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Abstract 

Recently, graph neural networks (GNNs) have revolutionized the field of chemical property prediction and achieved 
state-of-the-art results on benchmark data sets. Compared with the traditional descriptor- and fingerprint-based 
QSAR models, GNNs can learn task related representations, which completely gets rid of the rules defined by experts. 
However, due to the lack of useful prior knowledge, the prediction performance and interpretability of the GNNs 
may be affected. In this study, we introduced a new GNN model called RG-MPNN for chemical property prediction 
that integrated pharmacophore information hierarchically into message-passing neural network (MPNN) architec-
ture, specifically, in the way of pharmacophore-based reduced-graph (RG) pooling. RG-MPNN absorbed not only the 
information of atoms and bonds from the atom-level message-passing phase, but also the information of pharma-
cophores from the RG-level message-passing phase. Our experimental results on eleven benchmark and ten kinase 
data sets showed that our model consistently matched or outperformed other existing GNN models. Furthermore, 
we demonstrated that applying pharmacophore-based RG pooling to MPNN architecture can generally help GNN 
models improve the predictive power. The cluster analysis of RG-MPNN representations and the importance analysis 
of pharmacophore nodes will help chemists gain insights for hit discovery and lead optimization.
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Introduction
With the accumulation of large-scale chemical and bio-
logical data, the improvement of computing power, and 
especially the major breakthroughs that deep neural net-
works (DNNs) having made in many fields such as image 
recognition [1] and natural language processing [2], there 
has been a surge of interest in developing DNNs for 
drug discovery in recent years [3–7]. This trend is espe-
cially reflected in the development of a variety of DNNs 

for chemical property prediction [8–10]. In the field of 
drug design, these models correspond to the quantitative 
structure–activity (property) relationship (QSAR/QSPR) 
models [11], belonging to the category of ligand-based 
drug design (LBDD) method [12, 13]. This method is not 
limited to the availability of the 3D structure of the tar-
get of interest but fits models or finds patterns from the 
collected ligand data, which is commonly used for large-
scale virtual screening, chemical property evaluation and 
molecular structure optimization.

Before the rise of DNNs, there have been extensive 
QSAR models developed for drug discovery, mainly 
using traditional machine learning (ML) approaches, 
such as support vector machines (SVMs) [14, 15], Naïve 
Bayes (NB) [16, 17], artificial neural network (ANN) 
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[18, 19], random forest (RF) [20] etc. Although many 
reports claimed that the performance of many DNN 
models did not meet researchers’ expectation that the 
prediction accuracy is far beyond traditional machine 
learning [21, 22], it is largely because the amount 
of data is too small to give full play to advantages of 
DNNs. This advantage is bound to be brought into play 
as the amount of chemical and biological data gradually 
accumulates. Another point that motivates researchers 
to keep great enthusiasm for the development of DNNs 
is their ability of effective representation extraction. 
Instead of using expert features and performing feature 
engineering like traditional machine learning mod-
els, which is complex and time-consuming, not easy 
to reproduce, and limited by expert feature definition, 
DNNs can extract useful representations from task 
data for the sake of the end-to-end fashion. And this 
task-learned representations can be used for analogues 
searching in virtual screening campaigns and gaining 
insights of relationship between chemical structure and 
properties to guide molecular optimization. However, 
to achieve accurate predictions and extract useful rep-
resentations at the same time depends on well-designed 
DNN architecture, which is challenging but urgent to 
be paid efforts to.

Given that the framework of DNN is quite flexible, 
there have been a variety of DNN models published for 
drug discovery. Most of these models can be mainly 
divided into two types: one is to use the RNN (recur-
rent neural network) or Transformer [23] frameworks 
to operate the molecular SMILES as strings [24, 25], 
the other one is to use the GNN (graph neural network) 
framework to operate molecules as graphs [26, 27]. 
Although systematic performance comparison results for 
these two methods are rare, GNN is more popular than 
RNN in chemical property prediction in recent years. 
This may be because the form of graph representation is 
closer to the intrinsic properties of the molecular struc-
ture, thus what the model learns from the graph is more 
able to reflect the properties of the molecule. On the 
other hand, the SMILES string guides the model to learn 
a lot of SMILES grammar rules, such as parentheses rep-
resenting branched chains which are irrelevant to molec-
ular structure. Recently, as a general GNN architecture, 
the message-passing neural network (MPNN) [28] has 
been proposed, consisting of a message-passing phase 
and a readout (or called pooling) phase. Researchers have 
developed many models based on MPNN architecture 
to predict chemical properties and extract task-learned 
representations, such as MPNN model (note it refers a 
specific model instead the previously mentioned MPNN 
architecture), D-MPNN (Directed MPNN) [29], Atten-
tiveFP [30], R-GCN (Relational Graph Convolutional 

Networks) [31] and GSN (Graph Substructure Networks) 
[32].

However, most of the MPNN architectures only absorb 
node information (such as atom type, formal charge) 
and edge information (such as bond type, stereo type) 
as the original information of a molecular graph, but do 
not make full use of prior chemical knowledge, such as 
the information from pharmacophores [33], which have 
been widely used in drug design and discovery. Of note, 
there have been many successful cases that prove that 
the pharmacophore rules can be well combined with 
molecular graph, and one representative method is the 
pharmacophore-based graph reduction [34–36]. Based 
on pharmacophore rules, the reduced graphs (RGs) pro-
vide simplified representations of chemical structures 
by collapsing atom groups into pharmacophores while 
maintaining the topological properties of the origi-
nal molecular structures. This drives us to think about 
whether embedding information of pharmacophores into 
MPNN architecture under graph reduction scheme will 
help improve the accuracy and reliability of the model 
and to enrich the information contained in the task-
learned representation.

Another limitation of current MPNN architectures 
for chemical property prediction is that they ignore any 
hierarchical structure and information that might exist in 
the molecular graph, which will hinder the models from 
effectively extracting the information in the graph. On 
the other hand, the global pooling such as the maximiz-
ing pooling, average pooling, and pooling with attention 
mechanisms [30], has been adopted as the standard read-
out phase for a model with the MPNN architecture, lead-
ing to a “flat” nature. More recently, hierarchical pooling 
has attracted research attention, for instance, Diffpool 
[37] uses a learned distribution matrix to collapse atom 
groups. However, these current hierarchical structures 
still do not make full use of prior chemical knowledge. 
To date, there has been no hierarchical pooling method 
leverages knowledge of pharmacophore to design 
GNN models, specifically, the ones with the MPNN 
architecture.

In this work, we proposed a new GNN model, RG-
MPNN, for chemical property prediction. The core idea 
of RG-MPNN was to integrate pharmacophore infor-
mation hierarchically into MPNN architecture, specifi-
cally, in the way of pharmacophore-based RG pooling. 
As illustrated in Fig. 1, the RG-MPNN absorbed not only 
the information of atoms and bonds from the atom-level 
message-passing phase, but also the information of phar-
macophores from the RG-level message-passing phase. 
Our models achieved state-of-the-art prediction perfor-
mance and these results were also transferred to data sets 
of ten popular kinases. Furthermore, the cluster analysis 
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of the task-learned representation of RG-MPNN showed 
that the representation can be used to identify molecules 
with similar activities but different scaffolds in the con-
text of virtual screening and lead optimization.

Methods
Data sets
Benchmark datasets
To compare the performance of the RG-MPNN with 
those of other GNN models, we tested our models on 
eleven benchmark datasets from MoleculeNet [38]. 
Among MoleculeNet, the physical chemistry, bioactivity 

and physiology data sets except for the PDBbind data 
sets were tested in this work. Three of the eleven datasets 
were used for regression tasks and eight for classification 
tasks. More details about the datasets from MoleculeNet 
can be found on the website https://​molec​ulenet.​org/​
datas​ets-1.

Kinase datasets and some in‑house datasets
The core idea of our model RG-MPNN is to integrate 
information of pharmacophores which are regarded as 
abstract features of molecules for molecular recognition 
of a ligand by a biological target. Therefore, in theory, 

Fig. 1  Illustration of our proposed RG-MPNN. a General architecture of RG-MPNN. Taking Acetaminophen as an example, there are four phases that 
a molecule goes through from the molecular graph to the task prediction. b Specific architectural details of each phase of RG-MPNN

https://moleculenet.org/datasets-1
https://moleculenet.org/datasets-1
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our model is more suitable for the task of predicting 
molecular bioactivity towards targets of interest. To sys-
tematically test the prediction performance of various 
algorithms on the bioactivity datasets, we collected inhib-
itors of ten kinase targets (see Table 1). The principle of 
kinase target selection was to cover each kinase family as 
much as possible and select the targets of great prospects 
for drug development. All these datasets were derived 
from ChEMBL [39]. After a series of operations such as 
data deduplication, salt removal, and electrical neutral-
ity, ten kinase data sets were ready for classification task. 
We used 1000 nM as a threshold to distinguish active and 
inactive molecules, resulting in the numbers of molecules 
ranging from 807 to 8800 and the ratios of positive and 
negative samples ranging from 0.19 to 0.82. In addition 
to the kinase datasets, we also used some datasets (HCV 
NS3, PLA2, HIV protease, and Tyrosinase) published by 
our lab as a reference. For detailed dataset descriptions, 
see Additional file 1: Table S1.

Molecular graph
In graph neural networks (GNNs), a molecule is regarded 
as a graph G = (V, E), where atom is regarded as node V 
and chemical bond is regarded as edge E. The nodes and 
edges are encoded according to the rules shown in the 
Additional file 1: Table S2 and Additional file 1: Table S3. 
For instance, node features include atom type, formal 
charge, etc., and edge features include bond type, ste-
reo type, etc. These encoded features are the initial fea-
tures of molecular graphs which are used as raw inputs 
to train GNN models. After training, we can get the final 
task prediction value, together with the task-learned 
graph representations that also can be called molecular 
fingerprints.

Reduced graphs (RGs)
RGs provide simplified representations of chemical 
structures by collapsing atom groups into pharmacoph-
ore nodes while maintaining the topological properties of 
the original molecular structures. RGs have been mainly 
implemented to the varied applications of similarity 
searching, scaffold hopping, de novo design and struc-
ture–activity relationships extracting [34, 36, 40, 41].

By altering the rules used for collapsing atom groups, 
RGs provide flexible ways of generalizing pharmacoph-
ore node features. There is a research trend to collapse 
the atom groups into RGs through the pharmacophore 
rules and the resulting RGs can be regarded as topologi-
cal pharmacophore [36, 40]. It is worth emphasizing that 
the pharmacophore rules need to be improved before 
applied to graph reduction. This is because each atom in 
RGs needs to be mapped to one or more pharmacophore 
nodes, while atoms that do not belong to any pharmaco-
phore are not labeled according to classical pharmacoph-
ore rules.

In this work, we adopted the graph reduction scheme 
developed by Harper [34], which defines 18 types of 
pharmacophore nodes as shown in Fig.  2a: three types 
about defining rings (aromatic ring, aliphatic ring, or 
acyclic) intersected with six types about defining features 
(positively ionizable, negatively ionizable, joint H-bond 
donor and acceptor, donor, acceptor, or no feature), and 
it should be noted that the items within the three ring 
types and the six feature types are listed in order of pri-
ority from high to low. See Additional file 1: Table S4 for 
the detailed rule descriptions of the six feature types. 
Figure 2b lists some comparative examples of molecules 
and their RGs. Readers can find more graph reduction 
schemes in literature [34, 35, 42].

Table 1  Basic information of kinase datasets used in this work

a preferred name listed on ChEMBL website
b number of molecules in total
c active/total ratio

Kinase family Kinase full namea Short name Totalb Active Inactive Ratioc

TK Epidermal growth factor receptor erbB1 EGFR 8718 4514 4286 0.52

TKL Serine/threonine-protein kinase B-raf BRAF 4669 3629 1132 0.78

CAMK Serine/threonine-protein kinase PIM1 PIM1 4437 3322 1185 0.75

Atypical Serine/threonine-protein kinase mTOR mTOR 3924 3390 745 0.86

AGC​ Serine/threonine-protein kinase AKT AKT1 3904 2175 1792 0.56

Other Serine/threonine-protein kinase Aurora-A AURKA 3854 2286 1596 0.59

TK Tyrosine-protein kinase BTK BTK 2560 1894 746 0.74

CMGC Cyclin-dependent kinase 2 CDK2 2531 1302 1301 0.51

STE Mitogen-activated protein kinase kinase kinase 
kinase 2

MAP4K2 891 280 617 0.31

CK1 Casein kinase I alpha CK1 801 154 653 0.19
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Message‑passing neural network (MPNN)
MPNN is a general framework for supervised learning on 
graphs. Within its forward pass, there are two phases: a 
message-passing phase and a readout phase. Here we take 
an undirected graph G as an example, within which the 
node (atom) features are represented as xv and the edge 
(bond) features as evw . In terms of the message-passing 
phase, the message function is defined as Mt , and the ver-
tex update function is defined as Ut , where t is the running 
time step. During message-passing process, the hidden 
state of each node ht+1

v  can be updated based on message 
mt+1

v  according to:

where N (v) is the set of neighbors of the node v in G . In 
addition, h0v is derived from the initial node features xv 
through some function.

In terms of the readout phase, it uses a readout function 
R to make a task prediction for the whole graph according 
to:

(1)mt+1
v =

∑
w∈N (v)

Mt

(
htv , h

t
w , evw

)

(2)ht+1
v = Ut

(
htv ,m

t+1
v

)

(3)ŷ = R
({

hTv |v ∈ G
})

where the output ŷ can be a scalar or a vector, depending 
on whether it is used for single task prediction or multi-
task predictions.

During training process, taking the molecular graphs 
as inputs, the model predicts the properties of each mol-
ecule. The loss is computed based on the predicted prop-
erties and the true ones, then of which the gradient is 
backpropagated through the readout phase and the mes-
sage-passing phase.

Applying reduced‑graph to MPNN architecture
Adding reduced-graph pooling to message-passing neu-
ral network architecture was proposed in this work, 
which results in four phases: a message-passing phase at 
atom level, a graph reducing phase, a message-passing 
phase at RG level and a molecule readout phase. These 
four phases correspond to the schematic in Fig.  1a and 
Additional file 1: Table S5. In short, compared with com-
mon MPNN architecture, the proposed architecture has 
one more graph-reducing phase and one message-pass-
ing phase at RG level. The MPNN architecture with RG 
pooling works as follows.

Atom‑level message‑passing
During the atom-level message-passing phase, the oper-
ation of MPNN architecture with RG pooling is very 
similar to the message-passing phase of typical MPNNs, 
with one difference that e is not directly considered in 
the message function Mk since h

atom
′ is derived from 

Fig. 2  Scheme and examples of graph reduction. a The graph reduction scheme adopted in this work. The three ways of defining rings and six 
ways of defining features combine to eighteen types of reduced graphs. And prioritize at the ring and feature level. b Comparative examples of 
molecules and their reduced graphs
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cat(x
atom

′ , e
atom−atom

′ ) by linear transformation. This 
phase runs for K  time steps. The hidden state of each 
atom hk+1

atom can be updated based on message mk+1
atom 

according to:

Graph reducing
During this phase, the whole graph G is operated by the 
function Reduce which maps each atom to one or more 
pharmacophore nodes with the rules we have mentioned 
in the method part of reduced graphs, resulting in a 
reduced graph RG . Then, we define RG = (V

′
,E

′
) , where 

V
′ represents the pharmacophore node, which is one of 

the 18 predefined pharmacophore nodes, and E ′ repre-
sents the edge between pharmacophore nodes, which 
is equal to one plus to the number of chemical bonds 
shared between two adjacent pharmacophore nodes. The 
hidden state of initial pharmacophore node h0rg according 
to:

RG‑level message‑passing
This phase runs for T  time steps and the hidden state of 
each pharmacophore node ht+1

rg  can be updated based on 
message mt+1

rg  according to:

Molecule readout
During this phase, the molecule embedding hmol , also 
as the task-learned representation of molecular graph, 
is achieved by a readout function R based on the hidden 
states hTrg within RG:

then the prediction of molecular property is achieved 
through MLP layers:

(4)mk+1
atom =

∑
atom′∈N (atom)

Mk

(
hkatom, h

k
atom′

)

(5)hk+1
atom = Uk

(
hkatom,m

k+1
atom

)

(6)hora = Reduce
({

hkatom|atom ∈ V ′
})

(7)mt+1
rg =

∑
rg ′∈N(rg)

Mt

(
htrg , h

t
rg ′

)

(8)ht+1
rg = Ut

(
htrg ,m

t+1
rg

)

(9)hmol = R
({

hTrg |V
′ ∈ RG

})

(10)ŷ = MLP(hmol)

where the output ŷ can be a scalar or a vector same as 
that in the MPNN process, depending on whether it is 
used for single task prediction or multi-task predictions.

Theoretically, the MPNN architecture with RG pool-
ing proposed in this paper can be applied to any model 
under the MPNN architecture, that is, before readout of 
the whole molecule, the graph reducing and message-
passing at RG level can added, and the latter operation is 
optional.

RG‑MPNN
Under the MPNN architecture with RG pooling, we 
proposed a model called RG-MPNN (short for reduced-
graph message-passing neural network), which was 
designed by adding RG pooling based on the residual 
message-passing neural network (shorted as ResMPNN). 
As shown in Fig.  1b, the RG-MPNN follows four pro-
cesses mentioned above in turn: a message-passing phase 
at atom level, a graph reducing phase, a message-passing 
phase at RG level and a molecule readout phase.

At atom level, RG-MPNN shares the same message-
passing phase and the update phase as the base model—
ResMPNN. Within the message-passing phase, when 
gathering messages from neighbor atoms, our model 
adopts the attention mechanism, which was proposed 
by Velickovic and Bengio et al. in constructing GAT [43] 
model. The core idea of the attention mechanism is to 
receive messages from neighbors according to a certain 
weight that is calculated based on the feature vectors of 
the center atom and its neighbor atom. This mechanism 
is in line with our basic chemical understanding, that is, 
each atom is influenced by its neighbor atom with differ-
ent degrees, which may lie in factors such as the strength 
of the electrostatic attraction, the shift of the electron 
cloud, etc. Moreover, in the update process, the new hid-
den state of atom hkatom is obtained by adding attention 
message and residuals. It is worth emphasizing that there 
are k − 1 residual items based on skip-connection mech-
anism, the linearly transformed values of the previous 
hidden states (e.g. h1atom and h2atom when k = 3 ), since the 
skip-connection residual can effectively avoid the prob-
lem of gradient disappearance during process of the net-
work training.

The graph reducing process can be regarded as a phar-
macophore-based graph reduction along with a one-step 
message-passing. Firstly, the graph G is reduced into 
RG (reduced graph) according to the previously defined 
pharmacophore-based RG pooling rules, and the sum of 
vectors of child nodes inside one pharmacophore node is 
regarded as the initial state Srg . Then it comes to the mes-
sage-gathering step in MPNN architecture. Each phar-
macophore node receives the messages from their child 
nodes through their attention weights. This is consistent 
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with the chemical intuition that each atom contributes 
differently to its pharmacophore. Finally, the pharmaco-
phore nodes are updated through a GRU (gated recur-
rent unit) [44], with the expectation that the network can 
weigh the initial state Srg and the messages passed over.

During the message-passing phase at RG level, the 
operation is similar to the MPNN step in the graph 
reducing process, that is, the attention mechanism is 
applied to gather messages, and then the GRU is used to 
update the nodes.

The implementation of the molecule readout is very 
similar to that of graph reducing process since the read-
out operation can be regarded as a special case of graph 
reducing, that it, all child nodes belong to one pharmaco-
phore node, with the sum of vectors of these child nodes 
as the initial state at molecule level Smol.

Model evaluation
In this work, we used two methods to split each data-
set into a training set, a validation set and a test set. 
The first was to split randomly according to the ratio of 
8: 1: 1. Noted that in each round of comparing the per-
formance of algorithms, the random seed was kept the 
same to eliminate the impact of different dataset divi-
sions. Each dataset was randomly split five times, and we 
built a model based on each split dataset, so a total of five 
models were built for each dataset. The second is scaf-
fold splitting. The core idea of scaffold splitting is to put 
molecules with different scaffolds into different sets to 
evaluate the prediction ability on new scaffolds that not 
encountered during training. Each dataset was also ran-
domly split five times similar to the method mentioned 
above, under the premise of ensuring that molecules with 
the same scaffold are divided into the training set, valida-
tion set or test set at the same time. Note that the error 
bars on all plots show the standard error of the mean 
across five runs, where standard error is defined as the 
standard deviation divided by the square root of five (the 
number of runs).

For the benchmark data sets, we used RMSE (root 
mean square error) to evaluate regression tasks, and 
AUC (area under curve) to evaluate classification tasks, 
to be consistent with other models on benchmark evalu-
ation. For kinase data sets, two indicators were used to 
evaluate the model—AUC and MCC (Matthews cor-
relation coefficient), as the two are not sensitive to data 
imbalance [45]. In different scenarios, the best model can 
be selected according to different indicators. The AUC 
indicator is suitable to select models in the scenarios 
where the correct sorting is counted such as shortlist-
ing compounds for bioactivity testing in virtual screen-
ing, since it measures the ability of model to rank positive 
samples before negative ones. While the MCC indicator 

is suitable for the models used in the scenarios where 
the correct classification is counted such as evaluating 
whether the molecule is active or toxic.

Model training and hyper‑parameter search
Pytorch [46], a deep-learning framework, was used 
for developing all parts of the RG-MPNN, RDKit 
(v.2018.09.2) [47] for processing molecules and Pytorch 
Geometric [48] for transforming a molecule into a graph. 
MSELoss and CrossEntropyLoss were used as loss func-
tions for regression and classification tasks, respectively, 
whereas Adam [49] was used for gradient descent opti-
mization. For each dataset, we adopted random hyper-
parameter search by using the Python package NNI 
(https://​github.​com/​micro​soft/​nni). The following six 
hyper-parameter together with their scope of the choice, 
base_lr (base L2 weight decay): [1e-3, 1e-4], k (times of 
message -passing layers at atom level): [2–5], t (times 
of message -passing layers at rg level): [1–3], batch: [16, 
32], fingerprint dimension: [64, 128, 256, 512], dropout 
rate: [0, 0.1, 0.2, 0.3, 0.4, 0.5]. Combined with early stop 
strategy, the best parameters were selected based on the 
performance of the validation dataset. This work used the 
same strategy to do hyper-parameter search for MPNN 
model and AttentiveFP model. In addition, Additional 
file  1: Table  S6 lists the number of parameters and the 
average running time of the main models (RG-MPNN, 
AttentiveFP and MPNN models) in this work.

Results and discussion
Model performance on benchmark data sets
To compare the performance of RG-MPNN with other 
existing GNNs, we used the benchmark data sets to test 
these models. Considering the reported performance and 
code availability of the models, we selected MPNN [28] 
and AttentiveFP [30] for comparison. The former is the 
classic MPNN model as the baseline, and the latter is the 
model with superior performance reported in the recent 
period. We list the model performance of some com-
monly used GNN models and machine learning mod-
els on the benchmark datasets, including AttentiveFP, 
MPNN, GC, Weave, D-MPNN, SVM, XGBoost and RF 
models. See Additional file 1: Table S7 for model perfor-
mance and literature reference. In this work, we repro-
duced these models, trained, and tested them on datasets 
locally. The reason why we did not directly compare 
the performance of the RG-MPNN with that of models 
listed in Additional file 1: Table S7 for these reasons: (1) 
we used different data sets (our model can’t deal with 
the case that the molecule belongs to a single pharma-
cophore, and thus it is impossible to transfer informa-
tion at the reduced graph level); (2) cannot obtain the 
same training set reported in the original literature; (3) 

https://github.com/microsoft/nni
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there are some randomness when optimizing and train-
ing model parameters. Moreover, comparing the effects 
of GNN models and machine learning models is not the 
focus of this work, so we don’t reproduce these machine 
learning models. Readers can refer to the results of 
related literature for more information [21].

Table  2 and Additional file  1: Figure S1 summarize 
the performance on the benchmark data sets covering a 
variety of molecular bioactivities, toxicities, and physi-
cal chemistry properties. On the three regression tasks 
(ESOL, FreeSolv and Lipophilicity), it performed best 
in the comparison of locally reproduced models (see 
numbers in bold in Table 2). For classification tasks, our 
model performed best on six of the eight ones (HIV, 
MUV, BACE, Tox21, ToxCast and ClinTox, see numbers 
in bold in Table 2), which indicates that our model per-
formed well for bioactivity and tox prediction tasks. It is 
worth emphasizing that toxicity data sets are all multi-
task classification tasks, so this indicates the potential of 
our models in multi-task prediction, and more extensive 
experiments are worthy to test this hypothesis.

Overall, from the comparison of the models, our model 
RG-MPNN performed slightly better than AttentiveFP, 
and to a large extent better than the MPNN model, sug-
gesting our model is a promising method to solve prob-
lems in drug discovery especially for bioactivity and tox 
prediction problems.

Predicting target bioactivities
RG-MPNN integrates the concept of pharmacophore 
from drug discovery field into the graph neural network, 
aiming to improve the predicting ability for molecular 
bioactivity towards targets of interest. Under these cir-
cumstances, we constructed a series of kinase molecu-
lar activity data sets, aiming to test the model’s ability to 

predict molecular bioactivity on a larger scale. In addi-
tion to the data sets split randomly, we also trained and 
evaluated models on data sets split on scaffolds. This is 
because there has been research shown that the model 
trained on the data sets split based on scaffolds has better 
generalization ability in industry, given that this split can 
simulate the scene of the data set split by time periods in 
industry [38].

Table 3 lists the model performance under two indica-
tors—MCC and AUC. Here, we only compare the mod-
els in terms of AUC. On randomly divided data sets, our 
model performed slightly better than AttentiveFP, achiev-
ing the best performances on seven out of ten, while 
AttentiveFP performed best on the other three data sets. 
In addition, both models mentioned above outperformed 
the MPNN model. The result is in line with our expecta-
tions because the pooling method is very important for 
task prediction. In theory, the hierarchical pooling of 
RG-MPNN and the attention pooling of AttentiveFP can 
extract representation or fingerprints more effectively 
than the average pooling in typical models with MPNN 
architecture.

It can be seen from Table 3 and Fig. 3 that the model 
tended to perform better on data sets with a relatively 
large number of molecules. On the other hand, it showed 
the limitation of GNNs for task prediction on small data 
sets, as the model did not perform well on the two small 
data sets of CK1 and MAP4K2. This limitation is mainly 
due to the relatively larger number of parameters of GNN 
that need to be trained and the parameters having not 
been fully trained would lead to underfitted models if 
the data set is too small. In addition, the data imbalance 
may be one another reason for the bad prediction perfor-
mance. Nevertheless, RG-MPNN performed significantly 
better than AttentiveFP on these two tasks, and equally 

Table 2  Model performance on benchmark datasets

Note that models with the best performance are in bold
a number of compounds used in this work

Category Dataset # Compoundsa Task type # Tasks Metrics AttentiveFP MPNN RG-MPNN (our model)

Physical chemistry ESOL 1030 Regression 1 RMSE 0.650 ± 0.123 0.853 ± 0.057 0.605 ± 0.037
FreeSolv 566 Regression 1 RMSE 1.162 ± 0.180 1.255 ± 0.229 0.939 ± 0.067
Lipophilicity 4085 Regression 1 RMSE 0.627 ± 0.055 0.662 ± 0.019 0.579 ± 0.020

Bioactivity MUV 91,470 Classification 17 ROC-AUC​ 0.772 ± 0.031 0.740 ± 0.012 0.819 ± 0.011
HIV 38,686 Classification 1 ROC-AUC​ 0.815 ± 0.022 0.803 ± 0.015 0.824 ± 0.019
BACE 1419 Classification 1 ROC-AUC​ 0.868 ± 0.024 0.846 ± 0.026 0.889 ± 0.018

Physiology or toxicity BBBP 1928 Classification 1 ROC-AUC​ 0.888 ± 0.025 0.824 ± 0.038 0.879 ± 0.035

Tox21 7372 Classification 12 ROC-AUC​ 0.852 ± 0.025 0.836 ± 0.018 0.873 ± 0.008
ToxCast 8058 Classification 617 ROC-AUC​ 0.860 ± 0.012 0.848 ± 0.008 0.866 ± 0.009
SIDER 1270 Classification 27 ROC-AUC​ 0.827 ± 0.008 0.812 ± 0.012 0.825 ± 0.014

ClinTox 1437 Classification 2 ROC-AUC​ 0.940 ± 0.029 0.941 ± 0.026 0.965 ± 0.011
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to or slightly better than AttentiveFP on most of other 
tasks.

On the models that based on scaffold split methods, we 
can see almost the same trend as that based on random 
split, but the scaffold split can be more challenging: the 
model performance is generally lower that the case of 
random split.

In addition, we also tested our models on other types 
of targets other than kinase targets, including four pro-
tein targets. These are datasets of published machine 
learning model results from our lab, the results show 
that our RG-MPNN model is comparable to traditional 
machine learning models, see Additional file 1: Table S8 
for details, which is consistent to the evaluation of GNN 
and traditional machine learning on benchmark datasets.

Applying reduced graph to MPNN architecture
From the tests on different data sets (benchmark data 
sets and kinase data sets), it has been proved that the RG-
MPNN model is effective, which means that the MPNN 
architecture with RG pooling is effective when applied 
to a basic ResMPNN (see the previous methods section). 
In this part, we aim to explore the effect of applying this 
architecture to other models with MPNN architecture, to 
see whether the RG pooling can help MPNNs improve 
their predictive ability.

We compared three sets of models in pairs (ResMPNN 
vs RG-MPNN, AttentiveFP vs AttentiveFP with RG pool-
ing, MPNN vs MPNN with RG pooling), each consisting 
of two models before and after being applied RG pool-
ing. Totally, we built 600 models across ten kinase data-
sets, with two splitting methods (random and scaffold 
splitting) and repeated by five times. The detailed per-
formance of each model is shown in Additional file  1: 
Table S9 and S10. The effects on prediction performance 
that RG pooling brings to basic models are shown in 
Fig. 4 (detailed difference can be seen in Additional file 1: 
Table  S11 and S12), where the following points can be 
concluded: (a) the RG pooling can improve most basic 
models, including all the ResMPNNs, 80% of AttentiveFP 
models, and 55% of MPNNs, with the improvements of 
AUC ranging from −  0.010 to 0.046; (b) the RG pool-
ing helps ResMPNN gain more improvement on scaffold 
splits than on random splits, while the gains of RG pool-
ing for the other two models (AttentiveFP and MPNN), 
could not see a consistent trend between these two 
splitting methods. This indicated that the basic model 
ResMPNN is more compatible with the RG pooling.

Overall, from the experimental results, RG pooling can 
improve the models with MPNN architecture to varying 
degrees, increasing our prospects for applying this archi-
tecture in industry.

Table 3  Model performance on kinase datasets

Note that the best AUC and MCC for each kinase target are in bold

Dataset Splitting MPNN AttentiveFP RG-MPNN

MCC AUC​ MCC AUC​ MCC AUC​

EGFR Random 0.699 ± 0.022 0.923 ± 0.009 0.729 ± 0.017 0.933 ± 0.010 0.738 ± 0.029 0.942 ± 0.008
Scaffold 0.648 ± 0.03 0.901 ± 0.010 0.684 ± 0.029 0.908 ± 0.006 0.706 ± 0.020 0.925 ± 0.007

BRAF Random 0.703 ± 0.052 0.916 ± 0.020 0.753 ± 0.035 0.938 ± 0.006 0.774 ± 0.020 0.915 ± 0.012

Scaffold 0.614 ± 0.040 0.883 ± 0.006 0.685 ± 0.018 0.905 ± 0.008 0.677 ± 0.044 0.915 ± 0.006
PIM1 Random 0.691 ± 0.069 0.933 ± 0.029 0.741 ± 0.026 0.957 ± 0.009 0.758 ± 0.029 0.951 ± 0.013

Scaffold 0.612 ± 0.050 0.881 ± 0.024 0.681 ± 0.021 0.921 ± 0.006 0.710 ± 0.042 0.928 ± 0.007
mTOR Random 0.591 ± 0.037 0.888 ± 0.036 0.641 ± 0.033 0.927 ± 0.010 0.674 ± 0.038 0.921 ± 0.008

Scaffold 0.408 ± 0.060 0.792 ± 0.033 0.588 ± 0.022 0.876 ± 0.011 0.574 ± 0.015 0.886 ± 0.009
AKT1 Random 0.669 ± 0.068 0.905 ± 0.035 0.751 ± 0.038 0.933 ± 0.011 0.771 ± 0.031 0.941 ± 0.014

Scaffold 0.605 ± 0.041 0.883 ± 0.016 0.657 ± 0.029 0.914 ± 0.010 0.649 ± 0.023 0.910 ± 0.008

AURKA Random 0.634 ± 0.061 0.892 ± 0.020 0.665 ± 0.021 0.909 ± 0.010 0.690 ± 0.028 0.917 ± 0.007
Scaffold 0.471 ± 0.031 0.793 ± 0.012 0.475 ± 0.023 0.807 ± 0.008 0.522 ± 0.037 0.836 ± 0.006

BTK Random 0.670 ± 0.065 0.915 ± 0.022 0.748 ± 0.083 0.947 ± 0.017 0.759 ± 0.042 0.954 ± 0.017
Scaffold 0.545 ± 0.044 0.849 ± 0.021 0.626 ± 0.044 0.902 ± 0.014 0.682 ± 0.031 0.893 ± 0.015

CDK2 Random 0.567 ± 0.041 0.865 ± 0.019 0.624 ± 0.074 0.886 ± 0.021 0.652 ± 0.050 0.902 ± 0.013
Scaffold 0.376 ± 0.052 0.752 ± 0.024 0.412 ± 0.026 0.773 ± 0.022 0.495 ± 0.015 0.820 ± 0.008

MAP4K2 Random 0.457 ± 0.131 0.792 ± 0.059 0.484 ± 0.123 0.813 ± 0.041 0.540 ± 0.046 0.863 ± 0.025
Scaffold 0.174 ± 0.039 0.578 ± 0.037 0.277 ± 0.03 0.652 ± 0.033 0.306 ± 0.045 0.706 ± 0.034

CK1 Random 0.156 ± 0.162 0.673 ± 0.111 0.313 ± 0.128 0.751 ± 0.047 0.433 ± 0.090 0.800 ± 0.065
Scaffold − 0.020 ± 0.051 0.576 ± 0.029 0.159 ± 0.084 0.653 ± 0.011 0.333 ± 0.107 0.687 ± 0.033
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Visualization and analysis of task‑learned fingerprints
We expect a good QSAR model not only to accurately 
predict the potential activity of each molecule, but also 
to help pharmacologists visually observe why some mol-
ecule is active (such as what substructure or property it 
has), and to measure the effect the structural differences 
on activity between two molecules. With this expecta-
tion, we extracted the hidden state of molecules in RG-
MPNN as the task-learned representations and trained 
the representations into spatial arrangement via a self-
organizing map (SOM) [50, 51] Fig. 5 shows the molec-
ular representation distribution on a two-dimensional 
map where being projected to adjacent neurons means 
that two molecules are similar at the level of task-learned 
representation. It can be seen from the figure that active 
molecules and inactive molecules are mapped to dif-
ferent zones, with the diagonal line as the dividing line, 
the upper left corner mostly lies the active samples, and 
the lower right corner lies inactive ones. The conflicting 
neurons are concentrated near the diagonal, which is the 

junction of the two types of molecules. Molecules in this 
area are the most challenging ones to distinguish since 
these molecules have similar representations but differ-
ent labels. Notably, prediction credibility of model is also 
implied in the map: the closer to the upper left and lower 
right corner, the higher the credibility to be active mol-
ecules and inactive ones, respectively.

Furthermore, to visually see the difference between 
similar molecules under different representations, we 
took two typical AURKA inhibitors (VX-680 and pha-
739358) as examples and dive to look at their analogs 
under the task-learned representation and ECFP_4 [52] 
system, respectively (see Additional file 1: Figure S2 and 
S3). It can be concluded that in the two representation 
systems, the molecular structures in the same neuron 
are very similar, but different analogs are extracted. In 
terms of the consistency of molecular labels in the same 
neuron, the task-learned representation is better than 
ECFP, which is consistent with the previously observed 
phenomenon that the task-learned system has fewer 

Fig. 3  Model performance on kinase datasets in terms of AUC. a Model performance based on random splitting datasets. Our model RG-MPNN 
performs slightly better or comparable than AttentiveFP, better than MPNN model. b Model performance based on scaffold splitting datasets. Same 
trend is seen as (a), but performance is generally lower than that of (a)
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conflicting neurons than the ECFP system. Strikingly, the 
task-learned system shows the possibility of completing 
scaffold hopping while ensuring activity.

Activity interpretation for AURKA inhibitors
The task-learned representations are often criticized for 
being difficult to interpret, and it is difficult to gain intui-
tive knowledge from them, which is not conducive to the 
understanding of pharmacologists when applied to the 
practice of drug discovery. Therefore, we extracted the 

attention weights to learn the importance of each phar-
macophore nodes, aiming at dig and provide some intui-
tive information to help drug development.

Take the aforementioned pha-739358 (an AURKA 
inhibitor, shown in Fig. 6a as an example, we have anno-
tated the degrees of the effect of the pharmacophore 
node in the molecule on the activity, as shown in Fig. 6b. 
We can see that Y (aliphatic and positively ionizable), Co 
(acyclic and donor), Ti (aromatic and donor), Ni (acy-
clic and acceptor) and Sc (aromatic and no feature) play 

Fig. 4  Effects on predictive performance that RG pooling brings to basis models. a AUC gains based on random splitting datasets. b AUC gains 
based on scaffold splitting datasets. Most of the AUC gains in both subfigures are positive, which means that the RG pooling is helpful to improve 
predictive performance of models
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important roles in molecular activity. Combining the 
ligand-receptor interaction diagram in the crystal com-
plex (PDB ID: 2J50) for comparative analysis (Fig. 6c, we 
found that the two findings have a certain consistency. 
For example, Co and Ti, which form hydrogen bonds to 

the backbone, are labeled, which is consistent with the 
interactions appeared in the crystal complex. However, 
the findings are not completely overlapped, which is not 
surprising though, since one interpretation is derived 
from the interaction with receptor and the other from the 
knowledge from ligands. The interpretations of the two 
can be used for reference in practical applications. After 
all, in drug development practice, the more information 
from more perspectives, the more novel ideas can be 
provided, and the chance of discovering new drugs will 
increase.

Conclusions
With the goal of integrating more prior chemical knowl-
edge to establish predictive GNN models for chemical 
properties, we introduced a pharmacophore-based RG 
pooling method for MPNNs that can extract pharma-
cophore information hierarchically from molecular 
graphs. Therefore, in this work, we proposed the RG-
MPNN model and compared it with the state-of-the-
art GNN algorithms on the MoleculeNet benchmarks. 
The results showed that our models outperformed 
other models on ten out of twelve tasks. These results 
were also transferred to ten kinase data sets which were 
selected because they are representative kinase targets 
from each kinase family with great potential to be drug 
targets. Models built on these kinase data sets can be 
used in drug screening for inhibitors of these kinases. 

Fig. 5  The SOM of the representation learned by RG-MPNN model 
on the AURKA bioactivity prediction task. Active (positive) molecules 
and inactive (negative) molecules are mapped to different zones, 
which means the representation learned by RG-MPNN has a good 
differentiating effect

Fig. 6  Explanation of the importance of pharmacophore or substructure. a The chemical structure of the pha-739358, an AURKA inhibitor. b The 
importance of pharmacophore learned by RG-MPNN. We can see that Y (aliphatic and positively ionizable), Co (acyclic and donor), Ti (aromatic and 
donor), Ni (acyclic and acceptor) and Sc (aromatic and no feature) play important roles in AURKA bioactivity. c Ligand-receptor interactions in the 
crystal complex (PDB ID: 2J50). Of note, Nitrogen atoms within Co and Ti form two important hydrogen bonds with receptor, which is consistent 
with the analysis of pharmacophore importance
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Furthermore, three groups of comparative experiments 
on the kinase data sets by applying the RG pooling were 
conducted, suggesting that this architecture can gener-
ally improve the predictive power of many MPNNs. It 
showed that this architecture had the potential to be 
extended to more MPNNs. We recommend readers 
to apply this architecture to their own MPNN model, 
not only because it is likely to improve its prediction 
accuracy, but also because the task-learned fingerprints 
obtained by the model bring the possibility of complet-
ing scaffold hopping while ensuring activity. Moreover, 
the fact that pharmacophore importance information 
can be quantified is in line with medical chemists’ 
intuitive needs and understanding needs in molecular 
design, which will help them gain insights for hit dis-
covery and lead optimization.
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