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Abstract 

Background:  Structure-based drug repositioning has emerged as a promising alternative to conventional drug 
development. Regardless of the many success stories reported over the past years and the novel breakthroughs on 
the AI-based system AlphaFold for structure prediction, the availability of structural data for protein–drug complexes 
remains very limited. Whereas the chemical libraries contain millions of drug compounds, the vast majority of them 
do not have structures to crystallized targets,and it is, therefore, impossible to characterize their binding to targets 
from a structural view. However, the concept of building blocks offers a novel perspective on the structural prob‑
lem. A drug compound is considered a complex of small chemical blocks or fragments, which confer the relevant 
properties to the drug and have a high proportion of functional groups involved in protein binding. Based on this, 
we propose a novel approach to expand the scope of structure-based repositioning approaches by transferring the 
structural knowledge from a fragment to a compound level.

Results:  We fragmented over 100,000 compounds in the Protein Data Bank (PDB) and characterized the structural 
binding mode of 153,000 fragments to their crystallized targets. Using the fragment’s data, we were able to artificially 
reconstruct the binding mode of over 7,800 complexes between ChEMBL compounds and their known targets, for 
which no structural data is available. We proved that the conserved binding tendency of fragments, when binding to 
the same targets, highly influences the drug’s binding specificity and carries the key information to reconstruct full 
drugs binding mode. Furthermore, our approach was able to reconstruct multiple compound-target pairs at optimal 
thresholds and high similarity to the actual binding mode.

Conclusions:  Such reconstructions are of great value and benefit structure-based drug repositioning since they 
automatically enlarge the technique’s scope and allow exploring the so far ‘unexplored compounds’ from a struc‑
tural perspective. In general, the transfer of structural information is a promising technique that could be applied to 
any chemical library, to any compound that has no crystal structure available in PDB, and even to transfer any other 
feature that may be relevant for the drug discovery process and that due to data limitations is not yet fully available. In 
that sense, the results of this work document the full potential of structure-based screening even beyond PDB.
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Background
Drug repositioning seeks the identification of new 
purposes for already existing drugs. The benefits of 
this approach are a decreased risk of failure, less time 
required for the development of a drug, and reduced 
costs [1]. This makes drug repositioning an attrac-
tive alternative to conventional drug discovery and 
development.

Structure-based drug repositioning exploits the 3D 
structure of proteins to characterize the binding mode 
of drugs to their protein targets under an energetic/
geometrical perspective. This knowledge leads to the 
screening and discovery of novel drug-targets links serv-
ing as repurposed opportunities. Several techniques 
work under the structural concept, e.g. docking, binding 
site prediction, pharmacophore-based screening, interac-
tion similarity screening, among others [2]. The in-silico 
screening based on 3D interaction data studies the bind-
ing mode similarities of drugs and identify novel targets 
for the repositioning candidates. Many studies have pre-
viously exploited the concept of interactions fingerprints 
on drug repositioning [3–7]. However, a more recently 
fingerprinting technique based on the Protein-Ligand 
Interactions Profiler (PLIP) tool [8] has been successfully 
applied for the repositioning of Amodiaquine as a can-
cer treatment [9], for the identification of ibrutinib as a 

new inhibitor of the autoimmune-related target VEGFR2 
[10], for the identification of repurposed drugs as Cha-
gas treatments [11], and the prediction of novel LRRK2 
inhibitors [12], among others.

The starting point of any structure-based drug repo-
sitioning pipeline is the collection of structural data 
describing the geometrical conformations of drug com-
pounds binding to crystallized targets. Currently, with 
more than 170,000 structures, PDB is estimated to cover 
the vast majority of the known drug targets (about 92%) 
[13], with more than 52,000 different protein sequences, 
and most of the structures (more than 60%) in complex 
with biologically relevant ligands [14]. However, not-
withstanding the great amount of structural data avail-
able and despite many years of continuous effort, not 
all therapeutically relevant protein families are equally 
represented in structural databases. In fact, according 
to Khafizov et  al., 60% of known protein families in the 
Pfam database still lacked structural characterization 
[15]. For instance, with over 20,000 entries, enzymes are 
the structurally most populated family by far, while only 
a handful has been resolved for GPCRs. Moreover, out of 
the millions of drug compounds contained in chemical 
libraries such as Pubchem or ChEMBL, the vast majority 
of them do not have structures to crystallized targets and 
are therefore impossible to characterize from a structural 
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perspective. Taken all together, the availability of struc-
tural data remains a clear limitation to structure-based 
drug repositioning.

Alternatively, the concept of building blocks offers a 
novel perspective on the problem. A drug compound is 
a complex of small chemical blocks, called fragments, 
which confer the relevant properties to the drug [16]. 
Fragments have, in principle, a high proportion of func-
tional groups involved in protein binding, and many of 
them precisely fit the target sub pockets. Moreover, due 
to their reduced size and complexity, fragments allow 
an efficient exploration of protein binding sites [17]. In 
a previous study, Kozakov et  al. showed that fragments 
coinciding with low-energy hot spots tend to have con-
served binding modes [18]. Later on, Drwal et  al. per-
formed a large scale analysis of the PDB, aiming for a 
deep understanding of fragment binding to ligandable 
targets [19]. It was observed that the binding modes of 
fragments and their drug-like superstructures binding to 
the same protein are mostly conserved. In a more recent 
study, Giordanetto et al. [20] carried out a comprehensive 
analysis on the deposited protein structures with bound 
fragment hits, suggesting that attractive interactions, 
such as Hydrogen bonds, water bridges, and coordination 
bonds to catalytic metal ions constitute a recurring sta-
bilizing feature of the majority of the fragment-hit com-
plexes. All previous studies suggest that small chemical 
changes in the fragment are tolerated without alteration 
of the fragment’s binding mode. In that sense, it seems 
relevant to explore the structural data at a fragment level.

Given the highlighted relevance of molecular frag-
ments in the drug discovery process, it seems interesting 
to explore their molecular properties and binding mode 
conservation from a structural perspective. However, 
most of the aforementioned studies have been conducted 
in a relatively limited space. For instance, Drwal et  al. 
work was constrained to fragments crystallized as small 
molecule ligands in PDB structure, meaning the nar-
rowed set is biased towards crystallographers’ research 
interests. In this work, we characterize the binding of 
molecular fragments in all the PDB drugs, we define a 
structural metric to evaluate the binding mode conserva-
tion of fragments, and we later use such data to recon-
struct the binding mode of full drugs without structural 
data. We seek to evaluate how feasible it is to transfer 
the structural knowledge from a fragment level to a drug 
level and thereby expand the scope of structure-based 
drug repositioning and other approaches that rely on 
structural characterization of drugs.  

Results and discussion
Fragments from the PDB ligands fragmentation
In order to expand the previous analysis carried out by 
Drwal et al. [19], fragments and their structural features 
were directly extracted from all molecules in PDB. Using 
the RECAP algorithm with tree leaves, 100,880 PDB 
structures and 38,385 ligands were successfully frag-
mented into 54,068 molecular fragments (Fig. 1).

Fig. 1  PDB fragments data set construction. From the top starting point of the curated structures in PDB until the final resulting fragments, passing 
over the the three layers representing the extraction data levels: structures, ligands, and fragments. The lost of data is accounted and explained for 
each layer in the pyramid
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When manually analyzing more in-depth some of 
the fragments obtained, it was observed that many of 
them  are large fragments mostly derived from steroids, 
porphyrins, and staurosporin analogues, among oth-
ers. Many others are amino acids, nucleotide analogues, 
or a few sugars. For the latter, specifically, amino sugars, 
which are usually very soluble and  have several  groups 
capable of interacting with the target protein in a usually 
well defined 3D structure. At a less frequent level, were 
observed organic fragments with hetero atoms capable 
of interacting with the target proteins, specifically with 
kinases. Overall, the number of fragments per ligand 
obtained after fragmentation varies from ligand to ligand 
(Fig. 2A). Most of the compounds were fragmented from 
2 to 10 fragments. Only 26 compounds are formed by one 
unique fragment, whereas more than 6000 compounds 
lead to more than ten fragments. This latter reflects the 
complex chemical design of some compounds. In gen-
eral, it is expected that the number of fragments in a 
compound is directly influenced by the size of the same. 
Meaning that  larger compounds are expected to have 
more fragments and vice versa. However, a Pearson 

correlation of −0.01 shows no correlation between both 
features.

At the same time, Fig.  2B shows that PDB fragments 
tend to be unique among the PDB compounds and are 
present in one compound only, which is explained by 
the complex diversity of structures in the chemical space 
and  the reduced chemical space in PDB. Nonetheless 
still, more than 10,000 fragments are present in at least 
two different compounds. Such distribution directly cor-
relates with that of World Drug Index (50 K molecules) 
in the original RECAP publication [21]. Examples of 
both cases are illustrated in Fig. 2B where the fragment 
on the left bottom is part of just one compound binding 
to one unique target, whereas the fragment on the right 
bottom is a substructure of 65 different compounds bind-
ing to 69 different targets. The unique essence of the left 
fragment could be attributed to its chemical structure. 
Despite the phosphate group being a frequent functional 
group among the chemical compounds, the rest of the 
fragment’s chemical structure is relatively rare. On the 
other hand, the recurrent appearance of the fragment at 
the right  is due to its properties as a pyrimidine deriva-
tive compound. It is well known that the pyrimidine ring 

Fig. 2  Fragmentation of PDB compounds. A The bar plot shows the amount of PDB compounds by the number of fragments obtained after 
fragmentation. Most of the compounds are fragmented from 2 to 6 fragments. The compound at the bottom is an example of fragmentation with 
three fragments F1, F2 and F3. B The bar plot shows the frequency of fragment among the compounds (x axis shows on how many compounds is 
a fragment found). Most of them are present in just one compound, but others are highly frequent. The fragment I at the bottom left is present in 
only one compound, whereas the fragment II on the right is part of 65 different compounds
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system has wide occurrence in nature [22], and therefore, 
the same applies to all its derivatives.

Binding mode conservation of PDB fragments
In a similar manner, as performed in the analysis by 
Drwal et al., the binding mode conservation of PDB frag-
ments was further explored. It is well known that the 
PDB data is unbalanced and usually biased towards bio-
logically relevant proteins or over-represented compound 
scaffolds resulting from lead optimization. To make a fair 
estimation of binding mode conservation, the PDB frag-
ments data must be adequately filtered and homogenized, 
considering certain criteria (see Methods). As mentioned 
before, one unique fragment can be a substructure of 
multiple different compounds, in multiple different PDB 
structures (or complexes). In order to estimate how con-
served the binding mode for a given fragment is, all the 
PDB complexes containing such fragments were com-
pared in terms of interactions fingerprints.

The non-covalent interactions of all PDB compounds 
were calculated using the PLIP tool [8] with standard 

settings. Following, the non-covalent interactions for the 
PDB fragments were encoded into a binary fingerprint, 
which was constructed considering only the interac-
tions mediated by the fragment atoms. The interactions 
were encoded in a simple fingerprint of 500 bins, totally 
ignoring the geometrical features of the interactions 
and instead focusing on the types of interaction in the 
involved functional groups and in the interacting resi-
dues (see Methods section for more details). It might 
be expected that the size of the fragments relates to the 
number of observed non-covalent interactions patterns, 
thus influencing its binding mode. However, a Pearson 
correlation of 0.6 shows a moderate positive correla-
tion between the size of the fragments and the number 
of interactions patterns displayed in the binding mode. 
The binding mode similarity of PDB fragments is meas-
ured by calculating a pairwise Tanimoto Interaction 
Similarities (TIS) of fragments’ interaction fingerprints 
(see Additional file 1). Figure 3A shows the mTIS (mean 
Tanimoto Interaction Similarity) score of each PDB 

Fig. 3  Binding mode conservation of PDB fragments. The binding mode of the fragments has been characterized with PLIP interactions and 
represented as binary fingerprints. A For each fragment a mean Tanimoto Interaction Similarity (mTIS) was calculated and plotted as frequency 
under two scenarios: fragments in different compounds binding different targets (green) and fragments in different compounds binding to the 
same target (blue). B The fragment I is part of 18 different compounds binding to the same target (O26232) and it has a relatively conserved 
binding mode with a mTIS of 0.66. The interactions displayed (dashed colored lines) are highly conserved among the different structures, with 
variations only in the target residues (letters). The fragment II is part of 5 different compounds binding to the same target (O14965) and it has a 
highly conserved binding mode (mTIS of 0.89) with two hydrogen bonds to the target residues Glutamate (E) and Leucine (L)
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fragment evaluated under two criteria in the context of 
targets and compounds: the same fragment in all dif-
ferent compounds superstructures binding all kinds of 
targets (green curve) and the same fragment as part of 
different compounds binding always to the same target 
pocket (blue curve).

The red line is the proposed threshold at mTIS=0.6 
to define binding mode conservation, which is based on 
literature [19]. Thus, fragments on the right of the red 
line are considered to have a conserved binding mode. 
Whereas fragments on the left, the opposite. Overall, 
most  PDB fragments (96%) display a non-conserved 
binding mode when compared without considering the 
ligand superstructure and the target they bind to (green 
curve). Nonetheless, when the fragments’ binding mode 
is compared among different compounds binding to the 
same target (curve blue), the majority (56%) shows a 
more conserved tendency.

Furthermore, since the fingerprints are dependent on 
the binding site residues, it was observed that minor vari-
ations on the target’s interacting residues among the dif-
ferent structures might affect the final mTIS scores, as 
observed in the examples in Fig.  3B. Fragment I is part 
of 18 different compounds binding to the same target 
(O26232). Although the interactions displayed (dashed 
coloured lines) are highly conserved among the differ-
ent structures, they have small variations in the target 
residues (letters) of the different structures, leading to a 
relatively conserved binding mode with an mTIS of 0.66. 
On the other hand, Fragment II is part of 5 different com-
pounds binding to the same target (O14965), and it has a 
highly conserved binding mode (mTIS of 0.89) with two 
hydrogen bonds to the target residues Glutamate (E) and 
Leucine (L). In general, there is a conserved nature of the 
fragments’ binding mode, which suggests they can be 
used to extend the limits of structure-based drug reposi-
tioning by offering a different perspective to explore the 
binding mode of full drugs.

Binding mode reconstruction approach
The concept of molecular fragments and their conserved 
binding modes have been further exploited to overcome 
the limitations on data availability. Overall, the recon-
struction of drugs’ binding mode seeks to transfer the 
structural knowledge from molecular fragments to full 
molecules.

The performance of the approach was evaluated in a 
PDB subset of compound-target pairs (see Additional 
file 2). Given that the compounds in the PDB subset have 
available structures and, thus, an actual PLIP fingerprint 
describing their binding mode, it is possible to check how 
similar the reconstructed fingerprints are compared to 
the real ones. The PDB subset includes all compound-tar-
get complexes found up to the second level (Ligand level) 
of the pyramid in Fig. 1, along with the non-fragmenta-
ble compounds that were excluded at the fragmentation 
stage.

The reconstruction pipeline was applied to the PDB 
subset, trying different combinations of the modifi-
able thresholds, i.e. the compound’s proportion and the 
fragments’ binding mode conservation. To avoid bias in 
the validation, the binding mode (fingerprint) of a com-
pound-target complex is reconstructed without using 
the structural data from the complex itself. Meaning the 
construction of representative binding mode of frag-
ments does not take into consideration the fingerprint 
of the compound-target complex to be reconstructed. 
Furthermore, the quality of reconstruction was evalu-
ated for each threshold combination. To this purpose, a 
Reconstruction Similarity Score (RSS) was defined as the 
mean of all the reconstructed-original fingerprint pairs 
similarities, which was calculated using the simple Tani-
moto Similarity approach (see Methods section for more 
details). 

Table  1 summarizes the validation results, with the 
number of compound-target pairs that were recon-
structed for each given threshold combination. The 

Table 1  Reconstruction of PDB compound-target binding mode at different thresholds

The numbers refer to the amount of compound-target binding mode reconstructed at each threshold combination. The superscript indicate the quality of the 
reconstruction in terms of mean RSS, where the closest to 1.0 the better the reconstruction is. Overall, there is trade off between amount of data and quality of the 
reconstruction

BM conserv. Compound proportion

0.5 0.6 0.7 0.8 0.9 1.0

0.5 6325.45 2806.59 1513.65 1175.67 1023.69 1023.69

0.6 4493.49 1581.66 762.72 589.73 527.77 527.77

0.7 2625.52 866.71 310.77 210.77 148.84 148.84

0.8 1662.57 494.77 162.86 102.86 66.90 66.90

0.9 1174.63 368.76 128.89 58.90 22.95 22.95

1.0 1134.70 368.85 128.88 58.89 22.95 22.95
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superscript represents the quality of the reconstruction 
given by the mean RSS previously calculated. The table 
reflects a clear trade-off between the amount of data 
and the quality of the reconstruction. The more restric-
tive the thresholds are, the less data is obtained from the 
reconstruction pipeline. For instance, considering the 
extreme case at which all the fragments of a compound 
have structural data (full proportion of 1.0) and only frag-
ments with a full conserved binding mode (BM conserva-
tion of 1.0) are used, only 22 PDB compound-target pairs 
were reconstructed.

Figure 4 shows an example of the validation set at opti-
mal thresholds: Compound proportion = 0.6 and BM 
conservation = 0.6, with an RSS = 0.66 when comparing 
the original binding mode and the reconstructed one. In 
the example, the drug brivudine binds to one of its tar-
gets, the deoxynucleoside kinase, with a specific set of 
non-covalent interactions (left). Such interactions pat-
terns have been thoughtfully studied in a previous study 
[9], therefore it is a good example to evaluate the recon-
struction pipeline. Brivudine can be usually fragmented 
into three molecular fragments: Cc1c[nH]c(=O)[nH]
c1=O, OCC1OCCC1O, and Br. However, since Br has 
not enough structural data to characterize its binding 
mode conservation (less than five compounds), it is not 
part of the selected fragments subset and thus, not con-
sidered in the reconstruction. Nonetheless, the remaining 
fragments have a relatively high binding mode conserva-
tion with an mTIS of 0.88 and 0.63 (BM conservation > 
0.6) which ultimately leads to a compound proportion of 
2/3 = 0.66 (Compound proportion > 0.6). The binding 
mode of Fragment I to the deoxynucleoside kinase target 
was constructed using structural data of 5 different com-
pounds in 30 different structures. The fragment exhibits 
a highly conserved set of non-covalent interactions, i.e. 
two hydrogen bonds, one hydrophobic contact, and one 
π-stack, which are frequent among the different struc-
tures and are always in contact with the same target resi-
dues. However, there is also a less frequent water bridge 
displayed in a few structures making contact with argi-
nine (R), and it is the reason for the mTIS = 0.88. On the 
other hand, Fragment II was constructed using structural 
data of 6 different compounds in 32 different structures. 
It has two highly frequent interactions among the struc-
tures: a hydrogen bond always in contact with arginine or 
glutamic acid and a hydrophobic contact with phenylala-
nine or isoleucine. However, it also has another hydrogen 
bond, and a salt bridge displayed only in a few structures, 
which confers it its mTIS = 0.66, defining a more variable 
binding mode than fragment I. Even though none of the 
fragments has a perfectly conserved binding mode (mTIS 
= 1.0), the reconstruction turned out to be successful as 

it fairly represents the relevant interactions defining the 
binding mode of brivudine to deoxynucleoside kinase.

Overall, the validation results evidence the complex-
ity behind the process. Although, in general, fragments 
tend to have a highly conserved binding mode, most of 
them never reach the perfect conservation of 1.0 mTIS, 
which comes hand to hand with the binding mode vari-
ability under special binding environments. On the other 
hand, the compound proportion limitation reflects the 
still unmet necessity of a representative structural space 
covering a diverse set of molecular fragments. Neverthe-
less, the approach was able to reconstruct multiple com-
pound-target pairs at optimal thresholds and with high 
similarity (RSS) to the real fingerprints.

Binding mode reconstruction on ChEMBL data set
ChEMBL is a manually curated database of bioactive 
molecules with drug-like properties [23]. The aim of 
ChEMBL is to collect chemical, bioactivity and genom-
ics data to aid the translation of genomic information 
into effective new drugs. To date, the database contains 
about 2.1 million compounds, 14K biological targets, and 
more than 17.2 million compound-target activity assays. 
The large chemical space available in ChEMBL, makes it 
the best option to explore compounds so far not crystal-
lized (not found in PDB) to which the proposed approach 
could be applied.

For this purpose, the  ChEMBL dataset was explored 
and filtered according to several criteria (see Methods), 
which yielded a ChEMBL subset with a total of 264,033 
compound-targets pairs. The compounds in such pairs 
were then fragmented with the RECAP algorithm, dis-
playing a similar tendency to the PDB compounds 
regarding to the number of fragments found in each 
compound and the frequency of the fragments among 
the different compounds (see Fig. 5A, B for more details). 
Subsequently, the reconstruction pipeline was applied to 
the ChEMBL subset trying different combinations of the 
modifiable thresholds (see Additional file 3).

Table  2 summarizes the results, with the number of 
compound-target pairs that were successfully recon-
structed with each given thresholds combination. The 
numbers in the table show a similar trade-off between the 
amount of data and the quality of the reconstruction. The 
stricter the thresholds are, the less data is obtained from 
the reconstruction pipeline. For instance, considering the 
extreme case at which all the fragments of a compound 
have structural data (full proportion of 1.0), and only 
fragments with a full conserved binding mode (BM con-
servation of 1.0) are used, no compound-target pair in 
ChEMBL was reconstructed. However, as the thresholds 
are relaxed, more and more reconstructions are possible.
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From the proteins point of view, the majority of them 
(23%) belongs to the category of kinases (EC 2.7), fol-
lowed by a 14% of peptidases (EC 3.4), a 6% of proteins 
acting on Ester Bonds (EC 3.1), a 5% of glycosyltrans-
ferases, and a 23% of proteins belonging to any other 
31 groups, whereas the remaining set could not be clas-
sified to any EC number. In general, the reconstruction 
using PDB fragments is able to cover a small proportion 
of ChEMBL compounds, which demonstrates the lit-
tle overlap between the PDB chemical space and giant 
chemical libraries such as ChEMBL (see Fig. 5C). As pre-
viously mentioned, some fragments are over-represented 
in PDB, whereas others barely appeared in one PDB 
compound. RECAP and the many other tools developed 
under the same basis have extensively tested the frag-
mentation process in multiple chemical libraries such 
as ChEMBL. The fact that certain fragments are found 
just in one PDB compound, does not directly mean that 
such fragments are not common among the large chemi-
cal libraries, but rather implies that there is not enough 
data in PDB to cover the real chemical space. The above 
clearly limits the reconstruction process, as the approach 
only uses fragments with a conserved binding mode. 
Therefore, no binding conservation score can be calcu-
lated  if a fragment appears in less than 5 different PDB 
compounds. Thus, the fragment can not be used in the 
reconstruction. As an ultimate solution, the reconstruc-
tion constrictions could be slightly relaxed in order to 
avoid the aforesaid issues.However, the results should 
be analysed under a more permissive perspective and 
several uncertainties should be taken into consideration. 
In another aspect, it is surprising that more than 10,000 
fragments are indeed part of PDB compounds but are 
not found in ChEMBL. Although it should be kept in 
mind that the ChEMBL data set was filtered prior to the 
fragmentation process to contain only compound-tar-
gets pairs that are not in PDB, it is expected to observe 
such fragments in other compounds as part of different 

complexes. On the contrary, the numbers suggest that 
they are rather unique or have not been well explored.

Computational structural approaches can provide 
definite insights into molecular recognition and predict 
binding with high confidence. The most direct technique 
is the chemical similarity approach, which exploits the 
chemical properties of the ligands, assuming that com-
pounds with similar scaffolds will fit within the same 
target pockets [24]. In a similar manner, binding site 
similarity approaches, exploit the assumption that some 
protein cavities might present a similar pharmacological 
profile and hence, accommodate the same ligands[25]. 
However, they have to deal with the noise produced by 
the flexible chains present in the protein cavity. The 
methods described above tend to be focused either on 
the protein pocket or on the molecular properties of the 
ligands. Consequently, as a dependant of such properties, 
there is a tendency to stay within a limited scope of struc-
turally or functionally related proteins and drugs with 
high similarity to the existing treatments. Integration 
of protein–ligand interaction profiles has recently come 
into research and may offer a solution to this problem. 
They can grasp the essence of binding sites, ignore amino 
acids not involved in binding, and take a more uncoupled 
viewpoint from the chemical structures of proteins and 
ligands.

On the other hand, Docking has proved to be an use-
ful technique able to predict the orientation of a ligand 
into a cavity of a target protein including estimation of 
the binding affinity [26]. Although the technique is very 
well- defined and widely used, its  predictive nature 
makes itprone to a high false-positive rate, and there are 
still some clear  limitations. On the contrary, the recon-
struction of drugs binding mode is a knowledge-based 
approach able to extract the binding mode properties of 
known structures and transfer such information to a frag-
ment level, to be later used and reconstruct full ligands.

Taken all together, the transfer of structural informa-
tion is a promising technique that could be applied to 

Table 2  Reconstruction of ChEMBL compound-target pairs at different thresholds

The numbers refer to the amount of compound-target pairs successfully reconstructed at each threshold combination

BM conserv. Compound proportion

0.5 0.6 0.7 0.8 0.9 1.0

0.5 7686 1737 202 48 34 34

0.6 5344 991 83 11 10 10

0.7 3844 651 49 7 6 6

0.8 2531 353 24 2 1 1

0.9 2100 279 20 1 0 0

1.0 2028 271 19 1 0 0
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Fig. 4  An example of binding mode reconstruction. The binding mode of the compound brivudine binding to the target deoxynucleoside kinase 
was reconstructed with an RSS = 0.66. On the left, the original binding mode of the complex (2VQS:BVD:C:1210) is represented and on the right 
the reconstructed binding mode based on the fragments. Both fragments have a relatively high binding mode conservation with an mTIS of 0.88 
and 0.63. The interactions look almost alike in both cases, except for the water bridge in Fragment I and the salt bridge and the hydrogen bond in 
Fragment II

Fig. 5  Fragmentation of ChEMBL compounds. A The bar plot shows the amount of ChEBML compounds by the number of fragments obtained 
after fragmentation. Most of the compounds are fragmented from 2 to 6 fragments. B The bar plot shows the frequency of fragments among the 
compounds. Most of them are unique for one compound, but others are highly frequent. C The venn diagram shows the overlapping fragments 
between both sources PDB and ChEMBL
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any chemical library or even more specific to any com-
pound that has no crystal structure available in PDB. As 
a proof of concept, in this work, we focused our efforts 
on transferring the non-covalent binding modes of frag-
ments to full drugs by using binary fingerprint represen-
tations. However, in principle, the concept of building 
blocks allows the transfer of any other feature, e.g. cova-
lent bonds.

Methods
Fragmentation of PDB molecules
For this purpose, 138,546 curated PDB structures (to date 
07.10.2020) were processed and analyzed with Open-
Babel v3.0.0 [27] for the detection of small molecule 
compounds and their atom coordinates. The RECAP 
[21] algorithm was used to fragment the compounds’ 
SMILES (Simplified Molecular-Input Line-Entry System) 
and to explore their fragment space. The algorithm is 
implemented and distributed by the open-source RDKit 
v2019.09.1 with the fragmentation option for the tree 
leaves only. The latter ignores the option to construct 
fragments by merging smaller ones, leading to a reduced 
set of fragments avoiding redundancy of data.

For more details, Fig.  1 illustrates the resulting PDB 
fragments data set, where each layer of the pyramid 
depicts the loss of data due to different reasons. The 
greatest loss at the structure level is due to more than 
30,000 structures without a binding ligand. Similarly, 
about 17,000 compounds have none of the RECAP cleav-
age rules; therefore, no fragments could be obtained from 
them. Most of such compounds cannot be fragmented 
because they are already fragments that were crystallized 
as ligands (as studied in Drwal et al. analysis [19]). None-
theless, to keep the uniformity of the data, they were 
excluded from this analysis. Finally, the major loss of data 
at the fragment layer is due to impossible atom mapping 
between the original PDB file and the generated fragment 
molecule, given the chemical inconsistencies caused by 
the fragmentation process. Without such mapping, it is 
impossible to trace back the structural information from 
the PDB, and therefore, the aforesaid cases cannot be fur-
ther analyzed.

Binding mode conservation
Binding mode characterization
The non-covalent interactions of all PDB compounds 
were calculated using the Protein Ligand Interaction Pro-
filer (PLIP) [28] with standard settings. The PDB struc-
tures without a PLIP profile and compounds without 
PLIP data (no interactions detected) were removed from 
the data set. Additionally, the PLIP non-covalent interac-
tions for the PDB fragments were encoded into 500 bins 
fingerprint, which was constructed considering only the 

interactions mediated by the fragment atoms and encod-
ing the types of interaction in the involved functional 
groups and in the interacting residues as demonstrated in 
Fig. 6.

Filtering the fragments data set
To avoid bias from over represented proteins and com-
pounds in PDB, the RECAP algorithm considers frag-
ments as small as one atom, e.g. the oxygen molecule. 
However, according to the definition of fragments, they 
are usually within the range of 40 < MW < 300 (Addi-
tional file  4: Fig. S1). Moreover, as shown in Fig.  2B, 
many fragments are a substructure of just one unique 
compound or only a few different targets. In such cases, 
the binding mode conservation can not be properly esti-
mated. Overall, the PDB fragments data set has a mean 
of 7.8 in respect to the different compounds of which a 
fragment is part of, and 12.1 for the number of different 
protein targets they bind to (Additional file  5: Fig. S2). 
Considering the above mentioned, a fragments subset 
has been defined with fragments at the given molecular 
weight range, being a substructure of at least five differ-
ent compounds, and binding to at least ten different pro-
teins. In addition, to deal with the over-representation 
of some fragments compared to others, a maximum of 
500 PDB complexes per fragment have been selected. If 
there are more than 500 complexes available in the data 
set for a given fragment, then its complexes are grouped 
by unique pairs of protein UniProt ID and compound 
InChIkey and only one is randomly selected as the repre-
sentative complex of the pair.

Binding mode similarity calculation
In order to estimate how conserved the binding mode 
for a given fragment is, all the PDB complexes containing 
such fragments must be compared in terms of interac-
tions fingerprints. The binding mode similarity of frag-
ments is measured by calculating a pairwise Tanimoto 
Interaction Similarities (TIS) of fragments interaction 
fingerprints. In other words, for two protein–ligand com-
plexes (C1 and C2) having the same fragment as sub-
structure, the TIS is calculated as follow:

C1bins refers to the number of activated bins in the 
interactions fingerprint of C1, C2bins the activated bins 
in C2, and C1bins ∩ C2bins is the number of bins acti-
vated in both C1 and C2. Following, the mean of all TIS 
(mTIS), obtained from the pairwise similarities of a given 
fragment, was calculated as the score for evaluating the 
binding mode conservation. Finally, the mTIS of PDB 

(1)

TISC1,C2 =
C1bins ∩ C2bins

C1bins + C2bins − C1bins ∩ C2bins
.



Page 11 of 14Adasme et al. Journal of Cheminformatics           (2022) 14:17 	

fragments was evaluated under three criteria in the con-
text of targets and compounds: the same fragment in all 
different compounds superstructures binding all kinds 
of targets, the same fragment in the same compound 
superstructure binding to different targets, and the same 
fragment as part of different compounds binding always 
to the same target pocket. Targets were differentiated by 
UniProt ID, whereas compounds by InChIkey.

Binding mode reconstruction
Considering that the approach’s main goal is to recon-
struct the binding mode of different drugs using the 
fragments’ structural data, a target-based reconstruc-
tion pipeline has been developed based on the category 
“different compounds - same target”. In other words, the 
binding mode of a compound can be reconstructed only 
for a given target, and the reconstruction considers only 
the structural data of fragments binding to that specific 
target. In order to achieve a high quality reconstruction 
of the binding modes, only fragments with a conserved 
binding mode were selected for this purpose. Since the 
binding mode conservation of PDB fragments was evalu-
ated under different conditions than the state of the art 
study, the subset of fragments was selected with a slightly 
more permissive threshold at mTIS = 0.5 than the one 
proposed by Drwal et. al. [19], leading to a total number 
of 26,840 fragments-targets pairs. The fragments subset 
is used to reconstruct the compounds according to the 
following target-based pipeline: 

1.	 Compound fragmentation: compounds are frag-
mented with the RECAP leaves algorithm using 
the compounds’ SMILES and default settings (Fig-
ure 7A). The fragments resulting from the fragmen-
tation are further scanned within the PDB frag-
ments subset. Given the target-based nature of the 
approach, only the structural data of fragments bind-
ing to the specific target will be further considered. If 
at least one of the fragments has available data in the 
PDB fragments subset, the approach continues. Oth-
erwise, it is impossible to reconstruct the compound.

2.	 Compound’s proportion: Given that the PDB chemi-
cal space covers only a limited part of the ChEMBL 
chemical space, it is expected that many fragments 
have no structural data nor binding mode defined. 
Therefore, an optional threshold (Compound propor-
tion) has been introduced at this step of the recon-
struction (Fig.  7B), to define the minimum number 
of fragments considered enough to emulate the bind-
ing mode of the full compound. For instance, for the 
compound in Fig. 7A, a compound proportion > 0.5 

would require that at least 2 of the 3 fragments are in 
the PDB fragments subset. If the proportion is lower 
than the cutoff, then the reconstruction is not pos-
sible.

3.	 Binding mode conservation: The fragments subset 
has been constructed with fragments having bind-
ing mode conservation (BM conservation) above 
0.5 mTIS. However, stricter thresholds may lead to 
better/different results depending on the fragments 
of independent cases. Consequently, an additional 
threshold (BM conservation) has been introduced in 
the reconstruction pipeline as an option to restrict 
this feature even more when needed (Fig. 7C). There-
fore, only fragments meeting the specified threshold 
will be used for the following compound’s recon-
struction.

4.	 Representative fragment’s fingerprint: One unique 
fragment can be a substructure of multiple differ-
ent compounds, which could be in multiple differ-
ent PDB structures (or complexes). Therefore, for 
reconstruction purposes, it is necessary to define a 
consensus binding mode (interactions fingerprint) 
for a specific fragment. Such consensus has been 
constructed by aggregating all known fingerprints 
of a given fragment into one that contains the fre-
quency of the observed non-covalent interactions. 
For instance, in (Fig.  7D) the example fragment is 
part of three different compounds. When construct-
ing its representative binding mode, the fingerprints 
of each independent compound, are all merged into 
one by considering the frequency of the activated 
bins. In other words, the number of times is observed 
as active divided by the total number of fingerprints 
found for the fragment. It should be noted that the 
constructed representative fingerprint is not any 
more of the binary type but rather float due to the 
frequency score. Nonetheless, since it is based on 
real observations there is a direct correspondence 
between the consensus fingerprint and the interac-
tions.

5.	 Reconstructed compound’s fingerprint: Finally, all 
the representative fingerprints describing the bind-
ing mode of each of the compound’s fragments 
are merged into one unique compound fingerprint 
(Fig.  7E). The merging of fingerprints is done by 
accounting for the union of all activated bins and cal-
culating the mean between frequencies. The recon-
structed fingerprint represents the binding mode of 
the compound to the target in question.
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Fig. 6  Fragments binding mode encoding. Fragments binding mode encoding. A Fragments are obtained from the PDB compounds. B The 
fragments atom are processed with the PLIP tool for the detection of non-covalent interactions and the generation of an interactions profile. C For 
each interaction detected in the binding mode of a fragment, three features were combined: (1)the interaction type, (2) the interacting functional 
group in the fragment, and (3) the interacting residue of the protein target. Each of these features combination is hashed (between 1 and 500) and 
encoded in a fingerprint of 500 bits

Fig. 7  Compounds binding mode reconstruction with PDB fragments. The PDB fragments binding mode are characterized with PLIP and 
represented as binary interactions fingerprints. A compound without structural data is fragmented and its fragments binding mode is extracted 
from the PDB fragments dataset. The fragments must cover the minimum compound proportion, they must meet the size (mw) thresholds and 
they must meet the minimum binding mode conservation. Only then, a representative interactions fingerprint is calculated for each independent 
fragment to later be all merged into one interactions fingerprint representing the binding mode of the full compound
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Reconstruction quality evaluation
The quality of the reconstruction approach was evalu-
ated in the PDB subset of 213106 compound-target pairs. 
The PDB subset includes all compound-target complexes 
found up to the second level (Ligand level) of the pyramid 
in Fig.  1, along with the non-fragmentable compounds 
that were excluded at the fragmentation stage. The recon-
struction pipeline was applied to the PDB subset, trying 
different combination of the modifiable thresholds, i.e. 
the compound’s proportion and the fragments bind-
ing mode conservation (see Table  1). To avoid bias in 
the validation, the binding mode (fingerprint) of a com-
pound-target complex is reconstructed without using 
the structural data from the complex itself. Meaning, 
the construction of representative binding mode of frag-
ments does not take into consideration the fingerprint of 
the compound-target complex to be reconstructed. Fur-
thermore, the quality of reconstruction was evaluated for 
each thresholds combination. To this purpose, a Recon-
struction Similarity Score (RSS) was defined as the mean 
of all the reconstructed-original fingerprint pairs simi-
larities, which was calculated using the simple Tanimoto 
Similarity approach.

Thus, the RSS was defined as follow:

where, P is the total of reconstructed-original fingerprint 
pairs, Onbins is the activated bins in the original finger-
print, and Rnbins the activated bins in the the recon-
structed fingerprint.

ChEMBL dataset
The ChEMBL dataset in SQLite format (v26 released in 
March 2020) was locally downloaded. Subsequently, the 
data retrieved was filtered according to the following cri-
teria: compounds under the category of small molecules, 
compounds having SMILES descriptor and UniProt ids, 
compounds having activity data (type IC50, EC50, Kd, 
and Ki in nanomolar, compounds that are not in PDB, 
compounds binding and having activity data to PDB tar-
gets, and compounds with molecular weight < 600Da 
(see Additional file 6: Fig. S3 for more details).

Generation of figures and plots
The RDKit (Version 2018.09.1) Draw.MolToFile() method 
was used to generate svg (scalable vector graphics) files of 
chemical structures. Plotting was done using the python 
package Matplotlib.Pyplot (Version 2.1.1) [29] with the 
plot(), pie(), bar() and scatter() methods. Figures 3 and 4 
were generated with a 2D visualization tool provided by 

(2)
RSS =

∑

P

n=1

(

Onbins∩Rnbins

Onbins+Rnbins−Onbins∩Rnbins

)

P
,

PharmaAI company. All figures were edited using Ink-
scape Vector Graphic Editor v1.0 (4035a4f, 2020-05-01).

Conclusions
Given the conserved nature of the fragments binding 
mode, they have proved to be helpful to extend the limits 
of structure-based drug repositioning by offering a differ-
ent perspective to explore the binding mode of drugs. The 
reconstruction turned out to be relatively successful as it 
fairly represents the relevant non-covalent interactions 
defining the binding mode of the reconstructed drugs. 
Although fragments tend to have a highly conserved 
binding mode, most of them never reach the perfect con-
servation, which comes hand to hand with the binding 
mode variability under particular binding environments. 
On the other hand, the compound proportion limitation 
reflects the still unmet necessity of a representative struc-
tural space covering a diverse set of molecular fragments. 
Nevertheless, in general, the approach was able to recon-
struct multiple compound-target pairs at optimal thresh-
olds and high similarity to the actual fingerprints, which 
calls for an optimistic future on the approach’s potential. 
The reconstructions are of great value and benefit to the 
structure-based drug repositioning since they automati-
cally enlarge the technique’s scope and allow to explore 
the so far “unexplored compounds” from a structural 
perspective. Additionally, novel machine learning tech-
niques could improve the conventional pattern matching 
screening by exploiting such reconstructed data. In a big-
ger picture, the building blocks concept allows the trans-
fer of any other feature that may be relevant for the drug 
discovery process and that given to data limitations is not 
yet fully available.
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Additional file 1. Fragment-target binding mode conservation: The 
file shows for each fragment-target pair thefragment’s InChiKey, the 
target’s UniProt ID, the minimum TIS, the maximum TIS, and the mean TIS 
observed in allavailable complexes 

Additional file 2. PDB test data set with original and reconstructed 
fingerprints: The file shows for each compound-target complex in the PDB 
test dataset: the complex UID (PDB:HETID:CHAIN:POS), the compound’s 
SMILES, the target’s UniProt ID, the MW of the compound, the origianl 
interactions fingerprint, the reconstructed interactions fingerprint, and 
the fragments used for the reconstruction (according to the defined 
thresholds in the pipeline). 

Additional file 3. ChEMBL data set with reconstructed fingerprints: The 
file shows for each compound-target complex in our ChEMBL dataset: 
the compound’s InChiKey, the target’s UniProt ID, and the reconstructed 
fingerprint. 

Additional file 4. Cutoff selection of the fragments molecular weight: 
The figure shows in the Y-axis the number of PDB complexes (A) and 
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the number of unique fragment such complexes (B) for each range of 
molecular weight in the X-axis. 

Additional file 5. Number of different targets and compounds for the 
PDB fragments: The figure shows the scatter plot of all PDB fragments in 
terms of the number of targets they bind to (X-axis) and the number of 
superstructure compounds the are part of. The red box at the bottom left 
encloses the majority of fragments, having a mean of targets equal to 12.1 
and a mean of different compounds of 7.8. 

Additional file 6. ChEMBL compounds data set for reconstruction: All 
compounds in ChEMBL were extracted and filtered according to the 
reconstruction pipeline criteria, in order to build up a clean testing dataset 
to evaluate the performance of the novel introduced pipeline.
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