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Abstract 

Comparing chemical structures to infer protein targets and functions is a common approach, but basing comparisons 
on chemical similarity alone can be misleading. Here we present a methodology for predicting target protein clusters 
using deep neural networks. The model is trained on clusters of compounds based on similarities calculated from 
combined compound-protein and protein-protein interaction data using a network topology approach. We compare 
several deep learning architectures including both convolutional and recurrent neural networks. The best performing 
method, the recurrent neural network architecture MolPMoFiT, achieved an F1 score approaching 0.9 on a held-out 
test set of 8907 compounds. In addition, in-depth analysis on a set of eleven well-studied chemical compounds with 
known functions showed that predictions were justifiable for all but one of the chemicals. Four of the compounds, 
similar in their molecular structure but with dissimilarities in their function, revealed advantages of our method com-
pared to using chemical similarity.
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Introduction
In the early days of drug discovery and development, 
researchers believed that chemically similar molecules 
would have similar biological functions. Although this 
stands true for many molecules, there are numerous 
examples where this is not the case. Considerable differ-
ences in biological function can even be seen in chemi-
cals with only bioisosteric replacements of atoms/groups 
and optical enantiomers [1]. When chemicals differs by 
a single chemical transformation such as the substitution 
of a hydrogen atom by a chlorine one, they are referred 
to as matched molecular pairs (MMP) [2]. Further, mol-
ecules that are very similar but have large changes in 
activity have led to the concept of ’activity cliffs’ [3, 4] as 
they diverge from the underlying assumption of a smooth 

activity landscape where similar structure implies simi-
lar function. Hence, the traditional methods used to 
ascertain biological similarity, such as comparing the 2D 
structural fingerprints between molecules with known 
and unknown biological activities [5], cannot be fully 
relied upon.

Inferring functions by predicting one or more protein 
targets for a compound using machine learning algo-
rithms is a widely used methodology. Examples include 
TargetNet [6] and the method by Lampa et al. [7] which 
both are based on a battery of models trained on experi-
mental interaction data between compounds and target 
proteins, extracted from the ChEMBL database. Other 
approaches include the prediction of metabolic path-
ways [8–11] and the prediction of the biological process 
[12] through the use of a variety of methods including 
likelihood calculation, nearest neighbor algorithms, and 
mathematical models. Two of these studies [8, 11] were 
limited only to the chemicals present in the databases 
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such that extrapolation to unknown compounds was not 
possible.

Another means of comparing chemical structures 
is to define a measure of biological similarity [13], for 
example, Muthas et  al. predicted safety concerns based 
on pharmacological similarity using experimental data 
from biological assays [14]. In another method, known as 
QuantMap [15], quantitative molecular network topol-
ogy analysis was used to assess the biological similarity 
between chemicals. The original implementation of this 
method was somewhat cumbersome, requiring manual 
user input, but was streamlined and automated in a sub-
sequent publication [16].

The previously mentioned methodologies for predict-
ing targets and functions based on chemical structure 
used various machine learning methodologies such 
as random forests and support vector machines [6, 7]. 
Recently, deep learning has emerged as an alternative 
methodology that has shown impressive performance on 
a variety of classification and regression tasks in chem-
informatics [17–19]. Typical input features for quantita-
tive structure-activity relationships (QSAR) consists of 
molecular fingerprints, Simplified Molecular Input Line 
Entry System (SMILES) strings [20], fine-tuned molecu-
lar descriptors or a combination of the above. Compared 
to traditional machine learning methods such as ran-
dom forests and support vector machines, deep learn-
ing possesses the advantage of extracting meaningful 
information required to represent the data directly from 
the raw input. In QSAR, this means that the chemical 
structures, such as in the form of SMILES strings, can be 
used directly rather than molecular descriptors derived 
from these strings. Deep learning has in some cases been 
shown to outperform other machine learning methods at 
deducing complex relationships in the data [17–19, 21].

In this manuscript, we introduce a new method for 
predicting protein clusters, constructed on the basis of 
a similarity measure from network topology analysis of 
compound-protein and protein-protein interaction data. 
Our method expands the work of Edberg et al. [15] and 
Schaal et  al. [16] by constructing a supervised learning 
model enabling predictions for novel compounds (i.e. 

compounds for which there is no information, or lim-
ited and poor quality information, in the STITCH and 
STRING databases). In our method chemical-protein 
interactions from STITCH [22] and protein-protein 
interactions from STRING [23] are used to generate a 
network of interactions for each chemical. The networks 
are then clustered into groups with biologically similar 
effects. Subsequently, machine learning models are com-
pared for assigning chemicals to these clusters. For the 
modeling, we explored several deep learning approaches 
and validated the final selected model both quantitatively 
and qualitatively on a set of well-known compounds.

Methods
Data and clustering
Interaction data was extracted from the STITCH and 
STRING databases for the species homo sapiens, where 
STITCH contains chemical-protein interactions and 
STRING protein-protein interactions. We used the same 
versions of the databases as used by Schaal et al. [16] to 
maintain consistency with these previous experiments. 
Applying network topology analysis to this data using 
QuantMap, with the default values for data inclusion 
(based on a quality criterion) a distance matrix describing 
the relatedness between 130259 chemicals was obtained; 
this can be interpreted as a biological distance in the net-
work topology space spanned by the interaction data. In 
order to produce functional clusters, we used hierarchi-
cal clustering [24] on the distance matrix for a range of 
distance thresholds (0.001, 0.005, 0.01, 0.05 and 0.1). For 
the chemicals in each clusters, a set of proteins interact-
ing with these chemicals were obtained from STITCH 
database and assigned as the proteins belonging to the 
cluster. Clusters with support greater than 100 (i.e., those 
with more than 100 chemicals) were retained and labeled 
for further pre-processing (see Table 1). As can be seen in 
Fig 1, there were many small clusters with only 1-10 com-
pounds that were filtered out.

For all molecules in all resulting clusters, SMILES 
strings were generated from their 3D representations 
using RDKIT [25]. A SMILES string is a 2D represen-
tation, containing atoms and their arrangement in a 

Table 1 Clustering results of the data using different distance thresholds. The results are shown for both the entire dataset and for 
clusters with support above 100

Distance 0.001 0.005 0.01 0.05 0.1

Entire dataset Chemicals 130259 130259 130259 130259 130259

Entire dataset Clusters 14057 13095 12162 8293 5680

Support greater than 100 Chemicals 86443 89216 93010 105856 112739

Support greater than 100 Clusters 249 241 231 153 112
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molecule. If the 3D representations did not exist, iso-
meric SMILES or canonical SMILES were obtained from 
PubChem [26, 27].

Pre‑processing of chemical structures
In our work we used different deep learning approaches 
to predict functional clusters based on chemical struc-
tures. These approaches require different forms of trans-
formations of the molecular data (the SMILES strings).

Data pre‑processing for deep neural networks
For the Deep Neural Networks (DNNs) the SMILES 
strings were converted to bit vectors of Morgan finger-
prints [28]. These fingerprints are commonly used for 
molecular comparison, clustering, structure-activity 
modeling, and deep learning [5, 29]. Morgan fingerprints 
are a re-implementation of the Extended Connectivity 
Fingerprints (ECFP) [30], a class of topological finger-
prints representing molecular structures and particular 
substructures. They are computationally inexpensive to 
calculate and are unique to a molecule. In this work, a 
fingerprint with a radius of 2 and a bit vector of size 1024 
was used to represent the molecules. As each Morgan 
fingerprint is unique for a given molecule, data augmen-
tation cannot be applied.

Data pre‑processing for convolutional neural networks
The data was prepared for Convolutional Neural Net-
works (CNNs) by converting the SMILES strings to fea-
ture matrices using the method proposed by Hirohara et 
al. [31] (Fig 2A). Data augmentation cannot be used 

either for this representation as the SMILES strings had 
to be converted to their canonical form before being 
transformed to feature matrices.

Data pre‑processing for Recurrent Neural Networks
For Recurrent Neural Networks (RNNs) the input 
SMILES strings were converted to tokens using the 
methods of Li & Fourches [32]. Both atom-wise and 
SMILES-PE tokenizations were explored as inputs to 
the RNNs (Fig 2B). These tokenized strings are inputted 
to an embedding matrix, which discerns the relationship 
between the input tokens. These embeddings are then 
passed on to the RNN cells. Both the embedding matrix 
and the weights of the RNN cells are updated during 
model training.

Data augmentation
Data augmentation is a popular technique used in deep 
learning to compensate for lack of variation in the train-
ing data and often improves the model’s ability to gen-
eralize to unseen data [33]. The training data can be 
augmented in various ways depending on the input data 
type and the application [34]. For SMILES string data, the 
atoms and groups can be reordered without losing the 
structural integrity of the molecule. Hence a single mol-
ecule can be represented in multiple ways using SMILES 
annotation. For instance, the aspirin molecule can be 
augmented (see Additional file 1: Fig S1) to 144 different 
(yet equivalent) SMILES representation. The maximum 
number of augmentations depends on the complexity 
and size of the molecule, and how it can be reordered. 

Fig. 1 Histogram showing clusters based on their support (using a distance threshold of 0.005). The bars show the number of clusters within the 
range of support. The yellow and green lines represent the discarded and selected chemicals (support greater than 100), respectively
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This method of SMILES augmentation has shown to 
improve the performance of deep learning models [33]. 
In our work, data augmentation was only applicable for 
the RNN modeling. To compensate for cluster imbalance, 
class-wise augmentation of the data was implemented by 
augmenting the clusters with fewer compounds a larger 
number of times than those with many compounds.

Deep learning architectures
All models were trained with categorical cross-entropy 
loss and Adam optimizers [35]. The hyperparameters, 
including the learning rate, number of epochs, batch size, 
network size, dropout rate [36], and activation functions 
[37] were tuned to obtain the optimal performance from 
each model.

Deep neural network
A fully connected Deep Neural Network (DNN) archi-
tecture consisting of 3 hidden layers with 4096, 4096, and 

1024 neurons, respectively, was used. Each layer was fol-
lowed by a ReLU activation function and dropout with a 
rate of 0.4. Alternative choices for the number of hidden 
layers and neurons per layer was investigated (results not 
shown), but this 3 layer neural network performed the 
best.

Convolutional neural network
Convolutional Neural Networks (CNNs) are the network 
architecture of choice for many computer vision appli-
cations [38]. They can also be applied to data stored in 
a matrix form. The CNN architecture used in this study 
was adopted from the network proposed by Hirohara 
et al.  [31] (Fig 3). The network parameters were kept at 
their default values except for the sequence length cut-
off parameter. In our work, this parameter was increased 
to accommodate the length of the longest compound 
sequence.

Fig. 2 Data pre-processing for CNN and RNN architectures. A An example of SMILES string conversion to a matrix of dimension 42 X (length of 
SMILES string). This matrix is padded along the y-axis up to a defined maximum length. B (a) Atomwise and (b) SMILES-PE tokenization for the 
compound aspirin
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Recurrent neural network
Recurrent Neural Network (RNN) architectures are 
widely used for applications involving temporal or 
sequential data and can accommodate input data of 
variable lengths [39]. For QSAR applications, pre-pro-
cessed SMILES strings (Data pre-processing for Recur-
rent Neural Networks) can be given as input. In this 
study, two RNN-based methods were explored: 

1. Seq2seq: The Seq2Seq model, adapted from Xu et al. 
[40], consists of a perceiver and an interpreter net-
work (Fig 4A). The interpreter network is an optional 
component implemented during the pre-training of 
the network. In this paper, a perceiver network with 3 
layers of LSTMs, each consisting of 256 hidden state 
units, was used. The interpreter network was omit-
ted as we had a sufficient amount of data available for 
training.

2. MolPMoFiT: The MolPMoFiT architecture was 
adapted from Li and Fourches [41]. This architecture 
is a modification of the Natural Language Processing 
(NLP) model, ULMFiT, for chemical data in the form 
of SMILES strings as opposed to text. The MolP-
MoFiT model required both pre-training and fine-
tuning (Fig 4B). The pre-training of the model was 
accomplished using SMILES from the STITCH data-
base. Three pre-trained models were created using 
different input data variations: atom-wise tokeniza-

tion, SmilesPE tokenization, and SmilesPE tokeniza-
tion with augmentation, respectively.

Study design
The workflow used in this study is given in Fig. 5. For the 
evaluation of different deep learning architectures and 
parameters, a subset of 20 clusters was chosen for each 
dataset corresponding to a specific distance value. Care 
was taken in this subset selection to include both closely 
related and distant clusters. From the obtained subsets 
of data, 10% was held out for test time assessment. The 
remaining 90% of the data was used in 10-fold cross-
validation [42]. For each fold in the cross-validation, test 
set statistics were calculated using the best performing 
model on each fold. An overall best architecture was then 
selected and applied to the entire dataset (all clusters).

When training on all clusters the data was split into 
80/10/10 for training, validation, and testing, respec-
tively. Performance on the test set was then evaluated 
based on the F1 statistic.

To assess the real-world applicability of the model, the 
cluster assignments for a set of well-known chemicals 
were investigated using the final model. These chemi-
cals were not included in the data used for training or 
validation. The known functions of these chemicals were 
compared to the functions represented in their assigned 
clusters. To assign properties to a particular cluster, the 

Fig. 3 Architecture of the CNN used. The given network takes the feature matrix as input and has three convolutional layers followed by a fully 
connected layer prior to the final classification layer
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Fig. 4 Two different RNN architectures used: A (a) Seq2seq architecture with both perceiver and interpreter networks. The perceiver network is 
pre-trained using unlabelled data, to learn patterns and structures present in the data. (b) Finetuning of seq2seq network, where the perceiver 
network is connected to a fully connected layer for classification. B Pre-training and fine-tuning of the MolPMoFiT model. Weights from the 
pre-trained embedding matrix and three layers of LSTM are transferred and fine-tuned to perform the classification task at hand
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set of proteins interacting with the chemicals in the clus-
ters were obtained from the STITCH database. The func-
tions for the obtained set of proteins were assigned as the 
functions of the cluster. Two sets of functional data were 
generated for the clusters, one using the higher qual-
ity cutoff parameter (Qcutoff) and the other one using 
a lower cutoff parameter (Lcutoff), which includes an 
increased set of proteins and their functions, but with 
lower confidence.

Results
Architecture comparisons
Cross-validation was carried out for the obtained sub-
sets of data from each distance threshold derived data-
set. From the F1 statistics and their standard deviations 
(Fig. 6), and randomization tests (see Additional file 1: Fig 
S2), it is evident that MolPMoFiT with atom-wise tokeni-
zation outperformed the Seq2Seq model with atom-wise 
tokenization (randomization test p-values  <  0.05 for all 
distance thresholds apart from 0.001). In light of this gen-
erally superior performance of the MolPMoFiT model, 
the effect of different tokenization methods (atom-wise 

and SmilePE tokenization, Data pre-processing for 
Recurrent Neural Networks) was evaluated for this 
model. Significantly higher performance was achieved 
by SmilesPE tokenization, compared to atomwise tokeni-
zation (p-value  <   0.05). Further performance improve-
ments to this model were achieved with the addition of 
class-wise augmentation (Data augmentation). Com-
paring the results between SmilesPE and SmilesPE with 
augmentation, there was a noticeable gain in the perfor-
mance on the datasets with distance thresholds 0.005, 
0.01, and 0.05 (p-value  <  0.05) but not for the datasets 
with thresholds of 0.001 and 0.1. Owing to this heteroge-
neous performance, both architectures were retained for 
further assessment.

Model training and evaluation
For assessment of the best performing model, MolP-
MoFiT, the clustering obtained for the entire dataset, 
using an intermediate distance threshold of 0.005, was 
used. This resulted in 241 clusters of 89216 chemi-
cals (Table  1). The data was split into training (80%), 

Fig. 5 Workflow used in this study. The data was obtained from STITCH and STRING databases and were processed using Quantmap followed by 
hierarchical clustering using several distance thresholds. For each distance threshold, a subset of 20 clusters was used to evaluate different deep 
learning architectures. Further, a dataset of interest was selected for training and functional assignment of clusters was carried out. The final trained 
model was later evaluated using well-known chemicals
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validation (10%) and test (10%) sets, corresponding to 
72272, 8037 and 8907 compounds, respectively.

The training of the final MolPMoFiT model with Smile-
sPE tokenization, was carried out in the following ways: 
(1) without augmentation (for comparison), (2) with one 
class-wise augmentation, and (3) with five class-wise aug-
mentations and obtained test set F1 scores of 0.831, 0.873 
and 0.887, respectively. Based on the F1 scores, there is 
a clear performance improvement when using data aug-
mentation. Therefore the MolPMoFiT model utilizing 
SmilesPE tokenization with five class-wise augmenta-
tions was selected for further evaluation.

Application to well known chemicals
The functions for a set of chosen chemicals excluded 
from the model training (morphine, nalorphine, estro-
gen, penicillin, ampicillin, nor-epinephrine and epi-
nephrine, imipramine, desipramine, chlorpromazine, 
and promethazine) were predicted using the final model 
and the distances between these chemicals (i.e, dis-
tances between the predicted clusters for the chemicals) 
were determined using cluster distances obtained ini-
tially from hierarchical clustering (Fig. 7). The predicted 
clusters were assigned function using both the Qcutoff 
and Lcutoff (see Table  2), where the top five proteins 
are shown for each cluster assignment. These predicted 

functions were compared against the DrugBank annota-
tions for the chosen chemicals [43].

For the chemical nalorphine, there is currently no 
DrugBank annotation, but it is known that it acts as an 
antagonist while morphine acts as an agonist [1]. Since 
both of these chemicals act on the same set of proteins, 
but with opposite interactions, it is understandable that 
they were assigned to the same cluster. A similar result 
can be seen for norepinephrine and epinephrine, both 
of which are α-adrenegic agonists [1]. This also holds 
true for penicillin and ampicillin, where both have been 
experimentally proven to act on the same set of proteins.

Concerning the chemicals with similar structures and 
different functions, our model predicted that chlor-
promazine act on dopamine receptors, promethazine on 
cholinesterases and ion channels, while imipramine and 
desipramine act on neurotransmitters. This corresponds 
well with their evidence from article [1] and DrugBank 
annotation (Table  2). Hence, despite their structural 
similarity, as can be seen in Additional file  1: Fig S3, 
these chemicals were assigned to appropriate functional 
clusters.

However, for the chemical estrogen, the predicted 
functions were not in line with those of DrugBank. 
Nevertheless, if we look at the second and third best 
clusters for this chemical, based on the sorted softmax 

Fig. 6 Comparison between different architectures. F1 score means and standard deviations (for ten cross-validation folds) of the deep learning 
models compared on the five clustering distance thresholds
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probabilities prior to the prediction made for this model, 
we see functions for this chemical that are more in line 
with those of DrugBank (Additional file 1: Table S1). The 
sorted softmax probabilities for these top three clusters 
were 0.9233, 0.0397, and 0.0202. Although the probabil-
ity for the top cluster is relatively high in this case, it is 
known that softmax probabilities are not well calibrated 
and tend to produce overconfident predictions [44, 45].

Discussion
A tool that can predict the biological activities caused 
by chemicals and thus aid in drug discovery, developing 
generic drugs, and understanding the cascade of induced 
metabolic activities, is of high demand and interest. In 
this study we developed such a tool, a tool capable of pre-
dicting the proteins interacting with a chemical of inter-
est. This tool has potential for lead identification and 
drug discovery, and it could also be applied in toxicology 
studies, shedding light upon possible side effects caused 
by the chemicals.

Several previous studies have explored the prediction 
of metabolic pathways [8–11], but without accounting 
for the cascade of interactions caused by them. Some 
of these methods were also limited to features such as 
functional groups, size of the molecules, and descrip-
tors, thus failing to represent a large set of the chemical 
space. A similar study to ours, using chemical-protein 
and protein-protein interaction data from  STITCH and 
STRING, was undertaken by Gao et  al. [11]. However, 
their method was limited to metabolic pathway predic-
tion and lacked the ability to make predictions for new 
compounds. This prediction hurdle was overcome by the 

Prediction of Biological Activity Spectra for Substances 
(PASS) algorithm [12] and iFragMent [9] by allowing 
user-generated input chemical structure to be processed. 
Even though these methods provide useful knowledge 
about the possible activity of the molecule, they do not 
identify the possible interactions leading to this activity, 
as we do with our method.

In the model comparison part of our study, the best 
performing model was the RNN model MolPMoFiT, sup-
plemented with an improved tokenization method and 
data augmentation. The improved performance of the 
MolPMoFiT model compared to the other RNN model 
(seq2seq model), is due to the two major features pre-
sent in the MolPMoFiT model, dropconnect and ASGD 
(Averaged Stochastic Gradient Descent), along with 
regularization techniques introduced in the model. Fur-
thermore, AWD-LSTM (the underlying model of MOLP-
MOFIT) has shown to outperform the other RNN based 
models for language processing [46].

The predictions of this model were explored for a set 
of well-studied chemicals, that were not used during the 
model development. The predicted biological functions 
were compared to those in DrugBank and elsewhere in 
the research literature for both high and low confidence 
data. The functional predictions were reasonable for all 
but one of the chemicals, estrogen. This could be due to 
an incorrect classification made by the model or due to 
unknown interactions of estrogen. As estrogen is such a 
well-known chemical the latter seems unlikely. It is also 
possible that the ideal cluster for estrogen had been 
removed from the dataset. Several small clusters (those 
with less than 100 compounds) had been removed prior 

Fig. 7 Predicted distances between the eleven chemicals selected for in-depth analysis
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to model training. This was a necessary step as the 
models required sufficient information for each cluster 
to make predictions.

Even though the model gave reasonable predictions 
for most of the molecules, estrogen appeared to be 
an outlier. This can be explained in two ways: (i) there 
was not enough evidence in the literature to prove the 
interaction of estrogen with the receptors in the clus-
ter (ii) the model made an incorrect classification. In 
a general sense, cases of the former type could aid in 
future research for identify novel interactions by chem-
icals, or to expose overlooked interactions (helpful for 
understanding the side effects of molecules). Cases of 
the later type could be addressed by incorporating con-
fidence into the model output, for example Conformal 
prediction [47]. It is also possible that chemicals may 
belong to multiple classes, based on the proteins with 
which they interact. Although a molecule may have its 
major interaction with proteins in one class it may also 
have relevant interactions in other classes.

Conclusion
We present a new method for predicting protein tar-
gets, and implicitly biological functions, based on 
chemical structure using a deep learning model trained 
on data from network topology analysis. The method 
has high accuracy for predicting the correct protein 
target cluster, and produces lists of potential func-
tions that were in accordance with a set of well-known 
compounds. Our results demonstrates the usefulness 
of complementing target predictions based on chemi-
cal similarity with ’biological’ distances from network 
topology analysis of compound-protein and protein-
protein interaction networks.
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