
Ash and Hughes‑Oliver ﻿
Journal of Cheminformatics           (2022) 14:50  
https://doi.org/10.1186/s13321-022-00629-0

METHODOLOGY

Confidence bands and hypothesis tests 
for hit enrichment curves
Jeremy R Ash1,2* and Jacqueline M Hughes‑Oliver1 

Abstract 

In virtual screening for drug discovery, hit enrichment curves are widely used to assess the performance of ranking 
algorithms with regard to their ability to identify early enrichment. Unfortunately, researchers almost never consider 
the uncertainty associated with estimating such curves before declaring differences between performance of com‑
peting algorithms. Uncertainty is often large because the testing fractions of interest to researchers are small. Appro‑
priate inference is complicated by two sources of correlation that are often overlooked: correlation across different 
testing fractions within a single algorithm, and correlation between competing algorithms. Additionally, researchers 
are often interested in making comparisons along the entire curve, not only at a few testing fractions. We develop 
inferential procedures to address both the needs of those interested in a few testing fractions, as well as those inter‑
ested in the entire curve. For the former, four hypothesis testing and (pointwise) confidence intervals are investigated, 
and a newly developed EmProc approach is found to be most effective. For inference along entire curves, EmProc-
based confidence bands are recommended for simultaneous coverage and minimal width. While we focus on the hit 
enrichment curve, this work is also appropriate for lift curves that are used throughout the machine learning commu‑
nity. Our inferential procedures trivially extend to enrichment factors, as well.
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Introduction
Ranking algorithms order items according to the belief 
that they possess some desired feature. When the pres-
ence/absence of the desired feature is known, ranking 
algorithms are often evaluated by “testing” items accord-
ing to the relative rank or testing order. The focus of this 
paper will be on a performance curve used to assess 
whether early tests reveal the desired feature—the hit 
enrichment curve. The statistics and machine learn-
ing communities use a number of variations of this per-
formance curve to evaluate ranking algorithms as well, 
including the enrichment factor or lift curve. Since the 
variations of these curves involve scaling by a constant 
on either the x or y axis, all of the inferential procedures 

discussed in this paper are equivalent. Popular soft-
ware such as the R package caret [1], SAS Enterprise 
Miner [2], and JMP [3] can be used to construct these 
curves. These curves are used extensively in the evalua-
tion of virtual screens of chemical compounds for drug 
discovery [4]. Due to the interpretability of these metrics 
when classes are extremely imbalanced and testing frac-
tions are small, we believe these are important metrics 
to report when evaluating virtual screens. The curves are 
also used in a number of other applications such as the 
evaluation of marketing campaigns [5].

In the context of virtual screening, the desired feature is 
often a biological activity. Typically the desired activity is 
binding to a protein target, so we will refer to the chemi-
cal compounds as ligands. Ligands are scored, where the 
scores are provided by one of the many ranking algo-
rithms available, such as molecular docking algorithms, 
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pharmacophore models, or quantitative structure-activ-
ity relationship (QSAR) models.

Empereur-Mot et al. [6] recently provided a web appli-
cation for constructing performance curves to evalu-
ate virtual screening methods. One of the performance 
curves they provide is the hit enrichment curve. The soft-
ware provides many nice interactive features for explor-
ing performance metrics at points along a curve. It also 
provides utilities for combining the scores from multiple 
methods into a consensus score that may improve rank-
ing performance.

Of tremendous importance in a world where virtual 
screening data is tightly guarded, Empereur-Mot et  al. 
[6] make some of their data freely available. We use one 
of the case studies as a demonstration dataset. The tar-
get was the protein regulating gene peroxisome prolif-
erator-activated receptor gamma (PPARg), which has 
been linked to several diseases such as obesity, diabe-
tes, atherosclerosis, and cancer [7]. While this is a small 
dataset for a retropsective screening evaluation by pre-
sent-day standards, the rarity of actives ( π̂+ = 0.0265 
is the observed fraction of active ligands) and the small 
testing fractions are very consistent with larger screen-
ing studies [8]. The primary goal in such a study is to dis-
cover scoring methods that are able to correctly identify 
active ligands, and to do so very early in the testing phase 
[4, 9, 10].

The hit enrichment curve is commonly used to sum-
marize effectiveness of a screening campaign. It plots the 
proportion of active ligands identified (i.e., the recall) as 
a function of the fraction of ligands tested, where testing 

order is based on the score produced by a virtual screen-
ing method. Larger recall values are preferred and, going 
a step further, these are more relevant when they occur 
at small testing fractions. In other words, one hopes to 
demonstrate improvement in early enrichment.

While the hit enrichment curve is designed to show 
results for all testing fractions, it is common to focus on 
fractions below 0.1 and even below 0.001 [8]. The size 
of our demonstration dataset limits us to consider 0.001 
as the smallest testing fraction (resulting in just three 
ligands tested), but present-day screening campaigns can 
easily involve millions of ligands and hence testing frac-
tions below 0.001 are reasonably considered. For a given 
testing fraction, one may want to compare observed 
recall values for competing scoring methods.

For the PPARg study, Empereur-Mot et al. [6] use three 
popular docking methods to score ligands: Surflex-dock, 
ICM, and Vina. We scale all docking scores so that a 
larger value is consistent with active ligands; as a result, 
ICM and Vina scores have been negated. Empereur-Mot 
et  al. [6] also evaluate several methods for constructing 
consensus scores, and we limit investigations to two of 
their best performers: maximum of the z-scores from 
Surflex-dock and ICM, and the minimum of the ranks 
from Surflex-dock and ICM.

Figure 1 shows estimated hit enrichment curves for the 
five scoring methods over the full range of testing frac-
tions, along with the ideal hit enrichment curve that 
would be expected if the 85 active ligands were identi-
fied in the first 85 tests, and the hit enrichment curve 
consistent with random identification of active ligands. 

Fig. 1  Hit enrichment curves for the PPARg application, comparing five scoring methods over the full range of testing fractions. Ideal and random 
hit enrichment curves are also shown
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This figure differs slightly from that produced by the web 
application of Empereur-Mot et  al. [6] due to a differ-
ence in how ties are handled; we use inverse distribution 
functions (strategy discussed below) to avoid arbitrary 
indications of better performance due simply to random 
ordering.

Comparing consensus methods to individual docking 
methods, is the observed improvement in recall at testing 
fraction 0.1 significant? With recall being the proportion 
of active ligands identified at this testing fraction of 321 
tests, it may be tempting to apply a procedure based on 
comparing independent binomial proportions. There are, 
however, two complications. The first is that determina-
tion of testing order requires scores from all ligands, and 
hence this introduces correlation between the 321 tests 
that are applied for a single scoring method. The second 
complication is that competing scoring methods are very 
likely positively correlated and so the uncertainty asso-
ciated with differences between hit enrichment curves 
may possibly be reduced, thus improving the power to 
uncover differences. This paper develops appropriate 
techniques for comparing hit enrichment curves that 
result from competing scoring methods. Our inferential 
procedures trivially extend to enrichment factors, as well. 
The need for proper inferential methods for these early 
enrichment metrics has been emphasized by many recent 
papers [11, 12]. In Hawkins et al. [13], the authors argue 
against the enrichment factor by stating “It is difficult to 
calculate analytically errors in enrichment, and there is 
no available literature for such a calculation.” We hope to 
address this concern in this paper. Perhaps most impor-
tantly, this paper establishes a statistical foundation that 
is necessary for carefully thinking about the uncertainty 
in early enrichment measures when classes are extremely 
imbalanced and testing fractions are small.

The paper is organized as follows. First, we introduce 
hit enrichment curves constructed from ranking algo-
rithms. Next, we present four approaches for hypoth-
esis testing and confidence intervals to compare two hit 
enrichment curves, along with simulation studies to com-
pare effectiveness of the approaches; EmProc is newly 
proposed here, while three other approaches are applied 
in new ways. Then, we present confidence band proce-
dures and simulation results for an entire hit enrichment 
curve from a single algorithm. Next, we consider bands 
for the difference between two hit enrichment curves for 
competing algorithms. Then, we revisit the PPARg appli-
cation, using our inferential methods. Finally, we discuss 
general findings from this study, and also make connec-
tions to the broader task of assessment of virtual screen-
ing campaigns.

Methods
Evaluation of ranking algorithms
Let S denote the score from a ranking algorithm, where 
larger values of S suggest stronger belief that a ligand is 
active. S is reasonably regarded as a random variable. 
Activity of a ligand may also be regarded as a random 
variable: X = I(active) , where I(·) is the indicator func-
tion. That is, X = 1 when a ligand belongs to the active 
class ( + ) and X = 0 when a ligand belongs to the inac-
tive class (−). Let P(X = 1) = π+ . Given that a ligand 
is active, S has cumulative distribution function F+(s) , 
and given that a ligand is not active, S has cumula-
tive distribution function F−(s) . Combining the scores 
from both classes results in the mixture distribution 
FS(s) = π+F+(s)+ (1− π+)F−(s).

Once ligands have been ranked according to their 
score, S, a threshold on the score, t, will prioritize a top 
fraction of the data set for testing. Let this top fraction 
be r = P(S > t) , which is the x-axis of the population hit 
enrichment curve. The hit enrichment curve (also known 
as the enrichment curve, accumulation curve, or percent 
captured response curve) is often used when an entire 
curve is used to evaluate a virtual screening campaign. 
Population hit enrichment curves plot P(S > t|+) on the 
y-axis, where P(S > t|+) is known as recall at threshold 
t.

So far, we have described the population level dis-
tributions of random variables X and S, that is, the dis-
tribution of ligand activity for the population of drug 
candidates from which a data set is sampled and the 
distribution of scores that a ranking algorithm would 
assign to them. We consider a data set under examina-
tion to be a random sample of activity and score pairs 
{(Xi, Si); i = 1, ..., n} from these population level distri-
butions. Let {S+i ; i = 1, ..., n+} be the scores that were 
sampled from the + class mixture component, F+(s) , and 
{S−i ; i = 1, ..., n−} be the scores that were sampled from 
the − class mixture component, F−(s).

The empirical hit enrichment curve plots the cumula-
tive fraction of actives on the y-axis, identified as a func-
tion of the top r fraction of ranked ligands. This means all 
compounds with scores beyond the percentile 100(1− r) 
are “tested” and the cumulative fraction of actives deter-
mined. Another way of determining this percentile would 
be to choose a threshold t̂r such that the fraction of items 
with S > t̂r is r. We use t̂ instead of t to denote that this 
threshold defines a fraction of the sample data and not 
the population.

Specifically, we define, F̂(·) and F̂+(·) to be the empiri-
cal cumulative distribution functions (cdfs) for all and + 
scores:
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Given a testing fraction r, we ideally choose a thresh-
old t̂r to be the score percentile selected for testing such 
that r = 1− F̂(t̂r) . To accommodate the possible exist-
ence of ties in the observed data on scores, we define 
t̂r = min{t : F̂(t) ≥ 1− r} . Estimated recall at testing 
fraction r is the fraction of the active compounds that are 
correctly predicted to be active (i.e. S+i > t̂r ) and is thus 
obtained as θ̂r = 1− F̂+(t̂r) = 1− F̂+(F̂−1(1− r)) . Thus, 
the empirical hit enrichment curve plots the pairs {r, θ̂r}.

Jiang and Zhao [14] have shown that if π+ ∈ (0, 1) , then 
the empirical hit enrichment curve is an unbiased esti-
mator of the population hit enrichment curve.

Compare hit enrichment curves from competing 
algorithms
We wish to determine whether one ranking algorithm has 
significantly better performance than another at a given 
testing fraction r. For r = 1− F(tr) , let θr = P(S > tr |+) 
denote the true population-level recall for a ranking algo-
rithm at testing fraction r. Let {(Xi, S1i, S2i); i = 1, ..., n} 
be a random sample from the ligand activity distribution 
and the score distributions of ranking algorithm 1 and 2. 
We assume that the triplets (Xi, S1i, S2i) are independent 
across i. However, S1i and S2i are likely correlated. The 
amount of correlation will depend on the extent to which 
the scores are measures of the same characteristics of the 
ligands. For example, competing docking scoring func-
tions are often parameterized in similar ways (e.g., Glide 
SP and Glide XP; see [15]), and competing QSAR models 
often utilize highly correlated sets of descriptors. Using 
the random sample, we estimate the difference in perfor-
mance between two algorithms at a given r, θ̂1r − θ̂2r , and 
perform a hypothesis test to determine if the difference is 
significant.

First considering a single algorithm, let Qr =
∑n

i=1
XiI

(Si > t̂r) represent the number of active ligands that 
are examined at testing fraction r. We estimate recall at 
testing fraction r using θ̂r = Qr/

∑n
i=1 Xi , noting that 

both the numerator and denominator are random vari-
ables. The activity rate π+ is reasonably estimated as 
π̂+ =

∑n
i=1 Xi/n , so an alternative expression for esti-

mated recall is θ̂r = Qr/(nπ̂+) . Because t̂r is estimated 
using the entire dataset through the empirical cdf F̂(·) , 
Qr is not binomially distributed. To properly account 
for this, Jiang and Zhao [14] take an empirical process 
approach to derive asymptotic normality of θ̂r . Their 
result is that 

√
n(θ̂r − θr)

d−→ N (0, τ 2θr ) for r ∈ (0, 1) 
as n → ∞ , with corresponding asymptotic variance 
expression

F̂(s) = 1

n

n∑

i=1

I(Si ≤ s), F̂+(s) =
1

n+

n+∑

i=1

I(S+i ≤ s).

where

is the simple binomial variance, and �r = P(+|S = tr) is 
a threshold-specific activity rate. This result assumes that 
π+ > 0 , and that the conditional densities f+(s) and f−(s) 
are positive and continuously differentiable in a neigh-
borhood of S = tr ; henceforth called Conditions 1 and 2.

When it comes to comparing estimated recall across 
two competing algorithms, there are two sources of cor-
relation that should be addressed. One source is correla-
tion induced by needing to estimate tr using t̂r , and that 
is addressed by using the result of Jiang and Zhao [14]. 
The other source of correlation arises because competing 
algorithm scores are derived using some common data, 
and this source of correlation has not been previously 
addressed in the literature. By accounting for both types 
of correlation, we expect to improve the power to detect 
real differences in algorithmic performance.

The following subsections present four methods of testing 
for significant differences in recall for two competing algo-
rithms. First, we extend the approach of Jiang and Zhao [14] 
to use an empirical process approach that accounts for the 
correlation between algorithms, in addition to the correla-
tion induced within a particular algorithm by estimation of 
tr ; this method is called EmProc. Second, we present details 
on how a McNemar procedure for correlated proportions 
may be applied to the application; as far as we know, this 
has not been previously done. Third, we apply the Jiang and 
Zhao [14] result for hypothesis testing; this method is called 
IndJZ and is only optimized to address correlation within 
each algorithm but not correlation between algorithms. And 
fourth, we treat Q1r and Q2r as correlated binomial random 
variables, thus ignoring correlations induced by estimat-
ing tr but accounting for correlations between algorithms; 
this method is called CorrBinom. The four methods are 
compared using a simulation study in "Simulation results" 
section.

All four methods are based on asymptotic normality of 
a test statistic of the form

We reject H0r : θ1r = θ2r if |Zr | > zα/2 , where zα/2 = 1.96 
for an α = .05 level test. Pointwise confidence intervals 
are obtained as

(1)

τ 2θr/n:=VarJZ(θ̂r) = VarB(θ̂r)
[
1− 2�r +

�2
r (1− r)r

π+θr(1− θr)

]
,

(2)VarB(θ̂r) = (nπ+)
−1θr(1− θr)

Zr =
θ̂1r − θ̂2r

SE(θ̂1r − θ̂2r)
.

(3)(θ̂1r − θ̂2r)± zα/2SE(θ̂1r − θ̂2r).
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The methods differ in their approach to estimating 
Var(θ̂1r − θ̂2r).

EmProc: adjust for correlation between algorithms 
and correlation within each algorithm
Taking an empirical process approach, the functional 
delta method employed by Jiang and Zhao [14] was 
extended to derive the following asymptotic normality 
result concerning θ̂1r − θ̂2r.

Theorem 1  Given that Conditions 1 and 2 are satisfied 
for both θ1r and θ2r , then

as n → ∞ . Furthermore, the asymptotic variance expres-
sion is

where: VarJZ(·) is as given in Eq. (1) and applied for each 
algorithm;

is the covariance between binomial counts; r = P(Sj > tjr) 
and determines the threshold for algorithm j, for j = 1, 2 ; 
θ12·r = P(S1 > t1r , S2 > t2r |+) is the conditional prob-
ability that both algorithms result in testing an active 
ligand because it is highly ranked by both algorithms; 
γ12·r = P(S1 > t1r , S2 > t2r) is the unconditional prob-
ability that a ligand is highly ranked by both algorithms; 
and �jr = P(+|Sj = tjr) for j = 1, 2 . Details and deriva-
tions are in the Additional file 1: Appendix.

To estimate Var EmProc (θ̂1r − θ̂2r) , we replace the 
population parameters with consistent estimators. The 
frequency distribution for the tested/not-tested status 

√
n
{
(θ̂1r − θ̂2r)− (θ1r − θ2r)

}
d−→ N (0, τ 2θ1r ,θ2r )

(4)

τ 2θ1r ,θ2r/n:=Var EmProc (θ̂1r − θ̂2r)

= VarJZ(θ̂1r)+ VarJZ(θ̂2r)

− 2Cov EmProc (θ̂1r , θ̂2r),

(5)
Cov EmProc (θ̂1r , θ̂2r) = CovB(θ̂1r , θ̂2r)

{
(1−�1r −�2r)+

(γ12·r − r2)�1r�2r

π+(θ12·r − θ1rθ2r)

}
;

CovB(θ̂1r , θ̂2r) = (nπ+)
−1

(
θ12·r − θ1rθ2r

)

according to both ranking algorithms for the active ligands 
is shown in Table  1, where Qjr =

∑n
i=1 XiI{Sji > t̂jr} 

counts the number of active ligands tested by algorithm 
j for j = 1, 2 , and Q12·r =

∑n
i=1 XiI{S1i > t̂1r , S2i > t̂2r} 

counts the number of active ligands tested by both algo-
rithms. As previously discussed, we estimate θjr with 
θ̂jr = Qjr/(nπ̂+) . Additional estimates are obtained as 
γ̂12·r =

∑n
i=1 I{S1i > t̂1r , S2i > t̂2r}/n , θ̂12·r = Q12·r/(nπ̂+) , 

and �̂jr is obtained using Nadaraya-Watson kernel 
regression with the “rule-of-thumb” bandwidth selector 
[16].

Under the null hypothesis H0r : θ1r = θ2r , we could 
alternatively use a pooled estimator of θjr for j ∈ {1, 2} , 
namely θ̂r = 1

2
(θ̂1r + θ̂2r) to replace both θ̂1r and θ̂2r in 

variance expression (4). We consider variance estimates 
using both the unpooled and pooled approaches.

McNemar’s test for difference in recall
When estimating recall, the same set of active ligands 
simultaneously serves as the set of “trials” for both rank-
ing algorithms, with the decision being whether or not 
each algorithm selects the active ligand for testing. The 
consequence is that the data for both algorithms may be 
viewed as fully paired. The standard test used for paired 
proportions is McNemar’s test [17, 18]. Table  1 shows 

how the number of active ligands tested by either rank-
ing algorithm can be written as a 2× 2 contingency table. 
The estimated recall values present themselves as the 
marginal probabilities of testing an active ligand for each 
ranking algorithm. Consequently, the asymptotic McNe-
mar test is based on test statistic

Zr =
((Q1r − Q12·r)− (Q2r − Q12·r))√
(Q1r − Q12·r)+ (Q2r − Q12·r)

= (Q1r − Q2r)√
Q1r + Q2r − 2Q12·r

= (θ̂1r − θ̂2r)√
Q1r + Q2r − 2Q12·r/(nπ̂+)

Table 1  Frequency distribution for the tested/not-tested status of active ligands according to both ranking algorithms, at a fixed 
testing fraction r 

Algorithm 2 tested Algorithm 2 not-tested Row total

Algorithm 1 tested Q12·r Q1r − Q12·r Q1r

Algorithm 1 not-tested Q2r − Q12·r nπ̂+ − (Q1r + Q2r − Q12·r) nπ̂+ − Q1r

Column total Q2r nπ̂+ − Q2r nπ̂+
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and it assumes that discordant counts (Q2r − Q12·r) and 
(Q1r − Q12·r) are large. In a simulation study comparing 
the asymptotic McNemar test to a number of other tests 
for paired nominal data, the asymptotic McNemar test 
was found to be the most powerful across simulation sce-
narios, though slightly liberal in terms of type I error [18].

While the asymptotic McNemar test enforces the null 
condition θ1r = θ2r to replace Q1r − Q2r with zero in the 
variance expression, an alternative approach is needed to 
obtain pointwise confidence intervals. Pointwise Wald 
confidence intervals use the following standard error 
expression in Eq. (3):

Unfortunately, several studies [18–20] demonstrate 
inadequate coverage properties of the Wald inter-
val. The Bonett-Price [21] adjusted interval is a sim-
ple modification of the Wald interval, and it has been 
shown to have good coverage properties [18, 20]. We 
refer to the Bonett-Price adjustment as a “plus” adjust-
ment because it adds one unit to each of the discordant 
counts shown in Table 1, then applies the Wald formula. 
More precisely, discordant count Q1r − Q12·r becomes 
Q1r − Q12·r + 1 and discordant count Q2r − Q12·r 
becomes Q2r − Q12·r + 1 , thus adding one to each of the 
marginal counts and two to the overall total. As a result, 
the Bonett-Price plus interval is

noting that both the center point and the standard error 
have been adjusted.

IndJZ: adjust for correlation within each algorithm 
but not correlation between algorithms
If we assume that θ̂1r and θ̂2r are independent, then 
VarJZ(θ̂1r − θ̂2r) = VarJZ(θ̂1r)+ VarJZ(θ̂2r) , where 
VarJZ(θ̂jr) is obtained as in Eq. (1) for j = 1, 2 . For test-
ing equality of recall for the algorithms, either a pooled 
or unpooled estimator of the variance could be used, as 
previously discussed.

When the competing algorithms have scores that are 
highly positively correlated, it is expected that the IndJZ 
approach will lead to standard errors that are unneces-
sarily large, resulting in an underpowered test.

SE(θ̂1r − θ̂2r) =
√
Q1r + Q2r − 2Q12·r − (Q1r − Q2r)2/(nπ̂+)/(nπ̂+).

Q1r − Q2r

nπ̂++2
± zα/2

√√√√ 1

(nπ̂++2)2

[

(Q1r + Q2r − 2Q12·r+2)− (Q1r − Q2r)
2

(nπ̂++2)

]
,

CorrBinom: adjust for correlation between algorithms 
but not correlation within each algorithm
In this approach, we treat Qjr as if it follows a sim-
ple binomial distribution, even though it does not. 
As a result, the relevant variance expression is 
VarB(θ̂1r − θ̂2r) = VarB(θ̂1r)+ VarB(θ̂2r)− 2CovB(θ̂1r , θ̂2r), where 
VarB(·) is defined in Eq. (2) and CovB(·, ·) is defined in Eq. 
(5).

For testing equality of recall for the algorithms, either 
a pooled or unpooled estimator of the variance could be 
used, as previously discussed.

Simulation results
Simulation of benchmarking data sets  Geppert et al. [4] 
and Xia et  al. [22] have recently reviewed the standard 
data sets used to benchmark virtual screening tools. The 
goal in designing a benchmark data set is to mimic real 
world chemical collections—this means that the score 
and activity distributions of the compounds in the bench-
mark should resemble these populations. However there 
are frequently biases in benchmark data sets.

One type of bias is analogue bias [23]. Data sets with 
known activities toward a target often have very limited 
chemical scaffolds (or chemotypes) because they were 
assembled by medicinal chemists for structure-activity 

relationship (SAR) studies. In an actual prospective vir-
tual screen the chemotypes are more diverse. Another 
type of bias is artificial enrichment [24]. This occurs 
when the inactives do not resemble the actives in terms 
of low dimensional physicochemical properties. This 
results in an over simplified classification problem that 
does not reflect the true complexity of the SARs present 
in a prospective virtual screen. The third type of bias is 
false negative bias [25]. Molecules included in the bench-
marking data sets as inactives (also known as negatives or 
decoys) are often chemically similar to the active ligands 
and have not been tested experimentally. In the past, 
this was necessary because it was uncommon for a large 
data set of inactives to be available in the commonly used 
chemical databases like ChEMBL [26].
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Prospective virtual screens are typically conducted on 
large databases such as ZINC [27]. These databases can 
be considered random samples from “drug like” chemical 
space. The performance curves estimated by retrospec-
tive virtual screens will likely mis-estimate performance 
in a prospective virtual screen if the benchmark data set 
is not also a random sample. To this date, directory of 
useful decoys (DUD) is the most widely used collection of 
benchmarking data sets used in the evaluation of retro-
spective virtual screens, however each of the biases men-
tioned have been observed in these data sets [22, 23, 28]. 
The directory of useful decoys, enhanced (DUD-E) data 
sets [29] were developed to address some biases in these 
data sets, though the data sets still lack the experimen-
tal testing of decoys (i.e., there is still false negative bias) 
and there is an unrealistic frequency of actives included 
in each of the data sets. The MUV benchmarking data 
sets [30] have also been developed with the intention of 
minimizing these biases. A clear advantage over DUD-E 
is that the decoys in MUV have been tested experimen-
tally. The authors of MUV collected 18 primary high-
throughput screen assays from PCBioAssay [31]. Actives 
were further confirmed with low throughput assays to 
minimize the number of false positives, and additional 
checks for false negatives were performed. We modeled 
our simulations on the MUV benchmarking data sets, 
because we believe these data sets to be the most repre-
sentative of the population of drug candidates.

Basing our simulations on MUV, we simulated data sets 
with n = 150, 000 , π+ = .002 , and skew = 499 (where skew 
is ratio of inactives to actives, (1− π+)/π+ ). In general, this 
is representative of a typical virtual screening data set with 
large sample sizes and extreme class imbalance.

Study design  A study was conducted to investigate the 
power of EmProc, McNemar, IndJZ, and CorrBinom to 
detect differences between competing algorithms. For 
each of EmProc, IndJZ, and CorrBinom, a total of four 
modifications were considered according to whether 
pooling was applied or whether the Bonett-Price plus 
adjustment was applied. Although the Bonett-Price plus 
adjustment was proposed for the Wald confidence inter-
val to improve coverage probability, we wondered if it 
might also be used for hypothesis testing. McNemar was 
not modified. In fact, McNemar is identical to CorrBinom 
with pooling and without plus adjustment.

A study was also conducted to investigate coverage 
probabilities of the confidence intervals associated with 
EmProc, IndJZ, CorrBinom, and the Bonett-Price plus-
adjusted Wald interval (the latter being referred to as 
the McNemar inverval, for brevity). There is no justifica-
tion for pooling when considering confidence intervals, 
so no pooling is applied. We continue to investigate the 

impact of the Bonett-Price plus adjustment. The McNe-
mar interval is identical to the CorrBinom interval with 
plus adjustment.

Four data-generating mechanisms were considered: 
binormal or bibeta; and correlation of 0.9 or 0.1. In the 
binormal model, both algorithms have F− as the stand-
ard normal distribution function, while Algorithm 1 has 
F+ as the normal with mean 0.8

√
2 and variance one, 

and Algorithm 2 has F+ as the normal with mean 0.6
√
2 

and variance one. Algorithm 1 has a relatively large sepa-
ration (Cohen’s D = 0.8 ) between the score distribu-
tions of the + and − classes; Algorithm  2 has a slightly 
diminished performance (Cohen’s D = 0.6 ). To capture 
the fact that both algorithms are scoring the same com-
pounds, we simulated the positive scores from a bivariate 
normal with marginals as described above and correla-
tion parameter ρ = 0.1 or ρ = 0.9 . The negative scores 
were simulated from a separate bivariate normal with 
the described marginals and the same correlation param-
eter. In the bibeta model, both algorithms have F− as 
the beta distribution with α = 2 and β = 5 , while Algo-
rithm 1 has F+ as the beta(5,2) and Algorithm 2 has F+ 
as the beta(4,2). Sampling was done using the bivariate 
beta distributions to incorporate correlations similar to 
the binormal model. Sampling was conducted using the 
copula R package [32].

There is much greater separation between F− and F+ in 
the bibeta model, so the true hit enrichment curves are 
higher than in the binormal model, and we expect greater 
correlation of scores across early testing fractions. But for 
both the binormal and bibeta models, parameters were 
chosen to result in very similar hit enrichment curves for 
the two competing algorithms, thus creating a challeng-
ing task for hypothesis testing of differences between hit 
enrichment curves.

Studies were conducted using 10,000 Monte Carlo rep-
licates. We estimated the type I error rate for the hypoth-
esis test methods assuming that both ranking algorithms 
had either the score distributions of Algorithm  1 or 
Algorithm 2.

Results  Pooling has no impact on either the power 
or protection from type I errors for EmProc, IndJZ, or 
CorrBinom (results not shown for brevity), so we limit 
further discussion to the versions of these tests con-
structed without pooling. The impact of the Bonett-Price 
plus adjustment on power is mixed (results not shown). 
The plus adjustment had no noticeable impact on power 
under the bibeta model. But under the binormal model, 
the plus adjustment caused a noticable decrease in power 
for a medium range of tests performed (approximately 30 
to 500). For this reason we limit further discussion to the 
versions of these tests constructed without plus adjust-
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ment. As a reminder, McNemar is based on pooling and 
no plus adjustment.

Figure  2 shows estimated power curves for correla-
tion of 0.1 (A) and 0.9 (B) under the bibeta model. We 
focus on results for number of tests (nr) ranging from 
two tests to testing ten percent of the total sample size; 
in practice, screening campaigns will interrogate only a 
tiny fraction of the available virtual screening library [8]. 
The CorrBinom and McNemar approaches are noticeably 
suboptimal. In the presence of weak correlation, EmProc 
and IndJZ have comparable performance. EmProc domi-
nates in the presence of strong correlation between 
scores. Indeed, EmProc is the only approach that is 
designed to address both the correlation between scores 
of competing algorithms, and the correlation that is 
induced within a particular algorithm as a result of hav-
ing to estimate thresholds. The binormal model (results 
not shown) yielded similar findings. Type I error rates 
(results not shown) are well controlled to their nominal 
values of 0.05.

For hypothesis testing, we recommend EmProc without 
pooling and without plus adjustment, because EmProc 
has the greatest power compared to IndJZ, CorrBinom, 
and McNemar, while maintaining control of type I error 
rates. If one chooses to use either IndJZ or CorrBinom, 
the unpooled and non-plus-adjusted versions should be 
used.

Figure  2 shows estimated coverage probabilities (C) 
and average widths (D) for confidence intervals EmProc, 
IndJZ, and CorrBinom, based on the binormal model 
with correlation of 0.9. The McNemar interval is equiva-
lent to the CorrBinom interval with plus adjustment, so 
while the figure does not explicitly include the label of 
McNemar, it is included.

The most obvious finding is that the Bonett-Price plus 
adjustment dramatically improves coverage probabili-
ties when the number of tests is small; this is because the 
plus adjustment results in wider intervals when the num-
ber of tests is small. As the number of tests increase, the 
plus and no-plus versions converge, and they approach 

nominal coverage. By not accounting for correlation 
across competing algorithms, IndJZ standard errors are 
unnecessarily large, resulting in wide intervals that pro-
vide conservative coverage. The plus-adjusted versions 
of EmProc and CorrBinom (and hence also McNemar) 
provide conservative coverage when the number of tests 
is small, but coverage approaches the nominal level as 
number of tests increase.

For confidence intervals, we recommend the plus-
adjusted version of EmProc, because it is best able to 
balance achieving nominal coverage rates while minimiz-
ing the width of confidence intervals. And if other pro-
cedures are used, the plus adjustment should be used as 
well.

Confidence bands
Bands for a single algorithm
Methods  An ideal scenario would be to accompany hit 
enrichment curves, such as those shown in Fig.  1, with 
confidence regions. Non-overlapping regions would pro-
vide an alternative justification for claiming significant 
differences between competing algorithms. Let θ denote 
the vector of recall values from a single algorithm at 
the vector r = (r1, r2, . . . , rk) of k ordered testing frac-
tions r1 < r2 < · · · < rk . We seek a 100(1− α) percent 
confidence region for θ . While the pointwise confidence 
interval approach of Eq. (3) could be modified using a 
Bonferroni adjustment, such corrections are known to 
be conservative when k is large, leading to unnecessarily 
wide intervals.

In their technical report, Jiang and Zhao [33] suggested 
an alternate confidence band estimation procedure, and 
gave brief comments on simulation results, but some 
details were omitted. We complete these details to state 
the following result. Under the previously mentioned 
Conditions 1 and 2, as n → ∞ , 

√
n(θ̂ − θ)

d−→N (0,V ), 
where θ̂ =

(
θ̂r1 , . . . , θ̂rk

)
 is the vector of recall estimators 

as previously defined, and V = {Vij}i,j=1,...,k . Moreover, 
Vii/n = VarJZ(θ̂ri), and, for ri < rj,

(6)Vij/n = Cov EmProc (�θri , �θrj ) =
θri

�
1− θrj

�

nπ+




(1−�ri −�rj )+
ri(1− rj)�ri�rj

π+θri
�
1− θrj

�




.

(See figure on next page.)
Fig. 2  Comparison of EmProc, CorrBinom, IndJZ, and McNemar in terms of hypothesis testing and pointwise confidence intervals to compare 
hit enrichment curves for competing algorithms. (A-B): Estimated power of the hypothesis test to detect differences between two competing 
algorithms, where each algorithm follows a bibeta model and scores are correlated with ρ = .1 (A) or ρ = .9 (B). C, D: Estimated coverage 
probability (C) and average width (D) of pointwise confidence intervals for the difference in hit enrichment curves for two competing algorithms, 
where each algorithm follows a binormal model and scores are correlated with ρ = .9 . Simulations were conducted with 10,000 Monte Carlo 
replicates. Shading show the Monte Carlo estimate ± 1.96 times the Monte Carlo standard error
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Fig. 2  (See legend on previous page.)
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Derivation details are omitted because they are similar 
to the steps in the Additional file  1: Appendix; see [34] 
for further details. To provide a working distribution for 
θ̂  , an estimator of V  is obtained by replacing population 
parameters with consistent estimators. This working 
distribution is the basis of our approximate confidence 
regions.

Our most straight-forward approach is to use a Wald 
100(1− α ) percent confidence ellipsoid, defined as {
θ : n(θ − θ̂)

T

V̂
−1

(θ − θ̂) ≤ χ2

k ,1−α

}
, where χ2

k ,1−α
 is 

the 1− α percentile of the chi-squared distribution with k 
degrees of freedom. But the Wald confidence ellipsoid 
does not produce regions that are of the rectanguloid 
form 

{
θ : θ̂i ± q · SE(θ̂i) ∀ i ∈ {1, ..., k}

}
. We have cho-

sen to use confidence regions with a rectangular struc-
ture (i.e., a confidence band) and not ellipsoids because 
this allows confidence regions of high dimensions to be 
easily visualized.

Clearly, Bonferroni regions are rectanguloid, with 
q =

√
χ2
1,1−α/k  . We mention two additional rectanguloid 

regions, following the naming conventions in Montiel 
Olea and Plagborg-Møller [35]: the θ-projection and 
sup-t bands. θ-projection bands are obtained by identify-
ing the smallest rectanguloid that contains the Wald 
ellipsoid, and results in q =

√
χ2
k ,1−α

 . Upon further 
inspection, it becomes clear that θ-projection bands are 
always at least as wide as Bonferroni bands, so they are 
not considered further. On the other hand, sup-t bands 
are the smallest rectanguloid that maintains the simulta-
neous coverage probability of 1− α , and are expected to 
have good performance. Their critical value q must be 
obtained using Monte Carlo sampling. Briefly,

Monte Carlo sampling is used to estimate q as 
the (1− α)100 percentile for the distribution of 
supi=1,...,k |θ̂i − θi|/SE(θ̂i).

Simulation results  A study compared coverage prob-
abilities achieved by confidence bands constructed using 
sup-t and Bonferroni approaches. Results are shown for 
both the standard and plus-adjusted versions of sup-t and 
Bonferroni bands. The familiar trick of “add two successes 

1− α ≤ Pr
(
|θ̂i − θi| ≤ q · SE(θ̂i) ∀ i ∈ {1, . . . , k}

)

= Pr

(
sup

i=1,...,k

|θ̂i − θi|
SE(θ̂i)

≤ q

)
.

and add two failures” [36] before estimating proportions 
is what we refer to as the plus adjustment for bands corre-
sponding to a single hit enrichment curve, not the Bonett-
Price plus adjustment for comparing two algorithms that 
was used earlier. We computed bands for θ using a grid 
of number of compounds tested between two and 15,000. 
We considered 25 points on the grid, defined as: 2k for 
k = 1, . . . , 13 ; 3k for k = 1, . . . , 8 ; 105, 300, 1500, 15000.

Figure  3 shows estimated coverage probabilities (A) 
and average widths (B) of confidence bands created based 
on five distributional cases. The distributional cases rep-
resent varying degrees of separation between + and − 
classes, and are chosen to mimic real-world scenarios. 
Case 1 is a binormal model, with equal unit variance and 
means zero and 1.4. Case 2 is another binormal model, 
with equal unit variance and means zero and 0.5; Case 2 
offers much less separation than Case 1, so Case 2 results 
in lower values of recall. Case 3 is a bibeta model, with 
Beta(2,5) and Beta(5,2) distributions. Case 4 is another, 
more separated, bibeta model, with Beta(1,20) and 
Beta(20,1) distributions. Case 5 is made up of distribu-
tions of limited extent, namely uniform on (0,0.75) and 
uniform on (0.25,1).

The plus-adjusted Bonferroni bands have the highest 
coverage, but they are also the widest. The plus-adjusted 
sup-t bands are not as wide, yet have excellent cover-
age. As such, for confidence bands applied to a single 
hit enrichment curve, we recommend the plus-adjusted 
sup-t bands.

Bands for the difference between competing algorithms
Methods  While the pointwise confidence intervals offer 
effective comparisons of competing algorithms at a few 
selected testing fractions, it may be more desirable to per-
form comparisons across a large range of testing fractions. 
This may be accomplished by converting the pointwise 
confidence intervals into confidence bands, in much the 
same way that confidence bands were obtained.

Letting θℓ denote the vector of recall values from Algo-
rithm ℓ ( ℓ = 1, 2 ), the method is based on the asymptotic 
result 

√
n
(
(θ̂1 − θ̂2)− (θ1 − θ2)

)
d−→N (0,V ), where 

n → ∞ , and for ri ≤ rj,

The first two components of Eq. (7) are obtained using 
Eq. (6), and the latter two components are obtained using

(7)

Vij/n =Cov EmProc (θ̂1ri , θ̂1rj )+ Cov EmProc (θ̂2ri , θ̂2rj )

− Cov EmProc (θ̂1ri , θ̂2rj )− Cov EmProc (θ̂1rj , θ̂2ri).
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Fig. 3  Comparison of sup-t and Bonferroni confidence bands. A, B: Estimated coverage probability (A) and average width (B) of confidence bands 
for hit enrichment curves for a single algorithm, where the algorithm is generated from five different cases.C, D: Estimated coverage probability (C) 
and average width (D ) of confidence bands for the difference between two hit enrichment curves generated under four scenarios. Simulations 
were conducted with 10,000 Monte Carlo replicates. Error bars show the Monte Carlo estimate ± 1.96 times the Monte Carlo standard error
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where θ12·rirj = P(S1 > t1ri , S2 > t2rj |+) and 
γ12·rirj = P(S1 > t1ri , S2 > t2rj ) are the conditional and 
unconditional probabilities that both algorithms test 
a ligand because it is highly ranked by both algorithms, 
albeit at different testing fractions ri and rj . Equation (8) 
does not impose any restrictions between testing frac-
tions ri and rj.

As described in "Bands for a single algorithm" section, 
matrix V  is estimated and used to construct sup-t and 
Bonferroni bands.

Simulation results  A study was conducted to compare 
coverage probabilities and average widths of confidence 
bands constructed using sup-t and Bonferroni approaches 
under four settings of two competing algorithms: binor-
mal or bibeta, and ρ = 0.1 or 0.9. Bands were computed 
for θ using a grid of size 25, with number of tested com-
pounds being: 2k for k = 1, . . . , 13 ; 3k for k = 1, . . . , 8 ; 
105, 300, 1500, 15000.

Figure  3 shows estimated coverage probabilities (C) 
and average widths (D). Results are very similar to those 
observed for confidence bands for a single algorithm, 
namely that the plus-adjusted sup-t bands provide the 

(8)Cov EmProc (�θ1ri , �θ2rj ) =

�
θ12·rirj − θ1riθ2rj

�

nπ+




(1−�1ri −�2rj )+

�
γ12·rirj − rirj

�
�1ri�2rj

π+
�
θ12·rirj − θ1riθ2rj

�




,

best balance between coverage probabilities and average 
width.

For confidence bands applied to the difference between 
two hit enrichment curves, we recommend the plus-
adjusted sup-t bands for achieving nominal coverage 
rates and minimizing width. The covariance used in con-
structing these bands arise from the EmProc approach.

Results and discussion
We revisit the PPARg application. For testing fractions 
0.001, 0.01, and 0.1, Table 2 provides details for all pair-
wise comparisons between scoring methods Surflex-
dock (the best docking method), ICM (the worst docking 
method), and the maximum z-score (the best consen-
sus method). For each of the three pairs, we provide the 
estimated difference between hit enrichment curves. 
Standard errors and resulting p-values are provided for 
the EmProc approach to conducting inference, and also 
for the remaining approaches McNemar, IndJZ, and 
CorrBinom.

Acknowledging the multiple-testing scenario required 
to compare two scoring methods, Table  2 also provides 
multiplicity-adjusted p-values. Given choice of a par-
ticular approach to inference (for example, EmProc), 

Table 2  Pairwise comparison of scoring methods surflex-dock (surf ), ICM, and their consensus (maxz), at three testing fractions 
decided a priori. For each pair of scoring methods, differences and standard errors of estimated hit enrichment curves are shown, 
along with raw and Benjamini-Hochberg adjusted p-values

N tested = 3 (r = 0.001) N tested = 32 (r = 0.01) N tested = 321 (r = 0.1)

Diff Std Err Raw p Adj p Diff Std Err Raw p Adj p Diff Std Err Raw p Adj p

EmProc

 maxz - surf 0.0000 0.0005 1.000 1.000 − 0.0118 0.0237 0.6200 0.6970 0.0588 0.0254 2.07e−02 6.21e−02

 maxz - icm 0.0118 0.0143 0.410 0.527 0.0824 0.0402 0.0407 0.0733 0.3060 0.0541 1.60e−08 1.44e−07

 surf - icm 0.0118 0.0142 0.409 0.527 0.0941 0.0429 0.0281 0.0632 0.2470 0.0626 7.91e−05 3.56e−04

McNemar

 maxz - surf 0.0000 0.0000 1.000 1.000 − 0.0118 0.0311 0.705 0.794 0.0588 0.0255 2.53e−02 7.60e−02

 maxz - icm 0.0118 0.0203 0.564 0.725 0.0824 0.0557 0.144 0.260 0.3060 0.0552 2.07e−06 1.86e−05

 surf - icm 0.0118 0.0203 0.564 0.725 0.0941 0.0614 0.131 0.260 0.2470 0.0642 3.86e−04 1.74e−03

IndJZ

 maxz - surf 0.0000 0.0138 1.000 1.000 − 0.0118 0.0497 0.8130 0.915 0.0588 0.0609 3.34e−01 5.28e−01

 maxz - icm 0.0118 0.0143 0.411 0.528 0.0824 0.0482 0.0874 0.197 0.3060 0.0668 4.74e−06 4.26e−05

 surf - icm 0.0118 0.0143 0.409 0.528 0.0941 0.0471 0.0458 0.137 0.2470 0.0693 3.63e−04 1.64e−03

CorrBinom

 maxz - surf 0.0000 0.0000 1.000 1.000 − 0.0118 0.0311 0.705 0.793 0.0588 0.0255 2.12e−02 6.35e−02

 maxz - icm 0.0118 0.0203 0.563 0.724 0.0824 0.0557 0.139 0.251 0.3060 0.0552 3.07e−08 2.76e−07

 surf - icm 0.0118 0.0203 0.563 0.724 0.0941 0.0614 0.125 0.251 0.2470 0.0642 1.20e−04 5.40e−04
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there are nine tests based on three pairs of scoring meth-
ods and three testing fractions. A simple Benjamini-
Hochberg [37] step-up procedure is used to control the 
false discovery rate. At testing fraction 0.1 (321 tests), 
the difference between Surflex-dock and the consen-
sus method is not significant, but ICM is significantly 
worse than both Surflex-dock and the consensus method. 
These conclusions are clearly supported by all inferential 
approaches. At testing fraction 0.01 (32 tests), no signifi-
cant differences are observed, but the EmProc procedure 
is seen to produce the smallest standard errors. With 
our relatively small dataset, testing fraction 0.001 results 

in only three tests, and there is too much uncertainty to 
make a reliable conclusion.

Ignoring the need for multiplicity adjustments, Fig.  4 
provides information similar to Table 2, except for many 
more testing fractions. The upper grid shows (unad-
justed) p-values from testing for equality of hit enrich-
ment curves, while the lower grid shows (unadjusted) 
pointwise 95 percent confidence intervals of differences 
between hit enrichment curves. EmProc is the only 
method that is consistently among the best performers. 
The Pearson correlation is largest (but still only moder-
ate at 0.624) between scores from Surflex-dock and the 

Fig. 4  Comparisons of scoring methods surflex-dock, ICM, and their consensus, across 15 testing fractions using four testing procedures. The 
diagonal grid shows estimated score densities within activity classes for each scoring method; also shown are Kullback-Leibler divergences 
between estimated densities for the + and − classes. The upper grid shows p-values from testing for equality of hit enrichment curves from a pair 
of scoring methods, with colors corresponding to different testing procedures. The lower grid shows pointwise 95 percent confidence intervals that 
accompany results from the upper grid. Comparisons have not been adjusted for multiple testing as was the case in Table 2
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consensus method, so the poor performance of IndJZ for 
this comparison is not surprising. On the other hand, the 
performance of IndJZ understandably improves when 
comparing Surflex-dock and ICM, with Pearson correla-
tion of only 0.156 between scores.

The diagonal grid of Fig. 4 shows estimated score den-
sities within activity classes for each scoring method. The 
consensus method has the biggest separation of activity-
class densities, with Kullback-Leibler divergence [38] 
of 2.50 compared to the substantially smaller values of 
0.00162 for surflex-dock and 2.21× 10−5 for ICM, and 
this is consistent with the consensus scoring method 
seeming to outperform the others.

Taking an alternative approach, Fig.  5 shows plus 
adjusted sup-t confidence bands for the three scoring 
methods. These bands account for correlation between 
recall values at distinct testing fractions for a single curve, 
and offer simultaneous coverage across the curve. While 
they do not account for correlations between curves, they 
are helpful visualizations of uncertainty that go beyond 
simply graphing the curves alone.

A more direct approach to pairwise comparisons 
between curves, while adjusting for the many compari-
sons that occur along the curve, is shown in Fig. 6. These 
bands for the differences between hit enrichment curves 
offer simultaneous coverage across the curve. They 
account for correlation between recall values at distinct 
testing fractions for a single curve, and for correlation 
between estimated recall from different scoring methods.

Early enrichment is broadly recognized as a primary 
goal of virtual screening [9]. There is, however, consider-
able debate about how to assess achievement of this goal 
[12]. The receiver operating characteristic (ROC) curve, 
and its summary metric of area under the curve, lack sen-
sitivity to both the early recognition goal and the rarity of 
active compounds that often exists in screening studies 
[9, 39]. Partial area under the ROC curve makes a step 
towards addressing the early recognition goal but not the 
rarity of active compounds.

The robust initial enhancement (RIE, [40]) and its 
normalized version the Boltzmann enhanced discrimi-
nation of ROC (BEDROC, [9]) directly address early 
recognition by incorporating an exponential weight that 
decreases for active compounds that are discovered later 
in testing. The versions of RIE and BEDROC that are 
proposed by Truchon and Bayly [9] are computationally 
efficient. They are, however, global measures that are not 
tied to a specific testing fraction, and they depend on a 
parameter α that must be specified by the user. A larger 
α provides greater weight to active ligands found early, 
but weights are applied to all active ligands, even those 
found very late. Moreover, statistical inference is not 
straightforward.

For the PPARg study using the default value of α = 20 , 
the Empereur-Mot et  al. [6] web application reports 
BEDROC values as follows, where larger is better: 0.743 
for the consensus; 0.687 for Surflex-dock; and 0.447 for 
ICM. Without uncertainty measures associated with 

Fig. 5  Simultaneous 95 percent plus-adjusted sup-t confidence bands for the three scoring methods surflex-dock, ICM, and their consensus. Even 
while spreading interest across the entire range of testing fractions, significant differences are still detected between the consensus and ICM for 
some intermediate testing fractions.
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these scores, it is difficult to conclude separation of the 
scoring methods. Furthermore, the results presented 
in Table  2 suggest conclusions that are more nuanced, 
with no significant differences at testing fraction 0.01 but 
some big differences at testing fraction 0.1. The improve-
ment in BEDROC for the consensus method is mostly 
driven by the improvement near testing fraction 0.1, but 
this is a much larger fraction that what is typically used 
in screening evaluations. This illustrates how BEDROC 
can provide a misleading sense of improvement in early 
enrichment. It averages performance over all testing frac-
tions and weights early fractions more heavily, but it is 
often difficult to determine from the tuning parameter 
alone to what extent the early fractions are weighted.

The hit enrichment curve offers multiple benefits for 
assessing early enrichment. First, it directly addresses 
the measure of interest, namely enrichment. For a given 
dataset, the closer the estimated hit enrichment curve 
is to the ideal hit enrichment curve, the more desirable 
is the associated algorithm. Second, the user is able to 
directly enforce their definition of “early” by specify-
ing testing fractions of interest, without needing to rely 

on the indirect methods offered through measures such 
as BEDROC or partial area under the ROC curve. And 
third, localized assessment is possible, rather than whole-
curve assessment. These are the reasons we have chosen 
to focus this work on hit enrichment curves.

Enrichment factors, and the associated enrichment 
factor curve, are also very popular for assessing early 
enrichment. As it turns out, all results in this paper can 
be trivially modified to obtain inference for the enrich-
ment factor curve; see Ash [34] for further details. While 
the hit enrichment curve plots {r, θ̂r} , the enrichment 
factor curve plots {r, θ̂r/r} , so standard error expressions 
are easily modified by division by the testing fraction r. 
Enrichment factors (sometimes denoted EFr ) simply 
focus on the enrichment factor curve at a specific testing 
fraction.

In this article, we provide a template for rigorously 
comparing competing algorithms while accounting for 
uncertainty, two types of correlation, and the multiple 
testing issue. If interest is restricted to comparing hit 
enrichment curves for competing algorithms at a few 
pre-selected testing fractions, the hypothesis testing and 

Fig. 6  Simultaneous 95 percent plus-adjusted sup-t confidence bands for pairwise differences between the three scoring methods surflex-dock, 
ICM, and their consensus. A consensus versus surflex-dock, B consensus versus ICM, C surflex-dock versus ICM. The bands are unsurprisingly wider 
than the pointwise EmProc intervals shown in the lower panel of Fig. 4, but they are not very much wider. The ICM scoring method is significantly 
less effective than both consensus and suflex-dock for testing fractions between 0.02 and 0.5
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confidence interval procedures offer effective strategies. 
On the other hand, while it is best practice to decide 
testing fractions a priori, we acknowledge this is not 
always done or even possible, so we also provide confi-
dence bands to compare entire hit enrichment curves. 
Additionally, bands allow agmented graphical presenta-
tion of the entire hit enrichment curves for competing 
algorithms.

The EmProc procedure is newly proposed here and is 
expected to perform as well or better than the other pro-
cedures considered (CorrBinom, McNemar, and IndJZ) 
in the presence of correlation between competing algo-
rithms and/or correlation across different testing frac-
tions within a single algorithm. The other procedures 
considered address only a single type of correlation and 
hence are not recommended for general-purpose use.
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