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Abstract 

Motivation:  Compound structure identification is using increasingly more sophisticated computational tools, 
among which machine learning tools are a recent addition that quickly gains in importance. These tools, of which the 
method titled Compound Structure Identification:Input Output Kernel Regression (CSI:IOKR) is an excellent example, 
have been used to elucidate compound structure from mass spectral (MS) data with significant accuracy, confidence 
and speed. They have, however, largely focused on data coming from liquid chromatography coupled to tandem 
mass spectrometry (LC–MS).

Gas chromatography coupled to mass spectrometry (GC–MS) is an alternative which offers several advantages as 
compared to LC–MS, including higher data reproducibility. Of special importance is the substantial compound cover-
age offered by GC–MS, further expanded by derivatization procedures, such as silylation, which can improve the 
volatility, thermal stability and chromatographic peak shape of semi-volatile analytes. Despite these advantages and 
the increasing size of compound databases and MS libraries, GC–MS data have not yet been used by machine learn-
ing approaches to compound structure identification.

Results:  This study presents a successful application of the CSI:IOKR machine learning method for the identification 
of environmental contaminants from GC–MS spectra. We use CSI:IOKR as an alternative to exhaustive search of MS 
libraries, independent of instrumental platform and data processing software. We use a comprehensive dataset of 
GC–MS spectra of trimethylsilyl derivatives and their molecular structures, derived from a large commercially avail-
able MS library, to train a model that maps between spectra and molecular structures. We test the learned model on 
a different dataset of GC–MS spectra of trimethylsilyl derivatives of environmental contaminants, generated in-house 
and made publicly available. The results show that 37% (resp. 50%) of the tested compounds are correctly ranked 
among the top 10 (resp. 20) candidate compounds suggested by the model. Even though spectral comparisons with 
reference standards or de novo structural elucidations are neccessary to validate the predictions, machine learning 
provides efficient candidate prioritization and reduction of the time spent for compound annotation.

Keywords:  Silylation, Derivative, Identification, Machine learning, Mass spectrometry, Molecular fingerprint, 
Prediction
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Introduction
Growing awareness of the environmental impact on 
human health has increased interest into the envi-
ronmental chemical space of the human exposome, 
that consists of the multitude of structurally and toxi-
cologically diverse synthetic and naturally occurring 
compounds [1–3]. This has turned the annotation of 
contaminants of emerging concern (CEC) into a task 
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of utmost importance [4–6], as it can provide valuable 
knowledge about their identity, accumulation, degrada-
tion and transformation patterns, exposure pathways 
and toxicity. Among the multitude of chemical, biologi-
cal and toxicity estimation methods, chromatography 
coupled to MS methods has become the essential ana-
lytical tool for thorough CEC annotation. Employment 
of strongly consolidated, targeted, suspect screening 
and non-targeted screening strategies requires the use 
of data processing software, cheminformatics tools, 
ever-growing compound databases (DBs), MS libraries 
(MSLs) and computational MS workflows for assign-
ment of chemical identities to MS signals.

In its beginning, MS-based high throughput expo-
some exploration involved manual determination of 
compound’s molecular weight  (MW), computation of 
a molecular formula (MF) and then search against data 
repositories for candidates. Different data resources 
have been used for this purpose, including user-gener-
ated specified suspect lists (e.g. [7, 8]), specialized lists 
compiled by, e.g., the US EPA’s Distributed Structure-
Searchable Toxicity (DSSTox) database [9] and environ-
mental communities such as the NORMAN Network 
[10]. Medium-sized DBs contain tens to hundreds of 
thousands of compounds (e.g., US EPA’s Comptox Chem-
istry Dashboard (CCD) [11], ContaminantDB [12], the 
Toxin and Toxin Target Database (T3DB) [13], the Expo-
some Explorer [14]), while the most comprehensive 
chemical repositiories, such as PubChem [15] and Chem-
spider [16] can contain over 100 million compounds. The 
latter are the most frequently exploited sources. They 
offer an exceptionally wide chemical space, hence a sim-
ple exact mass or MF search rapidly turns into a non-
target identification challenge, often with hundreds to 
thousands of hits [7, 17]. Later, MSLs were introduced 
to obtain rapid tentative identifications at relatively high 
confidence [18]. Many MSLs either contain predomi-
nantly LC–MS data (e.g., the Human Metabolome Data-
base 4.0 [19], METLIN [20], MassBank [21], mzCloud 
[22]), GC–MS data (e.g., the Golm Metabolome Data-
base (GMD) [23], the Fiehn Library [24]), or both (e.g., 
National Institute of Standards and Technology (NIST) 
Mass Spectral Library [25] and Wiley Registry [26]). 
Compounds are identified by comparing experimentally 
acquired and reference MSL spectra using versatile spec-
tral similarity functions. Yet even nowadays, in the era of 
their substantial increase in size and comprehensiveness, 
MSLs cover only a fraction of the exposomics-relevant 
chemical information, as inclusion of newly identified 
CEC is inherently limited by the availability of reference 
standards, the relative youth and the lack of their stand-
ardization [27]. This coverage is even poorer for silyl 

derivatives, with very few MSLs [23–25] containing their 
MS spectra.

In the last decade, compound structure identifica-
tion (CSI) based on compound DBs and MSLs has been 
replaced by numerous cheminformatics methods [28]. 
These methods perform CSI by either determining the 
exact mass or MF, by using a predefined exact mass or 
MF, or by converting the structural information inher-
ent to MS data, including the presence of specific sub-
structures, functional groups or complete fragmentation 
pathways, into a computationally more convenient “third 
format”. Here, “third format” representation of the struc-
tural information contained in MS spectra includes more 
computationally manageable formats, such as fragmen-
tation trees, mass spectral trees (for multi-stage MS 
data, MSn), and molecular fingerprints (MFP), all which 
include structural information that can be extracted from 
an MS spectrum and further processed. Based on this 
third format, the cheminformatics approaches perform 
exhaustive interrogation/search of MSLs or compound 
DBs to create candidate sets, from which, according to 
(sub)structural similarity (possibly accompanied with 
other criteria, such as chromatographic behaviour, 
energy, data source, environmental behavior and toxic-
ity related criteria and/or complementary information), 
most probable candidates are prioritized and ranked [28, 
29]. Among these approaches, those based on machine 
learning (ML) have offered highest accuracy, confidence 
and speed in performing the CSI task [7, 29, 30].

Revolutionary breakthroughs in the technological 
development of GC/LC coupled to MS (GC–MS and 
LC–MS, respectively), especially high resolution/accu-
rate mass—mass spectrometry (HR/AM-MS), allow for 
measuring hundreds to thousands of chemical features, 
represented by MS signals, in a single complex sample 
[6, 31]. LC–MS analytical platforms are considered “the 
golden standard’’ in exposomics research, shadowing 
the GC–MS analytical platforms. Despite offering highly 
efficient, sensitive and reproducible analysis with rela-
tively modest cost and substantial compound coverage, 
GC–MS is a somewhat underestimated source of valu-
able complementary analytical data in CEC annotation 
[32]. The ultimately predominant ionisation method for 
the acquisition of GC–MS spectra is electron impact (EI) 
ionisation, along with the less frequently used chemical 
ionization. The great reproducibility of EI spectra, fol-
lowing predictable and thoroughly studied fragmentation 
patterns and broad internal energy distribution, promises 
highly accurate, yet not thoroughly explored, instrument-
independent data for CSI. Even less explored is the iden-
tification of semi-volatile and thermolabile compounds 
using the MS data of their silylated derivatives, mainly 
trimethylsilyl (TMS) or tert-butyl dimethylsilyl (TBDMS) 
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derivatives. While being useful in greatly enhancing the 
compounds’ chromatographic and mass spectromet-
ric characteristics, the derivatization may complicate 
peak annotations due to sometimes incomplete deri-
vatization processes, with formation of multiple and/or 
partially derivatized compounds. Moreover, TMS and 
TBDMS derivatives and their MS spectra are poorly rep-
resented in compound DBs and MSLs, and, accordingly, 
they are not readily identified using the traditional CSI 
approaches of compound DB(s) and/or MSL(s) search. 
While cheminformatics CSI approaches are expected to 
solve this task as well, they have been almost exclusively 
developed and tested using electrospray LC-(ESI)-MS/
MS data and are yet to be challenged against GC-EI-MS 
data.

This paper presents the first application of a 
machine learning approach, named Compound Struc-
ture Identification:Input Output Kernel Regression 
(CSI:IOKR),  for the identification of CEC silyl deriva-
tives using GC-EI-MS spectra. First, we generate two 
unique collections of GC-EI-MS spectra of TMS deriva-
tives: a collection curated from the NIST 17 Mass Spec-
tral Library that is used to train a model with CSI:IOKR 
and a collection of GC-EI-MS spectra experimentally 
acquired in our laboratory that is used to test the model. 
Second, we evaluate the performance of the CSI:IOKR 
model in identifying CEC silyl derivatives. Note that we 

have generated our own test data (thus using different 
sources for the training and testing data) for two reasons: 
(1) to maximize the size of the training data, and (2) to 
obtain better estimates of the performance of the model 
in its intended use scenario, i.e., for identification of CEC 
compounds through their silyl derivatives, on unseen 
data. We also investigate how identification performance 
depends on several factors, including the filtering of the 
training dataset, the overlap between compounds in the 
training and the test datasets, and the post-acquisition 
processing of the test dataset. The CSI:IOKR approach 
reaches satisfactory identification performance for TMS 
derivatives, both within and outside the training dataset, 
indicating its potential for use in GC–MS based annota-
tion of contaminants.

Related work
The field of cheminformatics-assisted compound struc-
ture identification (CSI) has grown intensively over the 
last two decades, developing three groups of approaches 
(Fig.  1). The simplest ones are direct approaches, such 
as Mass Frontier [33], ACD/MS Fragmenter [34], 
MOLGEN-MS [35] and MS-FINDER [36], that extract 
and use structural information directly from the MS 
spectra, represented as a set of m/z values of molecu-
lar ions, relative abundances of isotopologues, given 
the MF or fragment ions. Indirect approaches include 

Fig. 1  An overview of direct, indirect and joint approaches for compound structure identification. Adapted from Ljoncheva et al. [28]
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the combinatorial fragmentation methods, e.g., FiD 
[37], MetFrag 2.2 [38], MAGMa [39], MolFind [40] and 
MIDAS [41]. Approaches from the third group, includ-
ing MetExpert [42], FingerID [43], CSI:FingerID [44], 
CSI:IOKR [45], magnitude-preserving IOKR (MP-IOKR) 
[46], IOKRFusion [47], SIMPLE and L-SIMPLE [48] and 
ADAPTIVE [49], rely on the use of machine learning. 
The third group utilizes the alternative concept of in sil-
ico spectral prediction, i.e., prediction of two dimensional 
(m/z and intensity) EI-MS (CFM-ID [50], NEIMS [51]) or 
ESI–MS/MS spectra (CFM-ID [52], ISIS [53]) by simulat-
ing fragmentation for a defined compound candidate set 
and performing CSI by comparing the measured and the 
in silico predicted MS/MS spectra [28]. The cutting-edge 
CSI approaches are more thoroughly described in recent 
reviews [28, 30].

In their core, the indirect “third-format” ML 
approaches transform the MS structural information into 
“third formats”, such as MFP, molecular descriptors, or 
their combination, that have higher discriminatory power 
to reflect structural similarity and therefore lead to more 
accurate and confident compound structure identifica-
tion. The ice-breaking ML-based approach is FingerID 
[43], that in a first step uses the probability product kernel 
(PPK) [54] directly computed from MS spectra and runs 
support vector machines to perform MFP predictions. 
In the second step, it ranks candidates from DB-derived 
sets according to their similarity to the predicted MFP. 
This method is mainly based on the information from the 
individual spectral peaks and ignores their interactions. 
The follow-up approach, CSI:FingerID [44], uses MS 
spectra and fragmentation trees to calculate multiple ker-
nels combined via multiple kernel learning [55], result-
ing in improved predictive performance. Its disadvantage 
is in the long running times due to the “one-at-a-time” 
spectrum processing approach and computationally 
heavy conversions of MS spectra into fragmentation 
trees. The CSI:IOKR approach [45] learns mappings 
from MS spectra to MFP using multiple input kernels to 
encode similarities in the input space (MS spectra) and 
output kernels for encoding similarities in the output 
space (MFP). It predicts all components of a MFP simul-
taneously, resulting in a faster one-step approach. Further 
efforts to preserve the discrepancy between compounds 
in the input space, and between candidates in the output 
space, as well as incorporate candidate ranking informa-
tion in the learning phase resulted in the development of 
MP-IOKR [46], with improved compound identification 
accuracy as compared to CSI:IOKR. The latest method in 
the IOKR series, IOKRFusion [47] is a score aggregation 
method that cobmines 60 IOKR models and 60 IOKR 
reverse models that learn the mapping of molecular 
structures into the MS/MS feature space rather than the 

output feature space. Finally, MFP are combined with ML 
prediction of retention indices and compound substruc-
tures, in silico derivatization of DBs, and metabolite-like-
ness evaluation in the MetExpert approach [56].

The ultimate ML-based “third-format” approaches 
exchange either the fixed, redundant MFP with novel, 
non-redundant, data-driven and specific molecular vec-
tors (ADAPTIVE [49]) or multiple kernels with a sim-
pler prediction function, incorporating peak interactions 
(SIMPLE [48]). The first method combines the learning 
of a mapping from structures to molecular vectors utiliz-
ing message passing neural network with IOKR-based 
learning of the mapping from MS spectra to molecular 
vectors. The second method offers performance compa-
rable to that of kernel-based methods at higher predic-
tion speed that is proportional to the number of peaks in 
the queried spectrum, unlike all aforementioned kernel-
based methods [30].

The most recent Critical Assessment of Small Molecule 
Identification (CASMI) contests (2016 [57] and 2017 
[58]) identified the ML-based approaches CSI:FingerID 
[44], CSI:IOKR [45] and CFM-ID [59] as the most accu-
rate compound structure identification tools, ranking as 
top1 and among the top10 17 and 34.4% (for CSI:IOKR) 
and more than 49% of the challenges, respectively. The 
challenges used LC–ESI–MS/MS spectra of reference 
standards. Despite their expansive development and 
excellent performance, the ML-based compound struc-
ture identification tools have been seldomly used in CEC 
research [28]: they have been used in few LC-(ESI)-MS/
MS-based studies [8, 60–65], but no GC-EI-MS-based 
studies. In fact, only three approaches, including Met-
Expert [42], CFM-ID [50] and NEIMS [51] have been 
specifically developed to handle GC-EI-MS data, among 
which only the first one performs the CSI task on GC-EI-
MS spectra of TMS and methoxy/TMS derivatives.

Materials and methods
Generation of the training dataset
The NIST 17 Mass Spectral Library [66] was selected as 
reference MSL for the generation of our training data-
set. NIST 17 is the most comprehensive selection of 
GC-EI-MS spectra, containing 306,622 GC-EI-MS spec-
tra of 267,376 compounds. Two of the NIST 17 librar-
ies were searched; the main spectral library (mainlib), 
with 267,376 GC-EI-MS spectra and the replicate library 
(replib), with 39,246 GC-EI-MS spectra that are inde-
pendent replicates of spectra of compounds contained in 
mainlib. Replib is a collection of noisier spectra as com-
pared to mainlib, which reflect normally occuring experi-
mental and instrumental response variations and make 
the training dataset more informative.
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The spectral search was performed by using the NIST 
MS Search Program v.2.3 (NIST, 2017), with two con-
straints: name fragment: trimethysilyl and elements 
allowed: Si. The GC-EI-MS spectra were extracted in  .
msp file format and subsequently converted into .txt for-
mat using the LIB2NIST conversion tool (NIST, 2011), 
saving the following data for each extracted GC-EI-MS 
spectrum: name, InChIKey, MF, Mw, exact mass, CAS 
number, NIST ID and MS peak list.

The originally extracted NIST 17 entries were filtered 
by using the three-step approach shown in Fig.  2. The 
first step involved manual inspection of the spectra to 
retain only the Si-containing compounds generated as a 
result of the silylation reaction. The GC-EI-MS spectra 
of chemically irrelevant Si-containing compounds were 
removed from the dataset. Here, we set the following 
structural categories for exclusion:

1)	 Structures with Si–Si bonds (siloxanes);
2)	 Structures with C-Si bonds;
3)	 Structures with O-Si bonds other than hydroxyl/car-

boxyl-TMS derivatives;
4)	 Structures with N-Si bonds other than primary/sec-

ondary amine-TMS derivatives;
5)	 Structures with N–O-Si and N–N-Si bonds;

6)	 Structures with S–Si bonds other than thiol-TMS 
derivatives;

7)	 Structures with P-/(O/N/S)-Si bonds;
8)	 TMS derivatives generated as a result of a rearrange-

ment derivatization reaction;
9)	 TBDMS derivatives;
10)	 Mixed TMS and TBDMS derivatives;
11)	 TMS derivatization agents;
12)	 TMS derivatives of inorganic compounds and
13)	 TMS derivatives that contain heavy metals.

As a part of the first data filtering step, we also removed 
erroneous NIST 17 entries, i.e., those GC-EI-MS spectral 
entries whose names and structures did not correspond. 
In the second step, GC-EI-MS spectra of TMS deriva-
tives with m/z ≥ 1,000 Da were removed, since such high 
molecular masses are above the working linear range of 
most of the mass analyzers used in GC–MS platforms. 
As a final data filtration step, we used four basic crite-
ria to ensure baseline spectral quality. GC-EI-MS spec-
tra were excluded unless they complied with all of the 
requirements below:

–	 GC-EI-MS spectra have to be acquired at the upper 
m/z of at least Mw of the derivative + 10 amu;

Fig. 2  The three-step spectral filtering process. CD 0.1 is the initial GC-EI-MS training dataset curated from NIST, CD 1.1 is the step 1-refined 
GC-EI-MS dataset, CD 2.1 is the step 1 and 2-refined GC-EI-MS dataset, while CD 3.3 is the final GC-EI-MS dataset that has gone through the three 
steps of spectral filtering.
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–	 GC-EI-MS spectra have to contain the molecular ion 
[M]+ peak and at least one of the isotope peaks, such 
as the 13C isotope peak;

–	 GC-EI-MS spectra have to contain peaks of fragment 
ion specific for TMS groups (m/z 73, 147, 221 and 
295, corresponding to one, two, three and four TMS 
groups, respectively) and

–	 GC-EI-MS spectra have to contain at least five frag-
ment ion peaks.

Generation of the test dataset
Chemicals and reagents
From the in-house pool of reference standards, we 
selected 129 compounds with potential environmental 
relevance and at least one functional group amenable to 
TMS derivatization. Preliminary derivatization experi-
ments showed that 100 compounds out of 129 could get 
successfully derivatized. The list and the basic descrip-
tion of the selected reference standards and other chemi-
cals and reagents used in this study is given in Additional 
file  1. The compounds are of anthropogenic origin and 
are potentially bioactive CECs. In order to verify their 
environmental relevance, the compounds were searched 
against CCD [11], followed by predicting their environ-
mental properties. US EPA’s Toxicity Estimation Software 
Tool (T.E.S.T.) [67] was used to predict the common tox-
icity endopoints: 96  h fathead minnow LC50, develop-
mental toxicity and estrogen receptor binding affinity. 
The Estimation Programs Interface (EPI) Suite™ v.4.11 
[68] was used to predict the log carbon–water partition-
ing coefficient (log Koc), log octanol–water partitioning 
coefficient (log Kow), water solubility, bioaccumulation 
factor, bioconcentration factor, biotransformation half-
life, half-life in river and half-life in lake, for each of the 
compounds. To be considered for the test dataset, a com-
pound had to fulfill at least three of the following five cri-
teria, established in accordance with the Regulation (EC) 
No 1907/2006 of the European Parliament and the Coun-
cil of 18 December 2006 concerning the Registration, 
Evaluation, Authorisation and Restriction of Chemicals 
(REACH), Annex XIII [69]:

1)	 Positioning (R): the compound is present in the US 
EPA CCD [11], the most comprehensive repository 
of eco-exposome constituents;

2)	 Persistence (P): compound’s half-life in fresh or estu-
arine water is  > 40 days;

3)	 Bioaccumulation (B): bioaccumulation factor and/or 
bioconcentration factor  > 2000, or in absence of such 
data, logKow ≥ 5.0;

4)	 Mobility (M): compound’s water solubility 
is  ≥ 0.15  mg/L and log Koc is ≤ 4.0, i.e. between 
−10.0 and 4.0 and

5)	 EcoToxicity (T): long-term no-observed-effect con-
centration (NOEC) for marine or freshwater organ-
isms is  < 0.01 mg/L. Here, instead of NOEC, chronic 
acquatic toxicity (mg/L) for fish, daphnid, and green 
algae is considered, calculated as the geometric mean 
of NOEC and lowest observed effect concentration 
(LOEC).

The results of the Comptox-T.E.S.T and EPI Suite™ pre-
dictions are given in Additional file 2.

Silylation
The individual stock standard solutions (SSSs) of each 
compound at the concentration of approximately 150 μg/
mL were prepared in EtAc, MeOH or ACN, depending 
on the solubility of the reference compound (Table  1). 
The SSSs were kept at + 4  °C and were diluted to pre-
pare working solutions (WSs) at the concentration of 
1  μg/mL, which were used within 7  days. TMS deriva-
tives were prepared individually, by mixing 150  µL of a 
WS with 30 µL of a derivatization agent (MSTFA, BSTFA 
or BSTFA + 1% TMCS, depending on the derivatization 
yield determined during the preliminary derivatization 
experiments). For compounds dissolved in MeOH, the 
solvent was removed under gentle steam of N2 prior to 
the addition of the derivatization agent, which was fol-
lowed by reconstitution in 150  µL EtAc and vortexing 
for 1 min. Derivatization conditions (temperature, time) 
were selected based on prior optimization, so that com-
pounds were derivatized under either of the following 
conditions: (1) at 60 °C for 45 min; (2) at 70 °C for 90 min 
or (3) at 70 °C for 45 min.

GC‑EI‑MS spectra acquisition and dataset compilation
GC-EI-MS spectra were acquired on Agilent 
7890B/5977A series GC-MSD (Agilent, USA). Separation 
was achieved on Agilent DB-5MS UI fused-silica capil-
lary column (30 m × 0.25 mm × 0.25 μm; Agilent, USA). 
He of 99.99999% purity at the flow rate of 1.2  mL/min 
was used as a carrier gas. The manifold, ion source and 
transfer line temperatures were set at 230 °C, 150 °C and 
250 °C, respectively. Injections (1 µL) were performed in 
the splitless mode. Depending upon compound prop-
erties, one of the following column oven temperature 
programs was used: (1) initial temperature 70  ºC (held 
1  min), ramped at 15  ºC/min to 280  ºC (held 1  min); 
total runtime: 16 min; (2) initial temperature 70 ºC (held 
1 min), ramped at 20  ºC/min to 240  ºC (held 1 min), at 
12 ºC/min to 310 ºC (held 2 min); total runtime: 18.3 min 
and (3) initial temperature 70 ºC (held 1 min), ramped at 
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20 ºC/min to 240 ºC (held 1 min), at 12 ºC/min to 310 ºC 
(held 4 min); total runtime: 20.3 min. The MSD was oper-
ated in EI ionization mode (70 eV) by scanning over the 
mass range of m/z 50–800 amu. Mass Hunter Qualita-
tive Analysis v B.07.00 (Agilent, USA) was used to reduce 
raw instrument data to two-dimensional peak lists (m/z, 
abundance) and to perform background subtraction (BS).

In-between the acquisitions of the derivatized stand-
ards, EtAc was run as the solvent check to assess poten-
tial background interferences, carryover and sample 
contamination and was used for background subtrac-
tion as a part of the post-acquisition processing of the 

GC-EI-MS spectra. The test GC-EI-MS dataset was com-
piled as .txt file that included MF, InChIKey strings, Mw 
and two-dimensional peak lists. Molecular stereochemis-
try was not considered, since stereoisomers are not read-
ily distinguished by MS.

GC‑EI‑MS spectral similarity analysis and selection
For each TMS-derivative, multiple (≥ 15) GC-EI-MS 
spectra were generated for the experimental dataset. In 
order to estimate spectral reproducibility (and therefore 
the “interchangeability”) of the GC-EI-MS spectra of a 
TMS derivative, the cosine similarity was calculated. An 

Table 1  Optimized derivatization and acquisition conditions for CEC-TMS derivatives from the test dataset.

CEC (abbreviations are provided in Additional file 4) Dissolved in Derivatization agent and conditions GC oven 
programme (see 
"GC-EI-MS spectra 
acquisition 
and dataset 
compilation" 
section)

SA
LAA
SHA

CBD
QA

AMP
MAMP

MeOH MSTFA, 60 °C, 45 min (1)

CBC THC CBN BSTFA + 1% TCMS, 70 °C, 90 min (2)

11N9THC
T3HC
11OHTHC
6-MAM

BZECG
LLEU
COD

LSER
MORPH
ERY

BSTFA + 1% TCMS, 70 °C, 45 min (3)

BA
PrPb
MePb
IBuPb

EtPb
BuPb
IPrPb

TCS
IB
BzPb

EtAC MSTFA, 60 °C, 45 min (1)

RES
CBZ
CLA
DF
9-HF
E1

HPP
E2
4-NP
E3
NAP
EE2

DH-BP
BP-8
4,4’-BP
SFA
KET

BSTFA + 1% TCMS, 70 °C, 90 min (2)

22BPF
BPBP
3M5NC
BPAF
BPPH
4NC
BPF
BPFL
SYE
BPE
DHDPE
4-NS
BPA
PAA
PCA
BPC
2AA

CA
MCA
BPB
CLP
OCA
BP26DM
AA
17HP
BPCL
8-HQ
5AD
BPZ
4-OP
BD
BPS
CBDA
6HP

11HT
BPAP
4-NG
11HAD
H-BP
5-NG
ST
BHT
6-NG
2APA
BPM
CAT​
ET
BPP
3MC
NX

BSTFA + 1% TCMS, 70 °C, 45 min (3)

UA ACN MSTFA, 60 °C, 45 min (1)

THCA BSTFA + 1% TMCS, 70 °C, 90 min (2)

LTYR​ BSTFA + 1% TMCS, 70 °C, 45 min (3)
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R script was written to read GC-EI-MS spectra, perform 
binning in 1.0  Da bins and an intensity N-dimensional 
vector is constructed in which element vi corresponds to 
the average peak intensity of all peaks within the bin. The 
cosine similarity c between spectra v and u was calcu-
lated as the dot product of the two vectors divided by the 
product of their norms (Eq. 1):

giving values between 0 and 1, with 0 indicating that the 
spectra share no common peaks and 1 indicating that the 
spectra are identical. Cosine similarity is calculated in 
all-against-all manner in both the RAW and BS experi-
mental datasets. The influence of background subtraction 
on spectral reproducibility and similarity was explored 
by calculating the cosine similarity between each raw 
GC-EI-MS spectrum in the RAW dataset and its corre-
sponding background-subtracted GC-EI-MS spectrum in 
the BS dataset for each TMS derivative. The results are 
visualized as a separate cosine similarity measure matrix 

(1)c =

∑
i
viui

�v��u�

for each TMS derivative. Finally, in order to explore mass 
spectral similarities of the TMS derivatives included, a 
consensus spectrum was built from all binned GC-EI-
MS spectra for each TMS derivative. Clustering was then 
performed of the consensus spectra for both RAW and 
BS datasets using the distance matrices of all against all 
consensus RAW, and respective BS spectra.

CSI:IOKR protocol
Identification of TMS derivatives was performed by using 
a simplified version of CSI:IOKR [45]. The workflow 
is given in Fig.  3. CSI:IOKR is a kernel-based method, 
where a kernel function is a positive semi-definite func-
tion that measures similarity between two elements [45]. 
In our study, input kernels measure similarity between 
MS spectra, while output kernels measure similarity 
between molecular properties represented as MFPs. The 
product kernel (PPK) [54] was used as an input kernel, 
and the linear kernel calculated on MFPs was used as 
an output kernel. The PPK kernel is computed from MS 
spectra, by modelling each peak in a spectrum as a nor-
mal distribution with two dimensions: m/z and intensity, 

Fig. 3  Workflow of the CSI:IOKR protocol that we employ, based on Dührkop et al. [72] and Brouard et al. [45]. The model is trained on a set of   
GC-EI-MS data from the NIST 17 MSL and the MFPs of the corresponding molecular structures. The PPK kernel is computed for each pair of spectra 
and MFPs are calculated for each compound from the training NIST 17 MSL dataset in preparation for learning the kernel-based model. The model 
is tested using GC-EI-MS data of (unknown) TMS derivatives, by calculating the MFPs of candidate compounds with identical MFs, comparing 
these MFPs with the MFP predicted by the IOKR kernel-based model from the query GC-EI mass spectrum and producing and ordering the list of 
candidate structures by the similarity of their MFPs with the predicted one.
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and modelling an MS spectrum as a mixture of normal 
distributions. The PPK kernel is evaluated by integrat-
ing the product between the two corresponding mixture 
distributions [45]. The kernels were centralized and nor-
malized. The strength of regularization for IOKR was 
determined with internal cross-validation on the training 
dataset, as proposed by Brouard et al. [45].

In the pre-image step, we assume the MFs of the TMS 
derivatives of compounds corresponding to the GC-EI-
MS spectra from the test dataset to be known: This is 
certainly true if the GC-EI-MS spectra are generated for 
testing purposes, as in our case, but note that the MF cor-
responding to a given MS can be also obtained by using 
software such as SIRIUS [70]. We use these MFs to gen-
erate a candidate set of compounds from PubChem [15] 
with a MF identical to the MF  of each test TMS deriva-
tive  in turn. The InChIKeY strings of PubChem candi-
dates are retrieved by submitting queries to PubChem’s 
Power User Gateway through the  extensible markup 
language (XML) and further stored for MFP calcula-
tion. For each challenge GC-EI-MS spectrum of a TMS 
derivative and PubChem candidate, four types of MFPs 
were calculated (and then  concatenated) by using the 
Chemistry Development Kit (CDK)  [71]: substructure 
fingerprints (307 molecular properties), MACCS finger-
prints (166 molecular properties), PubChem (CACTVS) 
fingerprints (881 molecular properties) and Klekota-Roth 
fingerprints (4,860 molecular properties), giving 6,214 
molecular properties in total. Of these, 3,215 molecular 
properties were removed, as they were either duplicates 
or were constant through the entire training dataset. This 
resulted in 2,999 bit-long vectors describing the struc-
tures of the TMS derivatives.

We used IOKR for model learning on both the raw and 
the curated datasets (CD 0.1 and CD 3.3, respectively; see 
Fig. 2). We used the learned models to make predictions 
for the two test datasets, of raw (RAW) and background-
subtracted (BS) spectra. All experiments were performed 
on a computer with a 2.7 GHz Intel Core processor. The 
computer code was written in Phyton and MATLAB.

Results and discussion
Generation of the training dataset
Using the NIST MS Search Software, the initial training 
dataset of GC-EI-MS spectra (CD 0.1) was generated, 
consisting of 9,958 GC-EI-MS spectra (Fig.  2). In the 
first step, the GC-EI-MS spectra of chemically irrelevant 
compounds were removed. These compounds contained 
in their chemical structures Si atom(s) that were not part 
of a TMS group, but belonged to one of the structural 
categories for exclusion (see "Generation of the training 
dataset" section). This resulted in the removal of 2,385 
GC-EI-MS spectra (24%), yielding the refined dataset 

(CD 1.1) of 7,573 GC-EI-MS spectra. The remaining 
collection of GC-EI-MS spectra comprises compounds 
consisting of the 11 most typical elements in organic 
chemistry: C, H, N, O, P, S, Br, I, F, Cl and Si [73, 74]. Fur-
ther, 9 GC-EI-MS spectra of high-mass TMS derivatives 
(Mw > 1000) and 2,925 GC-EI-MS spectra of insufficient 
quality were removed in the second and third filtration 
step, respectively. The final training dataset, CD 3.3, con-
sists of 4,648 GC-EI-MS spectra (of 3,948 TMS deriva-
tives), which is 47% of the initial CD 0.1 dataset. After 
the third filtering step, a final modification in which the 
m/z range was set to m/z 50 up to Mw + 10 Da was made 
to the 4,648 spectra remaining in the final version of the 
training dataset.

Generation of the test dataset
The predictions, the criteria and the results from the 
environmental evaluation of the compounds consid-
ered for the generation of the test dataset are described 
in detail in Additional file  2. The evaluation of the 100 
compounds selected for generating the test dataset of 
GC-EI-MS spectra (see Additional file  3) revealed sig-
nificant environmental relevance for the majority of the 
test compounds. Briefly, 96 compounds meet at least 
three RPMBT classification criteria (see "Chemicals and 
reagents" section), while four compounds (3-methyl-
5-nitrocatechol (3M5NC), 4-nitrosyringol (4-NS), 
6-hydroxypregnenolone (6HP) and 11-hydroxytestoster-
one (11HT)) do not, though according to the Regulation 
(EC) No 1907/2006, Annex XIII [69], they can be consid-
ered as persistent, mobile and toxic compounds (Addi-
tional file 3).

The derivatization experiments resulted in the forma-
tion of 104 TMS derivatives with Mw ranges from 182 to 
575 Da (see Additional file 4). The optimized derivatiza-
tion and acquisition conditions can be found in Table 1. 
During the acquisition, no significant sample contamina-
tion or carryover was detected. Baseline subtraction was 
still performed to remove constantly present background 
signals, such as those originating from common GC–MS 
contaminants, e.g., m/z 149 as a typical phtalate interfer-
ence, m/z 282, m/z 256 and m/z 284 for oleic, palmitic 
and stearic acid, and m/z 207, m/z 281 and m/z 327 of 
common polysiloxanes resulting from GC column sta-
tionary phase degradation. The raw GC-EI-MS spectra 
were assigned to the RAW test dataset. After background 
subtraction, the resulting spectra were assigned to the BS 
test dataset.

GC‑EI‑MS spectral similarity analysis and selection
The most widely used, reliable and accurate way of com-
paring MS spectra is to quantify the fraction of shared 
peaks by using cosine-based similarity scores that rely 
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on multiplying the intensities of matching peaks [75]. 
When multiple EI-MS spectra of the same compound are 
acquired, it is necessary to understand whether each par-
ticular MS spectrum should be taken into account, and if 
not, which one(s) should. To validate the hypothesis that 
GC-EI-MS spectra of the same compound (here, TMS 
derivative) are highly reproducible/similar, we performed 
an all-against-all cosine similarity comparation within the 
RAW and BS experimental dataset. While the established 
cosine similarity threshold value is 0.50, the minimum 
cosine similarity for most of the TMS derivative pairs 
was higher than 0.95 (Table 2). There are very few TMS 
derivatives for which a pair of spectra existed either in 
RAW (2-anilinophenylacetic acid-TMS (2APA-TMS)), BS 
(cannabidiolic acid TMS (CBDA-TMS), nitroxoline TMS 
(NX-TMS)) or in both experimental datasets (L-tyrosine 
TMS (LTYR-TMS), salicylic acid TMS (SA-TMS)), that 
yielded a minimum cosine similarity factor below 0.50. 
Despite these few observed discrepancies, we kept all the 
GC-EI-MS spectra of these TMS derivatives in the exper-
imental datasets.

Further, for 2APA-TMS, 17α-ethinyl estradiol 
TMS (EE2-TMS), estriol TMS (E3-TMS), NX-TMS, 

LTYR-TMS, L-leucine (LLEU-TMS) and L-serine TMS 
(LSER-TMS), the minimum cosine similarity between a 
pair of RAW and BS MS spectra was below 0.50. Moreo-
ver, for the latter two TMS derivatives also the maximum 
cosine similarity factor did not exceed 0.50. Such values 
indicate that significant changes in MS spectra occur 
when background subtraction is performed. An example 
TMS derivative with highly reproducible spectra is given 
in Fig.  4A, together with an example TMS derivative 
where GC-EI-MS spectra are less reproducible (Fig. 4B), 
where green color indicates high cosine similarity (0.99–
1.00), yellow color indicates medium cosine similarity 
(0.51–0.98) and red color indicates low cosine similarity 
(below 0.50).

Still, the reproducibility of GC-EI-MS spectra of TMS 
derivatives is overall satisfactory. Any of the acquired 
GC-EI-MS spectra of each TMS derivative can thus be 
used to test the CSI:IOKR model. This is clearly visible 
in Additional file 5, where very few TMS derivatives have 
pairs of GC-EI-MS spectra of low similarity, i.e., factor 
below 0.50. Despite these few observed discrepancies, we 
kept all the GC-EI-MS spectra of these TMS derivatives 
in the experimental datasets.

Fig. 4  Cosine similarity matrices for multiple spectra of A: CLP-TMS RAW and B: NX-TMS RAW. Green color indicates high cosine similarity (0.99–
1.00), yellow color indicates medium cosine similarity (0.51–0.98) and red color indicates low cosine similarity (below 0.50).
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CSI: IOKR
The protocol
CSI:IOKR was used to identify CECs from GC-EI-MS 
spectra of their TMS derivatives. While many different 
kernels have been proposed in the literature [43–46, 48], 
it is well known that kernel-based supervised ML meth-
ods have computational complexity issues, particularly 
when using complex kernels. They can have high predic-
tive performance at the price of a heavy computational 
load. Led by this knowledge, we used two simple kernels, 
namely the PPK as input and the linear kernel as output 
kernel. The PPK is computed from a spectrum by mode-
ling each peak in the MS as Gaussian distribution, where 
the m/z ratio and intensity represent the dimensions, and 
modeling the whole spectrum as a mixture of normal 
distributions. All-against-all matching is performed by 
integrating the product between the two corresponding 
distribution mixtures. This kernel is shown to be supe-
rior to simple peak and loss matching kernels computed 
directly from the spectra (without the knowledge of frag-
mentation trees) [43, 44]. Among the 24 input kernels of 
the CSI:IOKR model, PPK was one of the best perform-
ing kernels and was assigned the highest weight in the 
ALIGNF approach of Brouard et al. [45]. The linear ker-
nel was selected as output kernel based on the evaluation 
results of Brouard et al. [45], where it performed compa-
rably to the polynomial kernel and insignificantly worse 
than the Gaussian kernel (30.02% vs. 30.66% with the 
UNIMKL approach, 28.54% vs. 29.78% with the ALIGNF 
approach). PPK as the input and linear kernel as the out-
put kernel were also the best performing kernels in the 
IOKRFusion method [47].

The performance of IOKR with the two selected ker-
nels was evaluated on each of the test sets. The identifica-
tion accuracy was evaluated by using three metrics: (1) 
the top-k accuracy, that corresponds to the percentage 
of test TMS derivatives for which the correct structural 
candidate is found among the top k  ranked candidates; 
(2) the average absolute ranking position ( ARP ), the 
average of ARP values for all CEC-TMS,  defined as the 
number of candidates with better ranking than the cor-
rect compound plus 1 and (3) the average relative rank-
ing position ( RRP ), of RRP values for all CEC-TMS [76], 
calculated as (Eq. 2):

where BC denotes the number of candidates that are 
better scored than the correct candidate, WC denotes the 
number of candidates which are ranked lower, i.e., worse 
than the correct candidate and TC denotes the total 
number of candidates. The RRP ranges from 0 to 1, with 
RRP = 0 if the correct candidate is ranked first and RRP 
= 1 if the correct candidate is ranked last. For each IOKR 
run, the TMS derivatives missing from the PubChem 
candidates pool were referred to as “missing”.

Performance results
The results of evaluating the performance of CSI:IOKR 
are gathered in Table 2. First, we investigated whether the 
filtering of the training dataset and the post-acquisition 
processing of the test dataset affected the performance. 
The spectral filtering of the training dataset involved the 
steps illustrated in Fig.  2, whereas the post-acquisition 
processing only involved baseline subtraction. As evident 

(2)RRP =
1

2

(

1+
BC−WC

TC− 1

)

Table 2  The identification accuracies of CSI:IOKR on different training and test datasets.

For each experimental setup, the total number of CEC-TMS derivatives, the number (n) and percentage (%) of missing CEC-TMS derivatives, and CEC-TMS derivatives 
correctly ranked in the top 1, 10 and 20 hits (top k accuracies), average absolute ranking position ( ARP) and average relative ranking position ( RRP) are given.

Training dataset Test dataset Presence of the test 
compounds in training 
dataset

Number of test 
compounds

Missing Top 1 Top 10 Top 20 ARP RRP

n (%) n (%) n (%) n (%)

CD 0.1 RAW​ Yes 63 9 (14.3) 1 (1.6) 10 (15.9) 18 (28.6) 59.8 0.79

CD 0.1 RAW​ No 41 23 (56.1) 2 (4.9) 9 (22.0) 16 (39.0) 24.7 0.69

CD 0.1 RAW​ Merged 104 32 (31.8) 3 (2.9) 19 (18.3) 34 (32.7) 52.0 0.77

CD 0.1 BS Yes 62 8 (12.9) 1 (1.6) 10 (16.1) 18 (29.0) 60.0 0.79

CD 0.1 BS No 41 23 (56.0) 2 (4.9) 9 (22.0) 16 (39.0) 24.9 0.72

CD 0.1 BS Merged 103 31 (30.1) 3 (2.9) 19 (18.5) 34 (33.0) 52.2 0.77

CD 3.3 RAW​ Yes 63 9 (14.3) 7 (11.1) 25 (39.7) 37 (58.7) 23.8 0.37

CD 3.3 RAW​ No 41 23 (56.1) 4 (9.8) 14 (34.2) 16 (39.0) 11.3 0.35

CD 3.3 RAW​ Merged 104 32 (30.8) 11 (10.6) 39 (37.5) 53 (51.0) 21.0 0.36

CD 3.3 BS Yes 62 8 (12.9) 4 (6.5) 24 (38.7) 36 (58.1) 26.2 0.39

CD 3.3 BS No 41 23 (56.1) 5 (12.2) 14 (34.2 5) 16 (39.0) 11.0 0.36

CD 3.3 BS Merged 103 31 (30.1) 9 (8.7) 38 (36.9) 52 (50.5) 22.8 0.38
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in Table  2 and Fig.  5, lower performance was achieved 
when using the unfiltered NIST GC-EI-MS dataset (CD 
0.1) in the learning phase, for both test datasets. Two to 
four-  fold increase of the top-k accuracies was observed 
when the 3-step filtered NIST GC-EI-MS dataset (CD 
3.3) was used to train the model (instead of CD 0.1). 
Also, the ARP and RRP improved two-fold with the CD 
3.3 dataset. For example, the ARP of the correct TMS 
derivative was 31 positions and 29 positions higher for 
the RAW and BS datasets, respectively. As evident in 
Fig.  5, very subtle differences of less than 2% appeared 
between performance on the RAW and BS test data-
sets in all experiments, slightly favoring the RAW test 
dataset, especially when CD 3.3 was used to train the 
model. However, the RRP values were comparable for 
both the RAW and the BS test sets with both the CD 0.1 
and the CD 3.3 training sets, confirming that this base-
line subtraction is not important for the identification 
task. Therefore, we consider that the CSI:IOKR model 
performs best when trained using the CD 3.3 training 
dataset and tested on RAW test dataset. Thus, further 
evaluation of the CSI:IOKR performance is done based 
on the results from CD 3.3 + RAW.

For each experimental setup, the total number of CEC-
TMS derivatives, the number (n) and percentage (%) of 
missing CEC-TMS derivatives, and CEC-TMS derivatives 
correctly ranked in the top 1, 10 and 20 hits (top k accu-
racies), ARP and RRP are given.

Further, we compared the performance of CSI:IOKR 
for two subgroups of TMS derivatives from the test 
set, i.e., those with GC-EI-MS spectra within and out-
side the training dataset (»presence in training dataset« 
Yes/No, Table  2). The results show better identification 

performance for the GC-EI-MS spectra that were part 
of the training dataset for the CD 3.3 dataset. The dif-
ferences in performance are small and their direction is 
unclear for the CD 0.1 training dataset, expecially for the 
top 1 metric. The underlying reason may be that the size 
of the candidate sets was typically much lower for the 
group of TMS derivatives that were not part of the train-
ing dataset, reflecting the high number of TMS deriva-
tives that are not part of PubChem.

With this in mind, we investigated the relation between 
candidate set size and identification performance. The 
distribution of candidate sets sizes is presented in Fig. 6. 
The maximum size of a candidate set was less than 400, 
while the majority candidate sets (about 50%) consisted 
of 0–25 candidates (Fig.  6A). According to the results 
(Fig. 6B), the difficulty of the identification task does not 
seem to strongly depend on the size of the candidate set, 
as the method is able to correctly identify a significant 
proportion of test compounds within the top 1 and top 
10 candidates, even for larger candidate sets [45]. For 
32 challenges from the test dataset, their corresponding 
candidate sets did not contain the correct compound.

Relating the number of candidates within each 
PubChem candidate set with the percentage of candi-
dates ranked higher than the correct compound (Fig. 7) 
did not reveal any specific pattern, regardless of whether 
the TMS derivatives had their spectra within or out-
side of the training dataset. The results indicate that 
the influence of the size of the PubChem candidate sets 
on the identification accuracy is negligible. That is, the 
CSI:IOKR model, in a percentage-wise manner, does not 
perform worse with larger candidate sets. However, this 
may not yield satisfactory performance when the correct 
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Fig. 6  A: Distribution of PubChem candidate set sizes for the test set spectra. Blue color represents the TMS derivatives that are in PubChem, and 
orange color represents the TMS derivatives that are not in PubChem; B: Distribution of TMS derivatives from test dataset; the y-axis represents the 
percentage of correct TMS derivatives not present in their candidate set (green color); percentage of correct TMS derivatives that are ranked top 1 
(pink color); percentage of correct TMS derivatives ranked in the top 10 (yellow color); percentage of TMS derivatives that are ranked below the top 
10 positions (orange color) and percentage of missing TMS derivatives, i.e., TMS derivatives that are not in the PubChem candidate set (blue color) 
among the test TMS derivatives with candidate set sizes in each size bin, while the x-axis represents the candidate set size bins.
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compound is, for example, ranked at position 100 among 
1000 candidates. In this case, the percentage is good, 
while the rank itself is not.

In order to investigate the ability of CSI:IOKR to iden-
tify particular groups of TMS derivatives, we divided the 
latter into 6 structural TMS classes, based on the moiety 
that the TMS group was attached to (Additional file  6). 
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Fig. 8  The median number of candidates in the candidate sets of different classes of TMS derivatives plotted against the proportion of challenge 
TMS derivatives within the clusters correctly ranked within the top 10 candidates (red squares) and top 20 candidates (yellow triangles).

Fig. 9  Box plot representing the distribution of the RRP of the challenge compounds in each class of TMS derivatives. Dark blue plot represents 
the aliphatic O-TMS derivatives, orange plot represents phenyl O-TMS derivatives, grey plot represents the non-aromatic ring O-TMS derivatives, the 
yellow plot represents the mono N-TMS derivatives, the light blue plot represents the bisphenol-TMS and related TMS derivatives, while the green 
plot represents the other poly TMS derivatives.
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For each TMS class, the median number of candidates 
in all candidate sets in the class was plotted against the 
proportion of TMS derivatives for which the correct can-
didate was ranked among top 10 and top 20 candidates 
(Fig. 8) and average RRP (Fig. 9). The TMS derivatives for 
which the correct candidate was absent from the corre-
sponding candidate sets were omitted.

For all TMS classes, CSI:IOKR performs satisfacto-
rily both in terms of the proportion of TMS derivatives 
correctly ranked among the top10/20 candidates and 
in terms of the RRP of the challenge TMS derivatives. 
Except for aliphatic O-TMS derivatives and N-TMS 
derivatives,  ≥ 50% of the correct TMS derivatives are 
ranked among the top 10 candidates. Especially good 
ranking scores are achieved for the poly TMS deriva-
tives, i.e., bisphenol O-TMS derivatives and related TMS 
derivatives, and the other poly TMS derivatives, includ-
ing mixed N, O-TMS and N-TMS derivatives, that have 
highest Mw and lowest median candidate size,  which 
may partially contribute to their relatively good ranking. 
Namely, the correct CEC-TMS was ranked on average 
positions 10.68 and 19.50, respectively, while the aver-
age PubChem candidate set size was 22.04 and 28.60, 
respectively, which is 2–5 times lower than the values for 
the other TMS classes. Also evident from Fig.  8 is that 
CSI:IOKR performs solidly for phenyl O-TMS and non-
aromatic O-TMS derivatives, which yield relatively high 
average candidate set sizes (108.43 and 120.67, respec-
tively, data not shown). Despite that, their ranking scores 
are satisfactory, as well as their average RRP . The class of 
non-aromatic O-TMS derivatives contains 5 CEC-TMS 
derivatives, and thus the number of CEC-TMS deriva-
tives is not representative, so that solid conclusions can 
be extracted. On the other hand, the phenyl O-TMS class 
is represented by 21 CEC-TMS, with low average ranking 
position (19.14), but high average PubChem candidate 
set size (108.43). Here, a factor that may positively con-
tribute to the good ranking of some structural classes is 
the specificity of the fragmentation patterns, leading to 
uniqueness of its GC-EI-MS spectrum, which is respon-
sible for the good ranking, independent of the size of the 
PubChem candidate set. Finally, RRP is  > 0.50 or close to 
0.50 (the threshold of satisfactory accuracy) for all TMS 
classes, except for phenyl-O-TMS derivatives (data not 
shown).

Clustering of MS spectra for the RAW (Fig.  10A) 
and the BS dataset (Fig.  10B) revealed 6 and 4 clusters, 
respectively. The RRP and proportion of TMS derivatives 
ranked among top 10/20 candidates differed significantly 
between the clusters of TMS derivatives with significant 
MS spectral similarity. The median candidate sizes for all 
clusters (except for cluster 3) were  < 35 candidates. For 
all of them (except for cluster 6, where the top 10 ratio 

is 0.44), top 10 and top 20 ratios of  > 0.55 were achieved 
(Fig.  11A). RRP values vary significantly within all clus-
ters, with average RRP <0.60 and clusters 2 and 5 having 
the lowest average RRP s (0.26 and 0.21) (Fig. 11B).

Legend: 1: BPAF-2TMS; 2: DH-BP-2TMS; 3: 2APA-
TMS; 4: 3M5NC-2TMS; 5: CLP-TMS; 6: 3MC-2TMS; 
7: 4,4’-BP-2TMS; 8: HPP-TMS; 9: H-BP-TMS; 10: 4NC-
2TMS; 11: 4NG-TMS; 12: 4NS-TMS; 13: 4NP-TMS; 
14: 4OP-TMS; 15: 5AD-TMS; 16: 5NG-TMS; 17: 6HP-
TMS; 18: 6MAM-TMS; 19: 6NG-TMS; 20: 8HQ-TMS; 
21: 9HF-TMS; 22: 11HAD-TMS; 23: 11HT-2TMS; 24: 
11-OH-THC-2TMS; 25: 11N9THC-2TMS; 26: E2-2TMS; 
27: EE2-TMS; 28: 17HP-TMS; 29: AA-2TMS; 30: AMP-
TMS; 31: PAA-TMS; 32: BA-TMS; 33: BZECG-TMS; 
34: BzPb-TMS; 35: 22BPF-2TMS; 36: 24BPF-2TMS; 37: 
BPA-2TMS; 38: BPAP-2TMS; 39: BPB-2TMS; 40: BPBP-
2TMS; 41: BPC-2TMS; 42: BPCL-2TMS; 43: BPE-2TMS; 
44: BPF-2TMS; 45: BPFL-2TMS; 46: BPM-2TMS; 47: 
BPP-2TMS; 48: BPPH-2TMS; 49: BPS-2TMS; 50: BPZ-
2TMS; 51: BD-TMS; 52: BP26DM-2TMS; 53: BuPb-
TMS; 54: BHT-TMS; 55: CBC-TMS; 56: CBD-2TMS; 
57: CBDA-3TMS; 58: CBN-TMS; 59: CBZ-TMS; 60: 
CAT-2TMS; 61: CA-4TMS; 62: CLA-TMS; 63: COD-
TMS; 64: THC-TMS; 65: THCA-2TMS; 66: DF-TMS; 67: 
BP-8-2TMS; 68: ERY-4TMS; 69: E3-3TMS; 70: E1-TMS; 
71: EtPb-TMS; 72: ET-TMS; 73: IB-TMS; 74: IbUPb-
TMS; 75: IPrPb-TMS; 76: LLEU-TMS; 77: LAA-4TMS; 
78: LLEU-2TMS; 79: LSER-3TMS; 80: LTYR-3TMS; 
81: MCA-2TMS; 82: MAMP-TMS; 83: MePb-TMS; 84: 
MORPH-2TMS; 85: NAP-TMS; 86: NX-TMS; 87: OCA-
2TMS; 88:  PCA-2TMS; 89: PrPb-TMS; 90: QA-5TMS; 
91: RES-2TMS; 92: SA-2TMS; 93: SA-TMS; 94: SHA-
4TMS; 95: STA-2TMS; 96: STA-TMS; 97: SFA-2TMS; 
98: SFA-TMS; 99: SYR-TMS; 100: T3HC-TMS; 101: TCS-
TMS; 102: DHDPE-2TMS; 103: UA-2TMS.

Overall, the performance of the CSI:IOKR model for 
identification of TMS derivatives using GC-EI-MS spec-
tra is somewhat lower as compared to its performance 
on a benchmark dataset, represented by 4,138 LC–ESI–
MS/MS spectra from the Global Natural Products Social 
(GNPS) library [45]. This might be due to the smaller size 
of our test dataset or the type of input data (LC–ESI–
MS/MS vs. GC-EI-MS). Interestingly, CSI:IOKR in our 
study resulted in identical median ARP as MetExpert for 
TMS derivatives, with slightly lower top 1 (11% vs. 13%) 
and remarkably better top 15 accuracy (63% vs. 52%).

Conclusions and further perspectives
The rate, volume and variety of compounds being intro-
duced to the environment continues to expand expo-
nentially. Consequently, many research groups and 
regulatory agencies are developing computational and 
high-throughput approaches for CEC annotation. As 
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ML-based approaches are the future of CEC annota-
tion, exploiting the perspectives for their further use is of 
utmost importance. Here we show that ML approaches, 

which have been predominantly used to annotate CEC 
from LC–MS data, can also be used to address the task of 
annotating TMS derivatives of CECs from GC–MS data. 

Fig. 10  Clustering of A: consensus GC-EI-MS spectra from RAW test dataset and B: consensus GC-EI-MS spectra from BStest dataset based on 
similarity of MS behavior and properties.
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More specifically, this study shows that CSI:IOKR can be 
successfully employed for the annotation of TMS deriva-
tives of CEC from GC-EI-MS data. This presents a viable 
alternative to MSL search independent of an instrumen-
tal platform and data processing software.

Importantly, this study shows that expert curation of 
spectral datasets crucially improves the identification 
performance of ML-based approaches. Furthermore, 
CSI:IOKR is useful in the identification of CEC that have 
been previously characterized (i.e., known unknowns 
that are currently in compound DBs) but whose GC-EI-
MS spectra are not included in MSLs, thus increasing our 
knowledge on the composition of environmental samples. 

While spectral comparisons with reference standards 
or de novo structural elucidations might be required to 
validate the predictions, CSI:IOKR provides an efficient 
approach to prioritize candidates and reduces the time 
spent for compound annotation.

As further work, we propose a few straightforward 
extensions of this research that could be potentially suc-
cessful and useful in enhancing the employment of the 
CSI:IOKR method in GC–MS-based CECs annotation. 
Instead of the PubChem repository, middle-sized com-
pound DBs of particular value to the environmental sci-
ence and toxicology communities, such as the US EPA’s 
CCD [11], can be used. These compound DBs were 

Fig. 11  A The median number of candidates in the candidate sets of different clusters of TMS derivatives (RAW dataset) plotted against the 
proportion of challenge TMS derivatives within the cluster correctly ranked within the top 10 candidates (red squares) and top 20 candidates 
(yellow triangles). B Box plot representing the different RRP values for the challenge compounds in each cluster of TMS derivatives from RAW 
dataset (bottom): dark blue plot—I, orange plot—II, grey plot—III, yellow plot—IV, light blue plot—V and green plot—VI.
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proven to have higher potential in compound structure 
identification and exposure risk assessment over large 
repositories, such as ChemSpider [16] and PubChem 
[15, 17]. Moreover, the potential of CSI:IOKR could be 
further exploited on GC-EI-MS spectral data of TBDMS 
derivatives.

However, the ultimate challenge for IOKR would be the 
identification of the underivatized (parent) compounds 
using the GC-EI-MS spectra of their silyl derivatives. The 
employment of IOKR and other IOKR-based methods 
would be significantly encouraged by their implemen-
tation within existing and upcoming CA frameworks. 
Besides CSI:IOKR, it would be very beneficial if other 
IOKR approaches [46, 47] and other cutting-edge ML-
based methods [48, 49] are also challenged against iden-
tifying CECs using GC-EI-MS spectra. In that spirit, we 
would like to encourage the use of the generated GC-EI-
MS datasets as benchmark datasets for further evaluation 
and improvement of ML-based approaches in GC–MS-
based compound annotation.
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