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Abstract 

Deep learning methods, such as reaction prediction and retrosynthesis analysis, have demonstrated their significance in 
the chemical field. However, the de novo generation of novel reactions using artificial intelligence technology requires 
further exploration. Inspired by molecular generation, we proposed a novel task of reaction generation. Herein, Heck 
reactions were applied to train the transformer model, a state-of-art natural language process model, to generate 4717 
reactions after sampling and processing. Then, 2253 novel Heck reactions were confirmed by organizing chemists to 
judge the generated reactions. More importantly, further organic synthesis experiments were performed to verify the 
accuracy and feasibility of representative reactions. The total process, from Heck reaction generation to experimental 
verification, required only 15 days, demonstrating that our model has well-learned reaction rules in-depth and can con-
tribute to novel reaction discovery and chemical space exploration.
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Introduction
Organic synthesis, an important approach for producing 
novel and complex compounds, is crucial to the phar-
maceutical industry. Traditionally, the discovery of new 
reactions relies on the “chemical intuition” of chemists, 
requiring extensive experience and plenty of time. Thus far, 
although researchers have achieved steady progress over 
the past few decades, only a miniscule fraction of the reac-
tion space has been explored owing to the complexity of 
reactions.

With the advancement of computer technology, scien-
tists have used machine learning to solve diverse chemi-
cal challenges [1–4]. In particular, artificial intelligence 
(AI) technology significantly contributes to the field of 
chemical reactions including reaction prediction [5, 6] 
and retrosynthesis analysis [7–10]. The first computa-
tional program category was based on a reaction template, 
which could perform retrosynthetic analysis or reaction 
prediction based on hand-coded rules or automatically 
extracted reaction templates. For instance, CAMEO, a 
template-based chemical reaction prediction program, 
was proposed by Salatin et al. in 1980 [11]. For retrosyn-
thetic analysis, Coley et  al. predicted reactants with a 
templated-based model based on molecular similarity. 
However, template-based methods have the limitation 
of only inferring reactions covered by training templates 
[12]. To overcome this limitation, Yan et al. proposed the 
templates composed with basic template blocks extracted 
from training templates and achieved a 5.2% improvement 
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[13]. Moreover, Wan et  al. proposed that the reaction 
space can be factorized into molecular space and reaction 
template space, and they attempted to improve the effi-
ciency of reaction space exploration using a smaller reac-
tion template space, achieving a top-1 accuracy of 72.5% in 
retrosynthesis prediction [14].

On the other hand, template-free methods are focused 
on directly generating reactants via deep learning with-
out requiring additional feature extraction. Currently, the 
models for those two tasks can be divided into graph-
based and text-based classes [15–18]. The former calcu-
lates based on graph structure and the latter uses SMILES. 
The representative model is the seq2seq model, proposed 
by Liu et  al., which formulates the retrosynthesis predic-
tion as a sequence translation task [19]. Another powerful 
model is the Transformer-based Molecular Transformer 
proposed by Schwaller et  al. in 2019 for reaction predic-
tion [20]. Notably, reaction prediction and retrosynthesis 
planning are both based on the process that accepts a part 
of chemical reactions as the input and the remaining reac-
tions is produced as the output.

Inspired by the performance of AI approaches in reac-
tion prediction and retrosynthesis analysis, we put for-
ward a question: is it feasible for AI to generate entirely 
new reactions similar to the given reactions? It may be 
similar to the case of de novo molecular generation using 
deep learning [21, 22]. Sequence-based models are pivotal 
in molecular generation with SMILES strings represented 
because of their excellent performance of text, such as 
poems [23]. Therefore, we attempt to apply the sequence-
based model to generate new reactions and naming it 
“reaction generation”. Additionally, we hope that our work 
can provide new ideas in exploring the chemical reactions.

Although Bort et  al. have used recurrent neural net-
works (RNNs) and condensed graph of reactions to 
investigate the generation of Suzuki reaction [24], the 
assessment of the executive experiment remains lacked. 
Unlike the RNNs they used, we introduced a more pow-
erful SMILE-based model known as the Transformer 
model. In recent years, the transformer model, proposed 
by Google for solving machine translation tasks, has been 
among the most frequently used neural networks which 
adopts encoder-decoder framework [25]. Compared 
with the models used in previous works, such as RNNs 
or long short-term memory (LSTM), this novel model is 
based solely on attention mechanisms. In recent years, 
this model has attracted significant attention in the field 
of chemistry and has been used to multiple tasks in pro-
cessing reactions [26]. For instance, Vaucher et al. achieved 
the prediction of the experimental process [27]. Moreo-
ver, several forms of the transformer models have been 
derived, such as the Transformer-XL model, to overcome 
its shortcomings [28]. It enables learning dependency 

beyond a fixed-length without disrupting temporal coher-
ence, which is a limitation of the Transformer model.

Selecting an appropriate reaction is conducive for reac-
tion generation. In this study, we selected the Heck reac-
tion, a typical carbon–carbon coupling reaction, as a 
representative experiment to enhance the convenience 
of drug discovery for its widespread application in alk-
ene synthesis. Its discoverer, R. F. Heck, was awarded the 
Nobel Prize for this significant contribution [29]. The 
mechanism is shown in Additional file 1: Fig. S1.

In this study, we applied the Transformer-XL model 
trained with Heck reaction for reaction generation (Fig. 1). 
We constructed a training dataset of the Heck coupling 
reactions. After reaction generating from the trained 
model, we organized 12 academic chemists to analyze 
and assess the thousands of generated reactions, which 
are not included in the training set. Then, we performed 
practical organic synthesis experiments to investigate the 
feasibility of the generated reactions as well as the accu-
racy of the configuration of the generated products. Based 
on the availability of raw materials, eight generated novel 
reactions were selected to. We attempted to investigate 
the proof-of-concept and feasibility of reaction generation 
using generative models represented by the Transformer 
model.

Results and discussions
We spent a total of 15 days exploring the novel Heck reac-
tions using the Transformer-XL model (Fig.  2). First, we 
prepared the data (see “Method Dataset”) in 2  days, and 
then imported the training dataset comprising 8863 Heck 
reactions into the model. After 2  days of generating and 
then removing every duplicate, we obtained 4717 reac-
tions not present in the training set. Then, 12 experimen-
tal chemists evaluated the validation of the reactions. The 
chemists were divided into four groups, and each group 
was responsible for a quarter of the total generated reac-
tions. Only the reactions simultaneously considered as 
feasible by three chemists in the same group were retained 
and converged into to the final dataset, comprising 2253 
reactions. A few representative examples of generated 
reactions are depicted in Fig. 3. These generated reactions 
are logical, with reasonable reactants and reaction centers 
matching Heck reactions. Furthermore, we spent 7 days to 
verify the reactions in a synthetic laboratory.

To evaluate the performance of our generative model, we 
applied the following metrics: validity, uniqueness, novelty 
and chemical feasibility (Table 1). For validity, we recorded 
the ratio of valid reactants, valid products and the fraction 
that all components in reaction are valid as 91.64%, 96.28% 
and 90.20%, respectively. Which indicates that our model 
captures explicit chemical constraints of molecular, such 
as proper valence, while generating reactions. We then 



Page 3 of 14Wang et al. Journal of Cheminformatics           (2022) 14:60 	

compute the uniqueness of the reactions that all compo-
nents are valid and the novelty which is the fraction of 
the unique reactions that are not present in training set. 
Chemical feasibility is the ratio of feasible reactions cho-
sen by the chemists with the specialized knowledge and 
recorded as 47.76%.

During the two-day process of generating reactions, 
we artificially assigned it as two steps, the generation of 
reactant and product molecules, and the process that 
corresponds the reactants to the products. It’s important 
to note that these two steps do not exist in the practical 
reaction generation, which is a continuous process that 
generated a complete reaction SMILES string from the 
“start of sequence”. We here divided it into two steps to 
help elaborate the concept of reaction generation. In stage 
I, the model generates reactants as well as products, which 

is like molecular generation. While in the process that cor-
responds the reactants to the products, which is the big-
gest difference between reaction generation and molecule 
generation, the products and reactants generated by the 
model must conform to the Heck reaction rules.

In stage I, each reaction is composed of at least one reac-
tant and one product, so the prerequisite of a valid reac-
tion is that both the reactant and product are effective. 
Notably, despite the 4717 novel reactions are not all valid 
reactions, all corresponding reactants and products were 
valid SMILES formulas, indicating that the molecules gen-
erative ability of the model is excellent. The t-distributed 
stochastic neighbor embedding (t-SNE) technique was 
used [30], which is similar to PCA, to visualize MACCS 
fingerprints to further verify the validation of generated 
molecules. The t-SNE approach is a variation of stochastic 

Fig. 1  Schematic of the process for the generation of Heck coupling reactions. Heck reactions were imported into the encoder of the model after 
being converted from the 2-dimensional molecular graph to the 1-dimensional SMILES strings, then they were decoded into novel Heck reactions 
from the decoder
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neighbor embedding [31] that visualizes high-dimensional 
data by providing each datapoint with a location in a two- 
or three-dimensional map. Moreover, MACCS is a molec-
ular fingerprint with 166 dimensions, and each dimension 
corresponds to a functional group, suitable for reactants 
and products’ focus. Figure  4A shows the t-SNE plot of 
the MACCS fingerprints of the reactants of the gener-
ated reaction and those of the training set. The t-SNE plot 
of products is shown in Fig. 4B. As predicted, the training 
molecules entirely overlap with the corresponding gener-
ated molecular set, indicating that the model has gener-
ated numerous similar molecules around the training set.

Simultaneously, we classified the reactants in the train-
ing and generation sets including 2253 reactions. Table 2 
lists the alkene distribution according to the number of 
substituents around the carbon–carbon double bond. 

Wrong 
reactions

Wrong 
reactions

2253 reactions

Wrong 
reactions

Carry out 8 reactions in laboratory

Generated reactions
• Data preparationDay 2

• Model trainingDay 3

• Reaction generating

• 12 chemists to judge 
the generated 
reactions

• Carry out 8 reactions 
with experiments

Day 5

Day 8

Day 15

Right 
reactions

Right 
reactions

Right 
reactions

Right 
reactions

Wrong 
reactions

Wrong 
reactions

Fig. 2  The flowchart of reaction generation and verification

Fig. 3  Examples of novel generated Heck reactions

Table 1  Performance metrics for generative model: validity, uniqueness, novelty and chemical feasibility

a The Chemical feasibility means the fraction of reactions that follow the Heck reactions’ rule, such as stereoselectivity, in generated novel reactions

Reaction type Validity Uniqueness Novelty Chemical feasibilitya

Reactants Products All components

Heck reaction 91.64% 96.28% 90.20% 15.03% 44.19% 47.76%
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Table  3 shows the classification of halogenated aromatic 
hydrocarbons and trifluoromethanesulfonate derivatives. 
It can be observed that the generated monosubstituted 
alkenes, bromo-aromatic hydrocarbons and iodinated aro-
matic hydrocarbons occupy the majority of the generated 
reactants; and this distribution is similar to that of these 
three reactants in the training set. Moreover, the gener-
ated reactions cover all alkene types. Although some types 
of alkenes are few in number, it remains indicative of the 

well-preserved integrity of molecular information in the 
process of molecular generation in stage I.

In stage II, the process of combining the corresponding 
reactant and product molecules into a reaction requires 
the model to learn the Heck reaction rules. Despite the 
Heck coupling reaction being among the most widely used 
catalytic carbon–carbon bond-forming tools in organic 
synthesis, the reactive rules are complex for the trans-
former-XL model. To confirm that the reactions generated 

Fig. 4  The plot of distribution of reactants, products and reactions. A The t-SNE plot of MACCS of reactants. Halogenated aromatics from the 
training set (blue) and generated set (deep blue), and alkenes from the training set (green) and generated set (deep green). B The t-SNE plot of 
products from the training set (green) and generated set (blue). C The TMAP plot of reactions from the training set (blue), generated set (red) and 
USPTO 50 K (yellow). D The t-SNE plot of rxnfp of reactions from the training set (green) and generated set (blue)

Table 2  Distribution of alkene reactants in the training set and 
generated set

Carbon–carbon 
double bond 
classification of 
reactant

Amount Ratio (%)

Training Generated Training Generated

Ethylene 141 9 1.57 0.40

Monosubstituted 8300 2179 92.60 96.72

Disubstituted 502 64 5.60 2.84

Trisubstituted 20 1 0.23 0.04

Total 8963 2253 100 100

Table 3  Distribution of halogenated aromatics and 
trifluoromethanesulfonate derivatives in the training set and 
generated set

Halogen atoms 
classification of 
reactants

Amount Ratio (%)

Training Generated Training Generated

Cl 471 161 5.3 7.1

Br 4939 1356 55.1 60.2

I 3274 670 36.5 29.8

OTf 279 66 3.1 2.9

Total 8963 2253 100 100
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by the model are exact Heck reactions, TMAP was used to 
visualize the reaction fingerprints (rxnfp) of the reactions. 
Schwaller et al. reported that the representations learned 
by the bidirectional encoder representations from trans-
formers (BERT) can be used as rxnfp, which are independ-
ent of the number of molecules involved in a reaction [32]. 
Then, rxnfp were mapped to TMAP, a method used to vis-
ualize high-dimensional spaces as a tree-like graph [33]. As 
shown in Fig. 4C, we connected the 2253 chemist-judged 
reactions in the generated dataset to those in the train-
ing dataset according to the similarity measured by the 
rxnfp, each represented as a point. Additionally, the 50K 
reactions downloaded and curated by Liu et  al. from the 
United States Patent Trademark Office (USPTO-50K) [19] 
were used to form the backbone of the chemical space, as 
it contains various chemical reactions. Color-coding the 
three classifications of reaction datasets above showed that 
the 2253 generated reactions and training set overlapped 
well, demonstrating that all the 2253 reactions judged by 
chemists are Heck coupling reactions. In addition, we 
verified the type of reaction using t-SNE to dimensionally 
reduce the rxnfp of the dataset (Fig. 4D). The result proved 
that the model has generated reactions that similar to the 
Heck reactions. And Additional file 1: Fig S11 shows the 
TMAP of training set, generated novel reaction set and 
USPTO 50K dataset. This is because the products of the 
removed reactions did not conform to the rule of Heck 
reactions, resulting in rxnfp of these reactions being quite 
different from the training set.

To thoroughly investigate whether our model fully 
understands the Heck reaction, we conducted an in-depth 
analysis of the generated Heck reaction set. First, we 
divided the Heck reaction into intermolecular and intra-
molecular reactions. The training dataset contains 8464 
intermolecular reactions and 499 intramolecular reactions 
(Table 4). The intermolecular reaction accounts for 98.2% 
of the generated reactions set, consistent with the charac-
teristic of numerous intermolecular reactions present in 
the distribution of the training dataset. Several representa-
tive examples of intermolecular reactions and intramolec-
ular reactions from the training and generated datasets are 
shown in Fig. 5.

The intermolecular reactions were analyzed with 
respect to the following three aspects: regioselectivity, 

stereoselectivity, and chemoselectivity. Based on the 
Heck reaction mechanism, the migration insertion 
of alkenes is the determining step of regioselectivity, 
whereas stereoselectivity involves the elimination of β 
hydrogen at the carbon–carbon double bond. Therefore, 
the regioselectivity and stereoselectivity of the generated 
reactions with respect to alkenes were analyzed. Regi-
oselectivity indicates that there is one functional group 
that can react in two sites, and a reagent must select the 
reaction site (Fig. 6A). Regioselectivity has remained an 
unavoidable issue for Heck coupling reactions. For reac-
tions with ethylene as the reactant, the occurrence of 
reactions does not involve regioselectivity, because the 
left and right alkene sites are equivalent for insertion. 
Moreover, disubstituted and trisubstituted alkenes are 
unfavorable for discussion with respect to regioselectiv-
ity. Therefore, we mainly discuss the regioselectivity of 
monosubstituted alkenes. Generally, the regioselectivity 

Table 4  Distribution of Heck reactions in the training set and generated set

Classification of reaction type Amount Ratio (%)

Training Generated Training Generated

Intermolecular reaction 8464 2213 94.4 98.2

Intramolecular reaction 499 40 5.6 1.8

Total 8963 2253 100 100

Fig. 5  The representative examples of the intramolecular and 
intermolecular Heck reactions. A Intermolecular Heck reactions from 
the training set. B Intramolecular Heck reactions from the training 
set. C Intermolecular Heck reactions from the generated set. D 
Intramolecular Heck reactions from the generated set
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of monosubstituted alkenes is determined by the group 
attached to the double bond. As shown in Fig.  6B, 
4-bromopyridine reacted with hex-1-en-3-one to pro-
duce 1,2-disubstituted alkenes, because of the formation 
of a new carbon–carbon bond at the opposite end of the 
alkene when the alkene is polarized by an electron-with-
drawing group. The carbonyl group around the alkene 
in 1-hexanone is an electron withdrawing group, so the 
reaction site is located at the β position. Owing to steric 
hindrance, the arylation of monosubstituted alkenes is 
likely to occur at the β-position. Moreover, we observe 
that more reaction sites are located at β-positions in 
the generated reactions (Table 5). In contrast, electron-
donating groups lead to form the 1,1-disubstituted prod-
uct, such as the ether group. As another example shown 
in Fig. 6B, the model could use the information that the 
oxygen located in ethers is an electron-donating group 
and consequently produce a 1,1-disubstituted product.

To further elucidate the understanding level of stereose-
lectivity of Heck reaction of our model, we have provided 
an introduction to stereoselectivity in Fig. 6A, referring to 
how they reacted (stereochemistry of the products). Eth-
ylene and trisubstituted alkenes are not within the scope 
of this discussion because of the absence of existing stere-
oselectivity. For monosubstituted alkenes, stereoselectivity 

and regioselectivity are partially correlated. Only one case 
of stereoselectivity for monosubstituted alkenes exists if 
the reaction site is located at the α-position, similar to eth-
ylene, where alkenes become terminal alkenes. However, 
when the reaction site is located at the β-position, the situ-
ation is complicated. As shown in Fig. 6C(a), when 1-iodo-
3-methylbenzene reacts with hex-5-en-2-one, the product 
is an E-isomer, because the trans-alkene product, which is 
more stable on thermodynamics, is easily obtained. Only 
β-hydrogens located on the same side of the Pd atom can 
be eliminated and the steric hindrance of the substituent 
around the carbon–carbon double bond. In the generated 

(A) Selectivity(A) Selectivity

(B) Regioselectivity(B) Regioselectivity

(C) Stereoselectivity(C) Stereoselectivity

(D) Chemoselectivity

Fig. 6  Analysis of the generated novel reactions from the perspective of the selectivity of the Heck reaction. A The definition of the regio-, stereo-, 
chemoselectivity. B Analysis of the regioselectivity of alkenes. C Analysis of the stereoselectivity of alkenes. D Analysis of the chemoselectivity of 
alkenes

Table 5  Regio- and stereoselectivity of monosubstituted 
alkenes in the training set and generated set

Classification of 
monosubstituted 
alkenes

Amount Ratio (%)

Training Generated Training Generated

α-position 440 62 5.59 2.90

β-position

E 7397 2078 94.04 97.06

Z 29 1 0.37 0.04

Total 7866 2141 100 100
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reactions, we also observe (Z)-1,2 disubstituted alkenes 
in the product (Fig.  6C(a)). Though the most commonly 
observed products are (E)-1,2 disubstituted alkenes, exten-
sive literature regarding (Z)-1,2 disubstituted alkenes were 
reported by Cheng et al.[34]. In terms of disubstituted alk-
enes, β-hydrogen elimination occurrs when the benzene 
ring is coplanar with the small substituent. The benzene 
ring and the large sterically hindering group are trans-
coplanar when the product is generated. As illustrated in 
Fig.  6C(b), the benzene ring is coplanar with methyl or 
methoxy because of the steric hindrance of methoxycar-
bonyl; then, the E-isomer or Z-isomer product is gener-
ated. Table 5 lists the number of reactions in all categories 
of the stereo configuration of monosubstituted alkenes. 
It demonstrated that the model learned the rules that the 
amount of E-isomer products is significantly more than 
that of the Z-isomer products in the training set.

Finally, we discuss the degree to which the model 
learned the chemoselectivity of intermolecular reactions. 
Chemoselectivity is the preferential reactivity of one func-
tional group over another (Fig. 6A). However, chemoselec-
tivity is related to alkenes as well as halogenated aromatics. 
From Fig. 6D(a) and (b), it is obvious that the benzene ring 
preferentially reacts with the monosubstituted alkenes 
when monosubstituted double bonds, disubstituted or 
trisubstituted double bonds are simultaneously present in 
the reactants. Because the number of substituents at the 
carbon–carbon double bond determines the reactivity of 
the alkenes, the reaction rate and yield decrease with the 
increasing number of substituents. Among the four types 
of alkenes in our classification, the reactions with trisub-
stituted alkenes generally exhibit the lowest reaction rate 
and yield.

Similarly, in the presence of multiple halogens on the 
aromatic ring, alkenes prefer one of the halogens to react. 
As shown in Fig. 6D(c), although bromine and chlorine are 
both reactive sites, the model suggests that bromine pref-
erentially reacts over chlorine. Similarly, the model sug-
gests that the reaction activity of iodine is greater than that 
of chlorine, as shown in Fig. 6D(d). We further observe that 
the reaction priority is in the order of I >  > OTf > Br >  > Cl. 
This is owing to the different reaction rates of various 
halogenated aromatic hydrocarbons during the oxidative 
addition process of Heck reactions. Among them, iodoaro-
matics exhibit a high reaction rate as well as yield and only 
require mild reaction conditions, so they are the most 
commonly used Heck reaction substrates. Chemists have 
also favored the brominated aromatic hydrocarbons due to 
their inexpensiveness. Although trifluoromethanesulfonic 
acid derivatives exhibit high reactivities, they are rarely 
used because of the unavailability of raw materials which 
would lengthen the duration of the experiment. These 
aforementioned reasons also explain why the bromine and 

iodine reactions distinctly account for the majority in the 
training and generation sets listed in Table 4.

In the past three decades, intramolecular Heck reac-
tions have emerged as a particularly versatile and reliable 
carbon–carbon bond-forming process, allowing for the 
formation of the whole spectrum of ring sizes: small (n = 3 
or 4), normal (n = 5, 6, or 7), medium (n = 8–14) and large 
(n > 14). For intramolecular reactions with β-hydrogens 
available for elimination on both sides of alkenes, the gen-
eral ring formation rule is to generate small cyclic com-
pounds preferentially when the ring size is normal [35]. For 
example, in the selection of generating a five-membered 
ring or a six-membered ring, the five-membered ring is 
preferentially generated (Fig. 7A). The successful applica-
tion of this reaction that generates extra-ring double bonds 
is of great significance, because the exocyclic double bond 
is a major limitation in synthesis. Intramolecular Heck 
reactions also enable the synthesis of exo or endo medium-
sized and large rings, and the products are predominantly 
produced in the E-form configuration, because the ring 
tension is moderately low in large rings. Figure 7B shows 
the 15-endo cyclization products. The situation changes 
when there is no β-hydrogen can be eliminated at one side 
of the alkenes. Figure 7C confirms the presence of only one 
kind of 11-endo cyclization product when there is only one 
position for Pd atom insertion.

In the analysis of intramolecular reactions as well as 
the region-, stereo-, and chemoselectivity of intermolecu-
lar reactions, we confirmed that all of the 2253 reactions 
are theoretically feasible, thus demonstrating that the 
model displayed a sufficient understanding of the rules of 

Fig. 7  Examples of the generated intramolecular Heck reactions. A 
The intramolecular reaction that preferentially generate small 
cyclic compounds. B The intramolecular reaction that preferentially 
generate large cyclic compounds. C The intramolecular reaction that 
only generate endocyclized products
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chemical reactions. Meanwhile, the generated reaction set 
matched the training data in Tables 4 and 5, which demon-
strated that our model has learned and reproduced some 
rules in the training set.

Further, we conducted practical synthetic experiments 
to verify the feasibility of the reactions. We performed 
eight verification reactions based on the availability of 
the corresponding reactants and reagents. Table 6 shows 
the chosen reactions and the final products obtained 
in the laboratory. It showed that the products gener-
ated by the model and the real products obtained by 
the experiment are all in full compliance with our pre-
vious comparison analysis. Herein, we artificially chosen 
the reaction conditions for the verification reactions, 
because our model has insufficient understanding of 
reaction conditions, such as reaction temperature. We 
selected Pd(OAc)2, (O-tolyl)3P, and DIPEA as the cata-
lyst, ligand, and base, respectively (Fig. 8). As a specific 
example, the generated product of reaction 1 shown in 

Table  6 are 1,2-disubstituted because of the electron-
withdrawing group connected around the double bond. 
The expected 1H NMR and 13C NMR spectra of the 
products of the experiment with generated reactant 
(Additional file  1: Fig.S3). Similarly, the spectra of the 
other seven products are shown in Additional file 1: Fig. 
S4–S10. This demonstrated that the model accurately 
predicted the regioselectivity and stereoselectivity of 
these reactions.

Moreover, there are also several types of errors observed 
in the generated reactions set, such as chirality error, car-
bon number error, heteroatom error, reaction type error, 
and chemoselectivity error. We recorded the frequency 
of these errors and listed them in Table  7. Among these 
errors, the reaction centers of all reactions but 14 reactions 
of the reaction-type errors are the Heck reaction center. 
That is, most reactions in the error set are caused by the 
neighbors of the reaction center. Moreover, the reac-
tion center availability generated by the model is 98.42%. 

Table 6  The comparison between generated reactions and experimental reactions

Number Reactants Generated products
Experimental 

products

1

2

3

4

5

6

7

8
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Notably, this differs significantly from the reaction predic-
tion error. Although we discuss the reaction generation in 
two stages, the model generates reactions continuously 
and ceaselessly. It is challenging to generate reactions from 
de novo, because the model has to concurrently learn the 
reaction centers of the Heck reactions and the contextual 
correspondence of the SMILES sequence. However, our 
model still successfully learned and generated the Heck 
reaction center through training, indicating that it is suc-
cessful in reaction generation. Additional file  1: Tables 
S1–S3 shows the distribution of the reactions with feasible 
reaction centers. And the distribution of these reactions 
also matched the training set.

Moreover, we tried to train the model with a larger 
set of reactions, Suzuki reactions, to evaluate the gen-
erative capacity of our model. The mechanism is shown 
in Additional file  1: Fig. S12. Table  8 shows the perfor-
mance metric for our model trained with 78,032 Suzuki 
reactions.It is found that uniqueness, novelty and usabil-
ity increased from 15.03%, 44.91% and 47.76% to 88.61%, 
79.91% and 64.01%, respectively. And we trained the 
model with 8695 Kumada reactions (Table 8), The mech-
anism is shown in Additional file 1: Fig. S13.

We found that the chemical feasibility of the generated 
Heck reactions is 47.76%, while the chemical feasibility 
of Suzuki reactions is 64.01%, which is 16.25% higher. 
Therefore, we hypothesize that the chemical feasibility is 
related to the size of the training set, since the size of the 
training data determines the chemical space that can be 
explored. To verify our conjecture, we trained the model 
with different sizes of the Heck reaction and Suzuki 

reaction training datasets, and compared their chemical 
feasibility. As shown in Fig. 9, the chemical feasibility of 
Heck reactions and Suzuki reactions increased with the 
expanding of training set. Furthermore, the tendencies 
of chemical feasibility are still growing. This indicates 
that the main factor influencing chemical feasibility at 
the present stage is training dataset size. Although the 
chemical feasibility of generated Heck and Suzuki reac-
tions currently are relatively low, their chemical feasibil-
ity would be higher with larger datasets.

Further, we compared our model with a simple recur-
rent VAE (RNN) and a recurrent VAE with an added 
attention layer (RNNAttn) [36]. The metrics were shown 
in Additional file 1: Table S7, though the uniqueness and 
novelty of the RNN and RNNAttn model are higher than 
our model, the validity and chemical feasibility of our 
model is more outstanding. Which indicates that our 
model has more sufficient understanding level of chemi-
cal reaction than others.

Conclusion
In this manuscript, we trained the transformer-XL model 
with a dataset containing 8863 Heck reactions, and 
obtained 2253 novel Heck reactions evaluated by chem-
ists. We further analyzed whether the model learned the 
rules of the Heck reaction based on evaluation of the regi-
oselectivity, stereoselectivity, and chemoselectivity. Eight 
representative generated reactions were further verified by 
performing synthetic experiments, indicating that the con-
sistency of the generated and experimental products. We 
demonstrated the feasibility of reaction generation of the 

Fig. 8  Pd(OAc)2-Catalyzed Heck reactions
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transformer-XL model, which exhibited a thorough com-
prehension of the reactions, showing its ability to generate 
feasible and novel reactions.

It is challenging to quantitively measure the quality of 
the generation task used in natural language processing, 
such as poetry, novels, and molecular generation. How-
ever, the results obtained by our reaction generation task 
have only two unambiguous outcomes: right or wrong. 

Although further optimization is needed, it still provides 
new insights into the exploration of chemical reactions. 
We hope that the combination of AI and chemical reac-
tions can provide helpful strategy in exploring novel chem-
ical reactions.

Table 7  The classification of error types in generated reactions

Error
types

Generated reactants
Generated 
products

Real products
Ratio 
(%)

Chirality 
error

4.02

Carbon 
number 

error
4.99

Heteroatom 
error

11.00

Chemosele
c-tivity 
error

1.01

Reaction 
type error

\ 0.57

Other error 78.90

Table 8  Performance metrics for the generative model trained with Suzuki reactions and Kumada reactions: validity, uniqueness, 
novelty and chemical feasibility

Reaction type Validity Uniqueness Novelty Chemical 
feasibility

Reactants Products All components

Suzuki reaction 88.93% 94.50% 85.70% 88.61% 79.91% 64.01%

Kumada reaction 93.52% 95.74% 92.71% 14.10% 50.59% 45.99%
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Methods
Dataset
The reaction generative model is trained on a SMILES 
file containing only Heck coupling reactions, which 
are extracted from the “Reaxys” database based on the 
retrieval of reaction template and/or reaction name (all 
entries that use the phrase “Heck reaction”). The extracted 
Microsoft Excel files undergo a series of postprocessing 
processes with python scripts to obtain a high-quality 
dataset meeting the requirement of generating new reac-
tions. In this step, inadequate reactions that the SMILES 
string is missing corresponding to either reactant or 
products and that have the same reactant and product 
are removed from the file. And for reactions with identi-
cal reaction SMILES we retained only one copy. Finally, a 
dataset containing 9959 Heck reaction is connected based 
on Heck reaction template with a Python script utilizing 
the RDkit and is divided into training set and validation set 
(9:1).

Model
We selected the Transformer-XL model as the genera-
tion model, which is a state-of-art method combined AI 
with the chemical field. It consists of encoder and decoder 
architecture, and an “attention” mechanism was added to 
connect the encoder and decoder. Because of the entire 
dependence on the attention mechanism, the model avoids 
recurrence and draws global dependencies between input 
and output. In addition, every encoder and decoder struc-
ture includes several feed-forward layers, in which the 
chemical information the Transformer-XL model learned 
from the training dataset stores. We first de-bugged the 
model before generating the reactions with the Trans-
former-XL model. Therefore, we build a series of explora-
tions based on training Heck reaction dataset to effectively 

select hyperparameters, and the results are shown in Addi-
tional file 1: Tabless S4–S6.

To match the algorithms of the Transformer-XL models. 
We imported the reactions with “simple molecular-input 
line-entry system” (SMILES) strings. We use letters to 
represent atoms and numbers to represent the number of 
rings. For example, in Fig. 10, we apply c1ccccc1 to present 
benzene, character “ >  > ” to separate reactants and prod-
ucts, “.” to separate different reactants. Before the training 
step, the model will construct a vocab (v1, …, vi) that con-
tains all characters in the SMILES strings.

The inferenced part learns from the inference of poems 
[37]. This part inference the whole reaction with a start 
symbol. The model gives a tensor T (t1, …, ti) based on 
the start symbol and the data from the training step. The 
model then outcome the probability distribution P (s1, 
…, si) of the next symbol. The distribution P is estimated 
based on the tensor T and the built-in functions softmax 
in the tensorflow, which is defined as

 where tk corresponds to the kth element of tensor T. Then 
the model randomly selects the next symbol according to the 
probability P, and feedback to the model to find the following 

(1)P(sk) =
exp(tk)

∑
i

k
′

=1
exp(t

k
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Fig. 9  The influence of training set data size on chemical feasibility. A The relationship between chemical feasibility and the size of Heck reaction 
training dataset. B The relationship between chemical feasibility and the size of Suzuki reaction training dataset

Fig. 10  Mutual conversions between the SMILES language and the 
molecular structure
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symbol (see Fig. 11). To indicate the SMILES string happens 
to be a reaction, we lead the character “\n” into each reaction 
SMILES as “end of line” (EOF). So the model will outcome 
the result and restart the generation of SMILES string from 
scratch when it detects the formation of EOF.
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The online version contains supplementary material available at https://​doi.​org/​
10.​1186/​s13321-​022-​00638-z.

Additional file 1: Figure S1. General mechanism of Heck coupling reac-
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NMR and 13C NMR spectra of (E)-3-(m-tolyl)acrylonitrile (2). Figure S5. 1H 
NMR and 13C NMR spectra of methyl (E)-3-(4-(methylthio)phenyl)acrylate 
(3). Figure S6. 1H NMR and 13C NMR spectra of methyl (E)-3-(4-ethylphenyl)
acrylate (4). Figure S7. 1H NMR and 13C NMR spectra of ethyl (E)-3-(3-
ethoxy-3-oxoprop-1-en-1-yl)benzoate (5). Figure S8. 1H NMR and 13C NMR 
spectra of (E)-N,N-dimethyl-4-styrylaniline (6). Figure S9. 1H NMR and 13C 
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derivatives of the reactions that don’t have chemical feasibility in the gener-
ated set. Figure S11. The TMAP plot of reactions from training set (blue), 
generated novel reaction set (red) and USPTO 50K (yellow). Figure S12. 
General mechanism of Suzuki reaction. Figure S13. General mechanism of 
Kumada reaction. Table S4. The validity of the Transformer-XL model with 
different batch sizes. All are trained on a 1080 GPU and hidden_size = 512, 
drop_out = 0.1, n_head = 8, layer = 12. Table S5. The validity of the Trans-
former-XL model with different hidden sizes. All are trained on a 1080 GPU 
and batch_size = 64, drop_out = 0.1, n_head = 8, layer = 12. Table S6. The 
validity of the Transformer-XL model with different drop out. All are trained 
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= 12. Table S7. Performance metrics for the different generative models: 
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