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Abstract 

The related problems of chemical reaction optimization and reaction scope search concern the discovery of reaction 
pathways and conditions that provide the best percentage yield of a target product. The space of possible reaction 
pathways or conditions is too large to search in full, so identifying a globally optimal set of conditions must instead 
draw on mathematical methods to identify areas of the space that should be investigated. An intriguing contribu-
tion to this area of research is the recent development of the Experimental Design for Bayesian optimization (EDBO) 
optimizer [1]. Bayesian optimization works by building an approximation to the true function to be optimized based 
on a small set of simulations, and selecting the next point (or points) to be tested based on an acquisition function 
reflecting the value of different points within the input space. In this work, we evaluated the robustness of the EDBO 
optimizer under several changes to its specification. We investigated the effect on the performance of the optimizer 
of altering the acquisition function and batch size, applied the method to other existing reaction yield data sets, and 
considered its performance in the new problem domain of molecular power conversion efficiency in photovoltaic 
cells. Our results indicated that the EDBO optimizer broadly performs well under these changes; of particular note 
is the competitive performance of the computationally cheaper acquisition function Thompson Sampling when 
compared to the original Expected Improvement function, and some concerns around the method’s performance for 
“incomplete” input domains.
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Introduction
Optimization problems are common throughout chemis-
try, for example optimizing the yield of a chemical reac-
tion. Once an initial reaction pathway is determined, 
chemists wish to find reaction conditions that provide the 
best percentage yield—for example by varying the tem-
perature or pressure at which the reaction takes place—
to minimise the amount of input material required to 
produce the desired product. A closely related problem 
is that of reaction scope search, considering not just the 

physical conditions affecting the reaction but also the 
chemical space of reactants and catalysts used in the 
reaction itself.

Since chemical reactions can take hours or days to 
complete, it is infeasible to search through the entire set 
of possible chemical and physical configurations. Instead, 
a small subset of the search space is tested. Two common 
ways to determine such a subset are Design of Experi-
ments [2] and Generalised Subset Design [3]. These 
methods identify important factors in the reaction yield 
and their optimal settings, and can thus be used to guide 
future experiments towards potentially high-yield con-
figurations, but are not in themselves a complete solution 
for optimization.
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An alternative approach which offers potential ben-
efits over these methods is Bayesian optimization, an 
iterative global optimization algorithm based on sta-
tistical methods to identify potentially optimal set-
tings of the inputs to an unknown function. Bayesian 
optimization has found success in hyperparameter tun-
ing for machine learning models [4], where research-
ers face a similar issue of long model evaluation times. 
As a result, it has been recently applied to problems in 
chemistry, including the development of the Experi-
mental Design for Bayesian optimization (EDBO) opti-
mizer [1].

Bayesian optimization works by building a statisti-
cal model to approximate the function being optimized 
based on its knowledge of the function’s behaviour at 
previously-seen input conditions. This is termed the sur-
rogate model, and can be built using a variety of statis-
tical or neural network approximations. The surrogate 
model is based initially on a small set of test runs, but 
each new observation improves the quality of the approx-
imation. The EDBO algorithm constructs the surrogate 
model using Gaussian Process regression [5], a method 
of smooth estimation which returns a probability distri-
bution for the true output at an unseen set of conditions 
and thus takes account of uncertainty in its estimates. 
The distribution of possible values for a set of inputs 
given the observations seen so far is termed the posterior 
predictive distribution, and its variance depends on the 
distance between the location of the prediction and the 
nearest point at which the true value of the function is 
known from a previous run.

Selection of the next point to be tested is done using an 
acquisition function reflecting the value of points in the 
input space. There are several possible choices of acquisi-
tion function, which typically take account of a combina-
tion of both the average predicted output of each point 
in the input space and the uncertainty of the prediction. 
Bayesian optimization can be extended by selecting sev-
eral sets of conditions to test at once instead of selecting 
points one at a time, a process called batched Bayesian 
optimization.

In this work, we aimed to investigate the robustness 
of the EDBO method to changes to its environment and 
parameters. In particular, many of our investigations 
focused on reducing the computational cost of the EDBO 
algorithm. The original paper used Expected Improve-
ment (EI) as an acquisition function, which is some-
what computationally intensive. We therefore decided to 
consider the computationally cheaper Thompson Sam-
pling (TS) method as an alternative. We also considered 
changes to the batch size in batched Bayesian optimi-
zation; again, larger batch sizes correspond to reduced 
computational overheads.

One of the main sources of variation in Bayesian optimi-
zation is the set of initial experiments conducted. In princi-
ple, given a set of initial experiments, the method is entirely 
deterministic unless the acquisition function or parameters 
of the surrogate model are changed. A poor selection of ini-
tial reaction conditions can affect the information learned 
by the surrogate model, so it is important to determine if 
the effect of this selection significantly hinders the ability 
of the EDBO optimizer to find the optimal conditions. We 
investigated this by considering the performance of the 
optimizer given extremely low-yield reaction conditions as 
its starting set.

In addition, we wished to consider the transferabil-
ity of the EDBO optimizer across data sets and problem 
domains. To do this, we extracted two further reaction 
yield data sets from the literature and applied the method 
to these. We also applied the method to a data set in an 
entirely different problem area: the Harvard Clean Energy 
Project data set [6] of theoretical power conversion effi-
ciency for millions of molecules in photovoltaic cells. Each 
of these new data sets posed its own challenges to the 
Bayesian optimization algorithm.

It is important to note that the work described in this 
paper was conducted using computational methods and 
existing data sets only. No attempt was made to exceed the 
best known reaction yields by using Bayesian optimiza-
tion in conjunction with physical laboratory experiments, 
the task which would ultimately prove the truest test of the 
usefulness of these methods. Nonetheless, by investigating 
the optimizer’s applicability to different tasks and robust-
ness to parameter changes and randomness, and by con-
sidering ways in which its computational overheads can 
be reduced, we hoped to make its use in future practical 
research more streamlined and efficient.

Methodology
Abstractly, we are given some black-box objective function 
f(x) that we wish to minimise, which is expensive (time- 
and/or resource-intensive) to evaluate. We wish to opti-
mize the objective function while minimising the number 
of evaluations needed. To do this, after taking some initial 
observations, we build a statistical model of the data, in this 
case a Gaussian Process regression model.

To choose the next point for evaluation, we use an acqui-
sition function. There are many ways to define such a func-
tion; one example is Expected Improvement (EI) [7]. Given 
the current best observed value x+ , and our objective func-
tion f(x), define the Improvement Utility as

I(x) = f (x)− x+ if f (x) ≥ x+

0 if f (x) < x+
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Then, given the mean and variance at the point x , the 
Expected Improvement is simply the average value of the 
Improvement Utility, according to the probability distri-
bution defined by x . However, commonly the improve-
ment utility is reduced by some empirical exploration 
parameter δ , which has the effect of discouraging small 
incremental improvements in local maxima in favour 
of continuing to explore the search space. This design 
choice is used in the EDBO optimizer [1].

An alternative acquisition function is Thompson Sam-
pling (TS) [8], which samples the posterior predictive 
distribution given by the surrogate model and takes the 
point with highest objective value. This is less certain to 
arrive at an optimal value than Expected Improvement, 
but has the advantage of being computationally cheaper.

The key benefit of the acquisition function is that it is 
much easier to evaluate than the objective function, and 
so is easier to optimize. In particular, since our work was 
focused on discrete Bayesian optimization over tables of 
data, acquisition functions acq(x) were optimized sim-
ply by evaluating them over the entire finite domain, and 
finding argmaxx∈Xacq(x).

Then, we evaluate the objective function at the point 
selected by the acquisition function, and update the sur-
rogate model with the new data. This concludes a round 
of optimization. Finally, the process is iterated until a 
fixed experiment budget is reached, a sufficiently high 
objective value is found, or it seems unlikely that further 
optimization will provide useful improvement. This con-
cludes a full run of the optimizer.

Figure  1 provides an example of a round of optimi-
zation for the function f (x) = x sin(x) . The surrogate 
model assigns each point in the domain a mean, and an 

uncertainty—note that the previous observations, rep-
resented by pink dots, have zero uncertainty. From this, 
several different acquisition functions could be used—
maximal uncertainty (1), maximal predictive mean (2), 
or maximal predictive mean + uncertainty (3). Depend-
ing on the choice of function, one of these points will end 
up being the next observation. The model would then be 
recomputed at the end of the round.

Batched Bayesian optimization
Conventionally, Bayesian optimization is done sequen-
tially—the black-box function is evaluated at the cho-
sen point, the model is immediately updated with the 
new data, and then the acquisition function is re-com-
puted and maximised. However, chemists have the abil-
ity to run multiple reactions in parallel, with techniques 
such as High-Throughput Experimentation [9] allow-
ing the evaluation of hundreds of different conditions 
at a time. Thus, in order to maximise the information 
gained by the model in a given amount of time, batched 
Bayesian optimization is carried out, where multi-
ple points are chosen at each iteration to evaluate the 
objective function at.

Of course, this requires more guesswork on the part 
of the model at each iteration—the second evaluation 
point must be chosen without knowledge of the objec-
tive value at the first point. One common strategy, 
called Kriging Believer [10] is to estimate the value 
at the first point as the mean of the predictive distri-
bution. Then, update the model with the estimate and 
determine the second point by re-computing and max-
imising the acquisition function. This is repeated until 
every desired point has been selected—the true values 
are then evaluated using the objective function, which 
replace the estimated values, and the round of optimi-
zation concludes.

One disadvantage of this method is that it is computa-
tionally sequential, since computing point k + 1 requires 
estimates of the previous k points. While this is necessary 
for a deterministic acquisition function like EI, Thompson 
Sampling can be parallelized easily by taking multiple sam-
ples of the posterior predictive distribution, and so has a 
marked speed increase over EI for large batch sizes.

While this does reduce the computational cost, which is 
useful for the purposes of the project given that only sim-
ulations of the optimizer are run, in lab applications the 
limiting factor is likely to be the evaluation of the objec-
tive function itself (e.g. running the chemical reaction with 
the given conditions). The benefits of moving to TS with 
increased batch sizes in a real optimization environment 
are therefore likely to be limited.

Fig. 1  An example of a single round of Bayesian optimization for the 
function f (x) = x sin(x) with three different acquisition functions
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Optimization routine
A full run of the optimizer proceeds as follows. 

1.	 A data set, acquisition function, batch size and exper-
imental budget are provided.

2.	 The optimizer numerically encodes the search space.
3.	 The optimizer selects initial domain points to evalu-

ate, by taking a random sample of the search space of 
size equal to the batch size. A seed can be supplied 
here to ensure reproducibility.

4.	 The optimizer conducts rounds of optimization until 
the experimental budget is reached.

5.	 The top n values obtained are output, where n was 
normally either 1 or 5.

In each case, the optimizer was tested by doing 50 full 
runs with different starting seeds, to gauge performance 
across a range of initial domain points.

Numerical encoding
Before starting the optimization algorithm, the search 
space must be numerically encoded. For the problems 
considered in our work, this consists of computing 
molecular descriptors for chemicals given by SMILES 
strings. Three techniques were used for this—Density 
Functional Theory (DFT) data; Mordred [11], an open-
source molecular descriptor calculator; and 512-bit 
Morgan Fingerprint Encoding [12], built-in to the rdkit 
Python module.

Once each chemical factor is encoded as a vector of 
descriptors, the encoding for the full configuration is 
obtained by concatenating all vectors. The overall vec-
tors for each configuration are then listed as the rows of 
the matrix representing the full search space. Then, the 
EDBO optimizer pre-processes the data by removing col-
umns that are highly correlated to save on memory.

Results
Suzuki–Miyaura and aryl amination data
The EDBO algorithm was originally developed [1] using 
data from two different reactions. The existing data sets 
on these two reactions are used in our work to investi-
gate changes to the acquisition function and batch size 
parameters. The Suzuki–Miyaura reaction [13] is a cross-
coupling reaction between a boronic acid such as inda-
zole and an organohalide such as 6-bromoquinoline, with 
a Palladium catalyst. This reaction has important appli-
cations, being one of the most frequently used in phar-
maceutical synthesis and wider medicinal chemistry [14]. 
Notably, Suzuki–Miyaura reactions have been the focus 
of recent work on optimization using machine learning 
methods, provoking both positive [15] and more skep-
tical [16] commentary. The data set studied consists of 

5760 combinations of five variables: the pair of reactants, 
the ligand, the catalyst and the base present in the reac-
tion. This is thus a problem of reaction scope search, as 
the variables which are altered to affect the reaction yield 
are fundamental to the chemistry of the reaction.

The second problem considered is the the Buchwald–
Hartwig amination reaction [17], also with a Palladium 
catalyst. This is a cross-coupling reaction of amines and 
aryl halides for the synthesis of Carbon-Nitrogen bonds. 
It too has many important applications in the synthesis 
of a wide variety of compounds of importance to medici-
nal and materials chemistry [18]. This is again a reaction 
scope problem: 4608 conditions are available in the data 
set, consisting of different combinations of the aryl or 
heteroaryl halide, Buchwald ligand, base and isoxazole 
additive used in the reaction.

For the Suzuki–Miyaura and Buchwald–Hartwig aryl 
amination data sets, Density Functional Theory (DFT) 
data provided in the EDBO Github repository (https://​
github.​com/b-​shiel​ds/​edbo) was used for numerical 
encoding of the search space, based on results from the 
paper that suggested this format minimised worst-case 
loss of the optimizer.

Batch size
The authors of the EDBO paper remarked that Expected 
Improvement with a batch size of 5 performed equally 
well to sequential Expected Improvement with the same 
experiment budget of 50. So, after verifying that the code 
provided from the EDBO paper functioned properly on 
the provided Suzuki and Aryl Amination data sets, we 
wished to determine to what extent the batch size used 
affected the optimizer performance, for a range of dif-
ferent sizes. In particular, since a larger size meant fewer 
rounds of optimization (with a similar total experimen-
tal budget) and more guesswork each round, we hypoth-
esised that performance would degrade as batch size 
increased.

We opted to keep the experimental budget roughly 
constant, near 50. This entailed running the following 
experiments.

•	 Batch size 3: 17 rounds of optimization (budget 51).
•	 Batch size 4: 12 rounds of optimization (budget 48).
•	 Batch size 5: 10 rounds of optimization (budget 50).
•	 Batch size 6: 8 rounds of optimization (budget 48).
•	 Batch size 7: 7 rounds of optimization (budget 49).
•	 Batch size 8: 6 rounds of optimization (budget 48).
•	 Batch size 9: two separate experiments, with 5 and 6 

rounds of optimization (budgets 45 and 54 respec-
tively). In the results below, we present only the out-
come of the runs with budget 54, since performance 

https://github.com/b-shields/edbo
https://github.com/b-shields/edbo
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did not appear to differ significantly between the two 
sets of experiments.

•	 Batch size 10: 5 rounds of optimization (budget 50).

We decided to test three different acquisition functions—
EI, TS, and Random (which corresponded to ignoring the 
surrogate model and instead picking points at random), 
to serve as a control. Results for the Suzuki reaction are 
displayed graphically in Fig. 2. These indicate that there 
do not seem to be significant differences in performance 
across batch sizes. As an example, using Welch’s t-test 
to compare sample means with sequential EI, p > 0.05 
for every other batch size when continuing to use EI. EI 
does consistently outperform TS, but importantly both 
methods significantly outperform the random control 
( p < 0.05 in all cases, using Welch’s t-test).

Figure  3 displays the performance of the optimizer 
under different batch sizes and acquisition functions for 
the Aryl Amination reaction. As before, results indicate 
no significant dependence of performance on batch size, 
with both methods significantly outperforming the ran-
dom control. Interestingly, Thompson Sampling occa-
sionally outperforms Expected Improvement for certain 
sizes, which is likely an artefact of the search space of this 
particular reaction.

Altering set of initial experiments
After seeing that the optimizer performance was robust 
with respect to batch size, we moved on to testing to 
what extent the initial set of experiments given to the 
optimizer was important. The idea we explored was 
restricting this set to be chosen purely from the lowest 
10% of experiments, ordered by reaction yield. These 
were taken for the Suzuki–Miyaura reaction, with a batch 
size of 5, and an experimental budget of 50, and an acqui-
sition function of Expected Improvement, with 50 full 

runs conducted. These results are shown in Fig. 4. While 
average performance is very similar, it is interesting to 
note that the ‘bottom 10%’ method had identical lower 
and upper quartiles of 98.69% , suggesting the optimizer 
consistently found the same local maximum with this 
method.

Iridium photocatalysts and palladium‑catalysed 
cross‑coupling reactions
We further tested the optimizer on two unseen data sets, 
still within the domain of reaction yield optimization. 
Firstly, we looked at a paper investigating the rate con-
stants associated with different Iridium photocatalysts 
when converting light into chemical energy for organic 
synthesis or chemical manufacturing [19]. The problem 
being investigated here is the relative catalytic activity of 
photocatalysts composed of iridium and different com-
binations of C⌃N and N⌃N ligands. The photocatalysts 
considered are built by combining one of 48 C⌃N ligands 

Fig. 2  Graph of average optimizer performance (taken as the 
maximum observed yield after a full run, averaged over 50 runs), with 
standard error in the mean for the error bars, for the Suzuki reaction

Fig. 3  Graph of average optimizer performance (taken as the 
maximum observed yield after a full run, averaged over 50 runs), with 
standard error in the mean for the error bars, for the Aryl Amination 
reaction

Fig. 4  Box plots of optimizer performance for selecting from bottom 
10% versus selecting normally for the Suzuki–Miyaura reaction 
with batch size 5, experimental budget 50, Expected Improvement 
acquisition function and 50 full runs conducted
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with one of 24 N⌃N ligands, and thus consists of 1152 
combinations in total.

Next, we looked at a paper investigating a different 
variant of Palladium-catalysed Carbon-Nitrogen cross-
coupling reactions, in this case ambient temperature 
reactions in a DMSO solvent [9]. Four inputs to the reac-
tion scope are varied in this data set: the electrophile, 
nucleophile, catalyst and base. 6 electrophiles, 11 nucle-
ophiles, 6 catalysts and 8 bases are considered in total, 
giving a complete search space of 3168 combinations of 
reactants and catalysts. However, the data set provided 
by the paper contains 1536 combinations: only 32 of the 
66 possible combinations of electrophile and nucleophile 
were considered, each of which were then combined with 
all 48 combinations of catalyst and base. This poses a new 
challenge to the optimizer, as some configurations within 
the search space are “disallowed”.

For these two data sets, molecular structures of the rel-
evant compounds were given visually in the paper with-
out the associated SMILES—to obtain this, they were 
drawn using an online tool (http://​www.​chemi​nfo.​org/​
flavor/​malar​ia/​Utili​ties/​SMILES_​gener​ator___​check​er/​
index.​html) that allowed output of the required SMILES. 
Once this was obtained, Mordred encoding was used to 
calculate molecular descriptors.

To test the optimizer on the Iridium photocatalyst data, 
we used an experiment budget of 50, with a batch size of 
5, and again compare Expected Improvement, Thomp-
son Sampling and the random control with 50 full runs of 
each. We report the results in Table 1. EI found the global 
maximum in 46% of the runs conducted and the second-
highest value in the remaining 54% . The performance of 
TS was slightly lower, at 38% and 56% respectively, but 
this nonetheless compares extremely well to the random 
acquisition function.

Investigations into the palladium-catalysed cross-cou-
pling reactions data set were complicated by the absence 
of some of the possible reaction configurations not 
included in the data set. Initially, we chose to deal with 
this by giving the combinations that were ‘missing’ an 
area count of 0. Again, we used an experimental budget of 
50, with a batch size of 5, comparing Expected Improve-
ment, Thompson Sampling and the random control, with 

50 full runs of each. This however led to fairly poor per-
formance by the optimizer. This could have been due to 
missing combinations being labelled as 0 interfering with 
the model, especially if a missing combination was close 
to an optimal one in the search space.

After this, the search space was modified to include 
only the 1536 combinations present in the data set, by 
manually providing the allowable configurations. The 
results of both approaches are shown in Fig. 5. As indi-
cated by the figure, the revised approach led to markedly 
improved performance, which suggested that EDBO han-
dled ‘missing values’ poorly overall and needed to be told 
the allowed domain points in advance.

Harvard Clean Energy Project
Finally, after thoroughly testing the optimizer on mul-
tiple reaction yield data sets, we decided to see how it 
would fare on a very different kind of optimization prob-
lem. The Harvard Clean Energy Project (CEP) [6] was a 
computational screening of over two million molecules, 
with quantum chemistry calculations, in order to deter-
mine their theoretical power conversion efficiency (PCE) 
values for use in organic photovoltaics. This was both 
qualitatively and quantitatively different to what had 
been studied before, in that we were attempting to opti-
mize a physical property using a single degree of freedom 
(which molecule we were testing) as opposed to vary-
ing multiple parameters for reaction yield optimization. 
The data set also includes other physical properties such 
as the molecular mass, short-circuit current density and 
open-circuit voltage, but these were not used in our work 

Table 1  Performance of the optimizer with different acquisition 
functions on the Iridium photocatalysis data set

Acquisition Function #Runs finding global 
maximum

#Runs finding 
second-
highest

Random 11 19

Expected Improvement 23 27

Thompson Sampling 19 28

Fig. 5  Box plots for the Palladium-catalysed cross-coupling data set. 
The “0 default” labels indicate those runs where missing combinations 
were coded as 0. Note that for regular Expected Improvement, 
the upper quartile of the data set was equal to the median, so an 
additional median line was not drawn

http://www.cheminfo.org/flavor/malaria/Utilities/SMILES_generator___checker/index.html
http://www.cheminfo.org/flavor/malaria/Utilities/SMILES_generator___checker/index.html
http://www.cheminfo.org/flavor/malaria/Utilities/SMILES_generator___checker/index.html
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as the EDBO method relies on larger sets of molecular 
descriptors extracted using the methods described below. 
The full data set was too large to be loaded on a single 
computer, so we instead took a specific random sample of 
the data set of size 10,000 to investigate throughout.

Numerical encoding of the CEP data set produced a 
unique challenge, because the search space was one-
dimensional, with the only factor being the candidate 
organic photovoltaic chemical. This was in contrast to 
the multidimensional reaction yield data sets we had 
investigated previously, whose size came from multiply-
ing together combinations of different factors and not 
from a single factor having thousands of possibilities. 
Therefore, Mordred encoding was prohibitively slow as 
a sample size of 10,000 required computing molecular 
descriptors for 10,000 molecules. This led us to use 512-
bit Morgan Fingerprint encoding instead, which was less 
comprehensive in detailing properties of molecules but 
significantly faster.

Initial results
In this case, we used an experimental budget of 100, with 
a batch size of 10, comparing Expected Improvement, 
Thompson Sampling and the random control, with 50 full 
runs of each. The results are displayed in Fig. 6. Expected 
Improvement and Thompson Sampling were remark-
ably similar, with no appreciable visual difference in the 
box plots of the results, and no significant difference 
( p > 0.05 ) when Welch’s t-test is used to compare their 
sample means. Both methods significantly outperformed 
random selection in terms of the mean PCE of the best 

molecule found by the optimizer ( p < 0.05 using Welch’s 
t-test), which is encouraging given that this is an entirely 
different problem for the optimizer to tackle. In particu-
lar, the relative success of Thompson Sampling is worthy 
of note, as this method requires roughly one-quarter of 
the computational time of Expected Improvement for the 
CEP data.

Since the optimizer performed so well on this initial 
subset, we wanted to see whether we could find a dif-
ferent subset of the same size where it performed more 
poorly. Subsets were determined by taking a random 
sample, which could be seeded, so we searched a few 
hundred seeds. To compare the subsets, 50 full runs of 
the optimizer were conducted, with a batch size of 10, 
experiment budget of 100, and with Expected Improve-
ment as the acquisition function. Figure  7 shows the 
performance of the optimizer on the worst seed found 
during the search alongside the median seed. While 
optimizer performance is slightly poorer in the worst 
subset, the difference is relatively insignificant, indi-
cating performance was fairly stable across different 
subsets.

Investigating different acquisition functions
After confirming that the EDBO optimizer could be 
applied successfully to this problem, we shifted to focus-
ing on modifying the acquisition functions used in order 
to improve performance. In particular, we decided to 
look at improving the top 5 values returned by the opti-
mizer, as opposed to merely the top value.

Our motivation for this was based on the calculated 
values being theoretical—therefore, it would be useful to 

Fig. 6  Performance of the optimizer with different acquisition 
functions on the Harvard PCE data set

Fig. 7  Performance of the optimizer with Expected Improvement 
acquisition function on the Harvard PCE data set for the worst seed 
(left) and median seed (right)



Page 8 of 10Khondaker et al. Journal of Cheminformatics           (2022) 14:59 

have a large selection of molecules each of which had a 
good PCE as opposed to a single molecule with excellent 
PCE, to reduce the chances of relying heavily on an arte-
fact of the PCE model.

The modification to the EI algorithm we explored was 
changing what value was being compared to for the sake 
of the Improvement Utility. Using the notation from ear-
lier in the report, we altered the x+ value used. Two mod-
ification strategies were evaluated:

•	 EI-k: Setting x+ to be the kth highest value observed, 
with EI-1 representing ordinary Expected Improve-
ment.

•	 E3I: Exploration Enhanced Expected Improvement 
[20]. In summary, it samples the surrogate model 
distribution multiple times, each time calculating 
Expected Improvement by setting x+ to be the sam-
ple maximum, and then averaging the results. This 
tends to encourage more exploration of the sample 

Fig. 8  Distribution of obtained PCE for the top five molecules under four different acquisition functions in the Harvard data set



Page 9 of 10Khondaker et al. Journal of Cheminformatics           (2022) 14:59 	

space early on, and approaches normal Expected 
Improvement with more iterations.

As is evident from the results in Fig.  8, each strategy 
performed fairly similarly, and no alternative strategy 
consistently performed better than standard Expected 
Improvement. There is however some evidence that the 
distribution of PCE for molecules at rank 3, 4 and 5 is 
more constrained when E3I is used, leading in particular 
to higher values in the third quartile. This may be a result 
of increased exploration of the sample space causing a 
range of high-performing molecules to be found more 
frequently.

Conclusions and future work
The EDBO optimizer proved robust to a wide variety 
of changes made. Compared the original paper, perfor-
mance was not severely impacted by either modifying the 
batch size, nor altering the initial experiments selected 
by the optimizer. Furthermore, the algorithm continued 
to perform well on subsequent reaction yield data sets, 
showing its applicability in its original problem domain. 
Moreover, the algorithm performed well when used for 
a different class of problem—optimizing a physical prop-
erty of a single molecule—evidenced by its performance 
on the CEP data set. In general, this suggests both EDBO 
and similar optimizers designed for one chemical prob-
lem domain may find applicability in a large number of 
other domains, with minimal configuration, lessening the 
need for problem-specific algorithms.

Our results also demonstrate that a Thompson Sam-
pling acquisition function consistently delivers a relatively 
similar level of performance to Expected Improvement. 
This is potentially important due to the speed advantages 
offered by Thompson Sampling through easy paralleliza-
tion. For example, when investigating the Harvard data 
set with a batch size of 10, a round of TS took approxi-
mately one-quarter of the time to run as a round of EI. 
For very large data sets in which many rounds of opti-
mization must be performed, it is therefore important 
to note that the faster Thompson Sampling method is 
competitive.

However, there are certainly limitations to the EDBO 
approach. In particular, as evidenced by the Palladium-
catalysed cross-coupling data set, the algorithm handles 
‘missing’ domain points poorly, and instead requires 
a fixed search space determined before optimization 
begins. Future work to allow the optimizer to instead 
adapt to both missing values and new candidate config-
urations may be useful. This may also have implications 
for potential use in physical experiments, where certain 
combinations of conditions may be infeasible to run in 
practice. In addition, efforts could be made to improve 

the acquisition function used to provide a selection of 
useful candidates, avoiding a sharp drop-off in quality 
across the top values.

Finally, it must be acknowledged that the experiments 
conducted in this research were exclusively computational 
in nature. It would be enlightening to test the optimizer 
in a physical lab setting to provide some hands-on data 
of its applicability to real-world reaction yield optimiza-
tion, especially if yields surpassing the literature could 
be accomplished. This would also allow the optimizer to 
be tested at a larger scale, with hundreds of thousands of 
potential conditions, since the experiment budget itself 
would remain manageable, which might provide insights 
unobtainable from the data sets shown here. Using a more 
powerful computer, or computing cluster, to analyse a 
larger sample of the CEP data set would be a further test 
of the robustness of the algorithm in an unfamiliar prob-
lem domain, and could allow further room for experimen-
tation on the acquisition function used.
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