metric. The distribution of expression val-
ues can be found in Additional file 1: Fig. S3. The feature 
model was selected considering both metrics via tenfold 
cross-validation and further validated through exter-
nal validation by splitting dataset into train-test sets. To 
achieve better performance, we trained for 1000 epochs 
and checked the loss and Pearson correlation coefficient 
(Additional file 1: Fig. S5, Table S8). The model achieved 
a correlation of 0.518 and a training loss of 1.834. The 
performance comparisons with models using different 

features are described in Additional file 1: Fig. S4. Moreo-
ver, the distributions of true expression values from LINCS 
and predicted values for TWOSIDES are compared as 
shown in Additional file  1: Fig. S6. The chosen model 
was then trained with the entire dataset to check all com-
pounds because the dataset was relatively small.

Performance evaluation of DDI prediction
The performance of the proposed model was evaluated 
under robust conditions. We used three test datasets 
that were exclusive to training: unseen interaction, one-
unseen, both-unseen (see Materials and methods section 
for details). The first case is the general case of predict-
ing new interactions between known drugs; this is the 
focus of most extant reports. The area-under-the-curve 
(AUC) and the area-under-the-precision-recall (AUPR) 
values were calculated using the prediction scores (see 
Additional file  1: Additional Materials and Methods). 
Sensitivity and specificity values of each side effect were 
calculated using the optimal threshold values (see the 
section “Experimental setup”). As shown in Fig.  2, the 
prediction model presented high performance with an 
AUC of 0.889 and an AUPR of 0.915 for unseen interac-
tions (Fig. 2A). We noticed that the model showed varied 
performance for each side effect. The best and worst per-
forming side effects are listed in Table 3.

In addition, we validated the DDI prediction model to 
confirm robustness. First, we investigated whether the 
model performance is related to the frequency of side 
effects or similarities between side effects. There were 
no significant correlations between performances and 
the frequency of side effects. Also, the model showed 
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consistent performance regardless of side effect similari-
ties and categories in terms of concept level (see Addi-
tional file 1: Figs. S7, S8). Next, the triplets include cases 
where the side effect of one drug is equal to the polyp-
harmacy side effect (see Additional file 1: Fig. S9). How-
ever, it is hard to determine if a reported polypharmacy 
side effect is induced by either drug because the dataset 
is originally from FAERS. Therefore, we compared the 
predicted DDI scores between original pairs and either 
one drug in the pair, assuming that the model may output 
similar scores if polypharmacy side effects are highly cor-
related to single side effects. The pairs of the one-sided 
drugs resulted in different predicted scores while the 
original and reversed pairs showed similar scores result-
ing in the Pearson correlation coefficient of 0.952 and R2 
of 0.905 (see Additional file 1: Fig. S10).

Moreover, as the Decagon reported their best and 
worst lists, we compared our results similarly. Our 
model showed better AUPR in four out of the ten best-
performing side effects and outperformed all worst-
performing side effects by up to 23% (see Additional 
file 1: Table S10). To confirm the predictive power of the 
model, we extracted the prediction result of previously 
known fatal drug interactions. Warfarin, an anticoagu-
lant, is known to have dangerous interactions with non-
steroidal anti-inflammatory drugs (NSAIDs) resulting in 
serious bleeding, especially gastrointestinal (GI) bleed-
ing. Also, amiodarone, which is one of the antiarrhythmic 

medications, is known to induce muscle-related pain 
when combined with statins. In the test set of unseen 
interactions, we found those drug pairs with several side 
effects. Our model correctly predicted those side effects 
and there are corresponding types as listed in Table 4.

Next, for the “one-unseen” prediction problem, our 
model achieved an AUC of 0.640 and an AUPR of 
0.627. Unlike the unseen interaction case, the Decagon 
model cannot be applied to “one-unseen” drug predic-
tion because it uses a graph structure when represent-
ing interactions where nodes are fixed. In the case of 
the ANN model (Shankar et  al.), it showed low perfor-
mances, especially regarding AUPR (Fig.  2B). For the 
“both-unseen” case, the model showed limited perfor-
mance. The average performances had an AUC of 0.553 
and an AUPR of 0.556.

In all cases, our model performed better than previous 
models. Decagon shows a good performance in predict-
ing unseen interactions, but it is not applicable to predict 
interactions with unseen drugs because unseen drugs are 
not connected to the network [21]. Meanwhile, the ANN 
model worked by Shankar et  al. could be implemented 
for case 2 and 3 [38]. However, it showed relatively poor 
performance with our dataset. The performance drop 
might be the result of predicting more types of side 
effects while the original study focused on only 243 side 
effects. Furthermore, the ANN model concatenates all 
features resulting in high dimension features, and it may 
be challenging for a simple neural network to capture 
interactions with unseen drugs. The prediction perfor-
mances for each side effect type are listed in Additional 
files 4, 5, and 6 for each case with detailed metrics includ-
ing sensitivity, specificity and precision.

We also investigated which model contributed the most 
to performance improvement. The models without each 
feature generation model and DDI model were tested. 
Also, the model without the co-administration module 
of the GLU was compared. As shown in Fig. 3, the per-
formance drastically dropped when DDI model with the 
GLU and the score calculation module was substituted 

Table 3  Best- and the worst-performing side effects

Best-performing side effects Worst-performing side effects

Side-effect Name AUC​ AUPR Side-effect Name AUC​ AUPR

Hypermetropia 0.963 0.967 Brain abscess 0.803 0.848

Epicondylitis 0.954 0.962 Renal colic 0.814 0.853

Pneumoconiosis 0.953 0.961 Impetigo 0.817 0.856

Fibrosing alveolitis 0.950 0.966 Cerebral thrombosis 0.832 0.857

Epididymitis 0.946 0.954 Ejaculation prema-
ture

0.807 0.858

Table 4  The list of previously known drug pairs and positively predicted side effects

Drug 1 Drug 2 Predicted known side effects

Warfarin Naproxen Bleeding gums, coughing blood, blood disorder, Epistaxis

Ibuprofen Abdominal pain

Indomethacin Lower GI bleeding, subarachnoid haemorrhage

Meloxicam Haematochezia, malnourished

Amiodarone Loavastatin Arterial pressure NOS decreased, cramp

Rosuvastatin Asystole

Fluvastatin Rhabdomyolysis
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with simple neural networks. Next, the performance 
slightly decreased without the GLU module while the 
model without the feature generation model showed lit-
tle change in performance. This result indicates that both 
the co-administration module and the embedding con-
tributed the most to the model performance.

External validation using DrugBank dataset
We next performed external validation using the Drug-
Bank datasets. The validation process is described in 
Materials and methods section. We made predictions for 
all possible pairs from DrugBank version 5.0.0, includ-
ing 33,497 positive and 603,259 negative pairs from 1129 
drugs. With the threshold of 65 obtained from the trained 
model, 9543 true positives and 137,201 false positives 

were detected. To validate the prediction performance 
of the model, we checked predicted DDIs in the earlier 
version (5.0.0) against the later version (5.1.7) to check 
whether predicted DDIs were found to be real DDIs in 
the future. Among 137,201 drug pairs, 53,322 drug pairs 
were detected in DrugBank v.5.1.7. As shown in Fig. 4A, 
in the old version, only 6.50% were true positives; how-
ever, the proportion increased by 41.67% in the updated 
version. Moreover, the permutation test was performed 
to confirm that the number of found DDIs was signifi-
cant. We randomly sampled 53,322 drug pairs 10,000 
times and confirmed how many were found in the new 
version. Figure 4B shows the distribution of the number 
of confirmed DDIs of random sampling, and the red line 
indicates the number of confirmed DDIs of the predicted 

Our model without DDI modelwithout feature generation model without GLU
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result with a p-value of 0.0001. The validated drug pairs 
consist of all three cases—most were one-unseen and 
both-unseen drug cases—confirming that our DDIs pre-
diction model has a high potential to detect unknown 
DDIs among drugs (see Fig. 4C and Additional file 1: Fig. 
S14 for details).

Prediction of potential drug combinations
We further investigated the potential novel DDIs, which 
were not reported in the TWOSIDES database. Among 
the positively predicted drug pairs with ten different 
models, we confirmed 2733 pairs out of 19,811 annotated 
as DDIs in the DrugBank database on an average. (see 
Additional file 1: Fig. S12). The part of validated interac-
tions is listed in Additional file 1: Table S9. With a stricter 
criterion of positively predicted from all models, we 
found 1072 potential DDIs that were not reported previ-
ously. (see Additional file 7) From this result, we can con-
clude that our proposed model shows robust prediction 
performance and can suggest potential DDIs.

Exploration on drug features
One of the main contributions of this study is the engi-
neering of dynamic drug features that represent drug co-
administration effects. This concept was implemented 
by a gating mechanism that differentiates latent repre-
sentations of a drug when it was co-administrated with 
the other. Here, we observed the changes of latent drug 
representations of cyclophosphamide, which is one of the 
anticancer drugs. There were 318 drug pairs that were 
reported to have side effects when taken together with 
cyclophosphamide. We examined the changed features 
of cyclophosphamide in combinations with other drugs. 
As shown in Fig.  5A and Additional file  1: Fig. S15, we 
confirm that the latent representation of the cyclophos-
phamide varied with the paired drugs. Representation of 
each gene for DDIs were multiplied by the existing latent 
features according to their importance to generate differ-
ent latent representations.

The following result shows that the model can capture 
the response of a same drug differently depending on the 
drug with which it is combined. Additionally, we analyzed 
which drugs had similar effects by clustering the latent 
representation values. Moreover, we checked whether 
the drugs of each cluster had any characteristics by exam-
ining the drug categories that are defined in DrugBank. 
We confirmed the Anatomical Therapeutic Chemical 
(ATC) codes of the drugs for each cluster and selected 
the code that appeared most through the enrichment test 
[39]. The therapeutic classes are not all exclusive, but rep-
resentative classes are illustrated. Because the cluster 1, 2, 
and 3 consist of small number of drugs, there exist over-
lapping ATC codes. The most enriched codes in cluster 

1 and 2 are ‘other gyncologicals’ and ‘drugs for constipa-
tion’. In the case of cluster 3, ‘dermatologicals’, ‘vitamins’, 
and ‘nasal preparations’ are unique codes, one of each 
was included. Among them, ‘nasal preparations’ is unique 
in all drug pairs with cyclophosphamide. The major clus-
ter included various exclusive classes such as ‘antimy-
cotics for systemic use’ and ‘lipid modifying agents’. The 
total list of ATC codes are listed in Additional file 8. Also, 
different side effect occurrences were detected for each 
cluster as listed in Additional file  1: Table  S11. Finally, 
analysis on important genes was performed based on 
the attention values of each gene feature calculated via 
a GLU. Assuming that the genes receiving high atten-
tion values would be important for a given DDI, we ana-
lyzed highly attended genes in the interaction between 
cyclophosphamide and celecoxib using the pathway 
information obtained from the PharmGKB database [40, 
41]. Based on each vector calculated from the two-drug 
information, 100 genes having the highest values were 
extracted. Then, we confirmed whether any genes cor-
responded to pathway-related genes. Hence, the ADH5 
in the cyclophosphamide pathway and the PLA2G4A, 
CDKN1A, and TBXA2R in the celecoxib pathway were 
found among the top-100 genes (Fig.  5B). This result 
indicates that the GLU can capture molecular informa-
tion from drug-induced gene expressions.

Conclusion
In this study, we proposed a robust deep-learning model 
for predicting polypharmacy side effects. The main con-
tribution of our work includes the construction of a 
gene-expression feature generation model that produces 
drug-treated gene expression signatures, the application 
of a gating mechanism to represent the co-administra-
tion effect of a drug pair, and a report of potential DDIs 
among drug pairs.

First, our model utilized gene-expression data to pre-
dict DDIs. Differing from previous studies that simply 
used structures or properties of drugs, our model used a 
gene-expression signal that represents the holistic view of 
the drug-induced effects of cells. However, because not 
all compounds had compound-treated gene-expression 
signatures, our model included a pre-trained feature gen-
eration model to produce compound features. We used 
compound structure and property information to gener-
ate expected compound-treated gene expressions. Then, 
the DDI prediction model processed expression features 
to output defined side-effect scores. The model was eval-
uated under three cases: predicting unseen interactions, 
one-unseen drug, and both-unseen drugs. For each case, 
data were split into training and testing sets for strict 
evaluation. The model showed competitive performance 
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compared with previous studies of predicting unseen 
interactions.

Second, to mimic the effect of co-administration, we 
applied feature processing with respect to a gating mech-
anism, and the KG embedding algorithm was applied 
to handle multiple side effects per drug pair. Through 
the co-administration module, we aimed to reflect the 
changes in features by the other drug. Additionally, the 
translating embedding module resulted in a dramatic 
increase in performance.

Third, we reported potential DDIs that were not 
reported before. Based on the external validation using 
the DrugBank database, we can expect that the list of 
potential DDIs will help prevent harmful effects from 
co-administration. Furthermore, because the model can 

predict interactions with unseen drugs, it can possibly 
pre-detect unwelcomed reactions among compounds 
during the early drug-discovery process.

There still exist issues to be improved in the future. 
First, the datasets in this case were very sparse in terms 
of side-effect type. The small proportion of interac-
tions between drugs were known, but the numbers 
were extremely sparse and imbalanced when consid-
ered with relation type. For this reason, rare side effects 
were excluded for the current model. This can be over-
come with a combination of disease-related information, 
including pathways. Second, the identification of the 
side-effect mechanism remains challenging. Although 
our model utilized gene expression data, only a portion 
of human genes was selected, and the heterogeneity of 
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cell lines induced noise. We constructed the feature gen-
eration model to supplement lack of experimental data, 
however, predicting transcriptiome-level features from 
drug structures and properties is both challenging and 
limited. With enriched drug response and network infor-
mation signaling, all underlying mechanisms may soon 
be uncovered.
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