
Preto et al. Journal of Cheminformatics           (2022) 14:73  
https://doi.org/10.1186/s13321-022-00649-w

SOFTWARE

DrugTax: package for drug taxonomy 
identification and explainable feature extraction
A. J. Preto1,2, Paulo C. Correia3 and Irina S. Moreira1,3,4* 

Abstract 

DrugTax is an easy-to-use Python package for small molecule detailed characterization. It extends a previously 
explored chemical taxonomy making it ready-to-use in any Artificial Intelligence approach. DrugTax leverages small 
molecule representations as input in one of their most accessible and simple forms (SMILES) and allows the simul-
taneously extraction of taxonomy information and key features for big data algorithm deployment. In addition, it 
delivers a set of tools for bulk analysis and visualization that can also be used for chemical space representation and 
molecule similarity assessment. DrugTax is a valuable tool for chemoinformatic processing and can be easily inte-
grated in drug discovery pipelines. DrugTax can be effortlessly installed via PyPI (https://​pypi.​org/​proje​ct/​DrugT​ax/) or 
GitHub (https://​github.​com/​Morei​raLAB/​DrugT​ax).
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Introduction
PubChem [1] registers over 111 million compounds 
and 278 million substances (August 2022). According 
to Drugbank [2] there are 2725 approved drugs, among 
11,937 possible drugs. ChEMBL [3] reports over 2.2 mil-
lion compounds and 14,000 drugs. The abundance of 
drugs or drug-like compounds is evidently overwhelm-
ing, which is often problematic, when considering 
automatized approaches.

The surge of Artificial Intelligence (AI) and its sub-
field Machine Learning (ML) to tackle problems involv-
ing drugs or, overall, small ligands has been significant 
in the last few years [4]. For this purpose, it is advanta-
geous to be able to provide a deeper understanding of the 
drugs’ characteristics while also being able to numeri-
cally describe them [5]. Feature extraction is a focus 

when considering ML-based approaches, as it is a crucial 
and necessary step for any algorithms to be able to dis-
tinguish between the different patterns within the data. 
Under the scope of drug discovery, several packages have 
been developed to this end. Open Babel [6] is a broad 
example, providing a set of chemical tools to describe 
and manipulate drugs and other small molecules. More 
recently, packages such as Mordred [7] or ChemmineR 
[8] have also been developed. Alternatively, a different 
type of approaches can also be used for ML processing, 
such as the ones based on graph [9, 10] and voxel-based 
[11] drug representations. The chemical characterization 
of small molecules is a cornerstone for further under-
standing and essential for bulk data approaches, and as 
such we explored the usage of this type of knowledge 
for data grouping and feature extraction, some of the 
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characterizations stemming from the root biochemical 
definitions [12].

Our new developed Python package, DrugTax, follows 
the definitions made available by ChemOnt and Classy-
fire [13]. The Classyfire protocol [13] is very useful for 
small molecule taxonomy classification as it performs a 
levelled classification in 11 different levels (Kingdom, 
SuperClass, Class, SubClass, etc.), yielding over 4800 dif-
ferent categories. We also explored the chemical ontol-
ogy (ChemOnt), developed by the same authors, which 
allows the classification of the small molecules solely 
by rule-based steps. However, these protocols still pre-
sented some shortcomings: (i) the API, although properly 
documented, is faulty in bulk submissions; (ii) although 
both the browser and the API are available, the Chem-
Ont code for small molecule taxonomic classification is 
not accessible, limiting the users to using the authors’ 
API; and finally, (iii) while the same-level categories are 
not necessarily mutually exclusive, Classyfire [13] yields a 
single classification for each compound. This means that 
molecules belonging to more than one superclass, are 
overlooked, leading to major oversights of information 
when considering multiple molecules’ comparison. These 
shortcomings are particularly relevant if the research’s 
main aim is to group small ligands according to their 
characteristics.

DrugTax solves that problem by allowing the user to 
install and inspect the code that generates the small mol-
ecules classes in an easy-to-use package. DrugTax pro-
vides the prior classification between the two possible 
kingdoms, organic and inorganic, and, respectively, their 
26 and 5 superclasses. These superclasses are returned in 
the form of a list, thus allowing overlapping superclasses. 
Subsequently, DrugTax displays UpSet plots [14], which 
are ideal for identifying and inspecting large volumes of 
intersecting sets to provide the user an approach to fur-
ther tailor the groupings to their needs. Finally, DrugTax 
provides an option to use features derived from the taxo-
nomic analysis up until superclasses. This innovation can 
be promptly used for ML purposes or simply small mol-
ecule data visualization.

Methods and implementation
DrugTax is centered around a Python object class that 
takes as input a Simplified Molecular Input Line Entry 
System (SMILES) [15] and computes several necessary 
steps for the upcoming kingdom and superclass assign-
ment. If a SMILES representation is not provided, Drug-
Tax will default to download its isomeric form from a 
provided name. All Code Snippets (C.S.) can be found in 
Additional file  1. Figure  1 illustrates molecules belong-
ing to the 31 superclasses that will be listed next. Organic 

molecules are highlighted in green, while inorganic mol-
ecules are shown in red.

DrugTax class, helper functions and variables
Prior to starting the calculations, a few variables (C.S.1—
Halogens, metals and group-15/nitrogen atoms lists) 

Fig. 1  Graphical representation of each of the 31 superclasses. 
Organic molecules are highlighted in green, while inorganic 
molecules are shown in red. The molecules depicted are: 
organoheterocyclic-imidazole (i); organosulphur-glutathione (ii); 
lipid molecule-behenic acid (fatty acid) (iii); allene-fucoxanthin 
(iv); benzenoid-benzene hexacarboxylic acid (v); 
phenylpropanoid-phenylalanine (vi); organic acid-butyric 
acid (vii); alkaloid-morphine (viii); organic salt-acetate (ix); 
organohalogen-acetyl chloride (x); organometallic-ferrocene (xi); 
organic nitrogen-pyrrole-2-carboxylate (xii); nucleotide-guanine 
(xiii); organic oxygen-ethanol (xiv); organophosphorus-diethyl 
phosphonate (xv); lignans and neolignans-matairesinol (xvi); 
organic polymer-starch (xvii); hydrocarbon-octane (xviii); 
hydrocarbon derivative-ethanol (xix); organic anion-phosphate 
(xx); organic cation-choline (xxi); organic zwitterion-ammonium 
propionate (xxii); carbene-dichlorocarbene (xxiii); organic 
1,3-dipolar-nitrone molecule (xxiv); organopnictogen-N-(4-phenyla
mino-quinazolin-6-yl)-acrylamide (xxv); acetylide-lithium acetylide 
(xxvi); homogenous metal - cerium with mixed metals (xxvii); 
homogenous non-metal-noble gas helium (xxviii); mixed metal/
non-metal-potassium nitrate (xxix); inorganic salt-sodium chloride 
(xxx); miscellaneous inorganic-cyanide (xxxi)
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helper functions were constructed (C.S.2—To retrieve 
only ordered atom sequence and C.S.3—To allow atom 
rings identification). Furthermore, two functions were 
made available for upcoming feature extraction: one 
allows for the count of characters on SMILES (C.S.4), 
while the other initializes an empty dictionary of super-
class feature data (C.S.5). Finally, the DrugTax class 
object itself is initialized with the computation of sev-
eral useful characteristics (C.S.6 – DrugTax class object 
initialization).

Kingdoms: organic and inorganic
The general rule to assess whether a compound is 
organic, or inorganic depends on the existence of at 
least one carbon atom, in which case it is categorized as 
an organic compound. There are a few exceptions. For 
example, some compounds, although containing carbon 
atoms, are nonetheless, considered inorganic, e.g., isocy-
anide/cyanide, thiophosgene, carbon diselenide, carbon 
monosulphide, carbon disulphide, carbon subsulphide, 
carbon monoxide, carbon suboxide and dicarbon mon-
oxide. The code accessible in C.S.7 allows the discrimi-
nation between the two possible kingdoms. Subsequently 
the matching superclasses will be called, in accordance 
with C.S.6.

Organic compounds
As previously mentioned, an in accordance with Classy-
Fire [13], DrugTax considers 26 possible superclasses for 
organic compounds, listed below and for which the code 
to compute them from the basic SMILES is displayed in 
Additional file 1.

Organoheterocyclic
According to the Nomenclature of Organic Compounds 
“Organic heterocyclic systems contain one or more foreign 
elements such as oxygen, sulphur, or nitrogen in addition 
to carbon” [16]. As such, we considered organohetero-
cyclic compounds those which contain a ring with least 
one carbon atom and one non-carbon atom (C.S.8). The 
organoheterocyclic superclass is illustrated with an imi-
dazole molecule in Fig. 1-i.

Organosulphur
According to Arya et  al. [17], “Organosulphur com-
pounds  are organic molecules that contain sulphur and 
are associated with the pungent odors” [17], and as such, 
we identified organosulfur compounds as those with at 
least one carbon–sulphur bond (C.S.9). The organosul-
phur superclass is depicted with a glutathione in Fig. 1-ii.

Lipids
According to the definition by Jones [18], “Lipids may be 
classified as a mixed group of substances with the com-
mon characteristics of solubility in organic solvents”. This 
group of biological molecules can be further split into 
simple lipids (i), such as fats—neutral esters of glycerol 
with satured and unsaturated acids; compound lipids 
(ii) consist of a fatty acid, an alcohol and at least one 
group containing atoms such as phosphorus or nitrogen; 
derived lipids (iii) are fatty acids that stem from simple or 
compound lipids by means of hydrolysis.

As seen above, the chemical definition of lipids is quite 
broad. Within DrugTax implementation, we narrowed it 
down to fatty acids and their derivatives, as well as sub-
stances related biosynthetically or functionally to these 
compounds. This corresponds to the occurrence of car-
boxyl group as well as a carbon chain at least four car-
bons long, regardless of chain saturation (C.S.10). These 
criteria were driven by literature assessment, in agree-
ment with Aslan and Aslan, 2017 definition [19]. Behenic 
acid (fatty acid) is shown in Fig. 1-iii.

Allenes
“Allenes  are  organic compounds  in which one  car-
bon  atom has  double bonds  with each of its two adja-
cent carbon centres” in accordance with IUPAC Gold 
Book allenes entry [20]. The definition includes both the 
hydrocarbon molecules and their derivatives obtained by 
substitution (C.S.11). The allenes superclass is depicted 
with a fucoxanthin in Fig. 1-iv.

Benzenoids
According to Gutman and Babić [21], benzenoids are 
aromatic compounds containing one or more benzene 
rings, formed solely by carbon atoms. The code for ben-
zenoid superclass attribution can be consulted at C.S.8. 
Benzene hexacarboxylic acid, an example, is represen-
tated in Fig. 1-v.

Phenylpropanoids and polyketides
According to Zhang and Stephanopoulos [22], “The phe-
nylpropanoids are a family of organic compounds with 
an aromatic ring and a three-carbon propene tail and are 
synthesized by plants from the amino acids phenylala-
nine and tyrosine” [23]. Regarding polyketides, Korman 
et  al. says: “Polyketides  are a large class of structurally 
diverse, acetate derived natural products that exhibit a 
wide range of bioactivities.” [24]. As such, phenylpropa-
noids and polyketides are organic compounds that are 
synthesized either from the amino acid phenylalanine 
(phenylpropanoids) or the decarboxylative condensa-
tion of malonyl-CoA (polyketides). Phenylpropanoids are 
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aromatic compounds based on the phenylpropane skel-
eton. Polyketides usually consists of alternating carbonyl 
and methylene groups (beta-polyketones), biogenetically 
derived from repeated condensation of acetyl coenzyme 
A (via malonyl coenzyme A) (C.S.12). The phenylpropa-
noids and polyketides superclass is depicted with a phe-
nylalanine in Fig. 1-vi.

Organic acids and derivatives
According to Richter et al. [25] “Organic acids are weak 
acids with pKa values that range widely from as low as 
3 (carboxylic) to as high as 9 (phenolic)”. Furthermore, 
according to Papagianni 2011, “Organic acids contain 
one or more carboxylic acid groups, which may be cova-
lently linked in groups such as amides, esters, and pep-
tides.” Although we are aware that there are different 
definitions, some of which consider organic acids with-
out a carboxyl group [26], we considered organic acids 
those with carboxyl groups (C.S.13). The organic acids 
superclass is depicted using butyric acid as an example in 
Fig. 1-vii.

Alkaloids
According to Kurek, “Alkaloids are a huge group of natu-
rally occurring organic compounds which contain nitro-
gen atom or atoms (amino or amido in some cases) in 
their structures. These nitrogen atoms cause alkalinity 
of these compounds” [27]. DrugTax classifies small mol-
ecules as alkaloid it exists nitrogen atom(s) and they have 
a negative net charge (C.S.14). The alkaloid superclass is 
depicted with a morphine molecule in Fig. 1-viii.

Organic salts
Organic compounds consist of an assembly of cations 
and anions, of which one must be organic. According to 
Seçken, Nilgün, “Organic salts, however, are compounds 
that are formed from at least one anion and one cation. 
Their anions are organic acid based” [28] (C.S.15). Ace-
tate molecule was used to exemplify this superclass in 
Fig. 1-ix.

Organohalogen compounds
According to Roberts and Caserio. “The general term 
of "organohalogen" refers to compounds with covalent 
carbon-halogen bonds” [29]. As such, by listing the hal-
ogen atoms in C.S.1, using the code below it is possible 
to identify organohalogens (C.S.16). The organohalogen 
compounds superclass is depicted with an acetyl chloride 
in Fig. 1-x.

Organometallic compounds
According to Abbot et  al. the existence of at least 
on metal–carbon allows the classification into 

Organometallic compounds [30]. Given this definition, 
DrugTax identifies organometallic compounds using the 
same code as for organohalogens (C.S.16) but accessing 
the metals list instead (C.S.1). The organometallic com-
pounds superclass is depicted with ferrocene in Fig. 1-xi.

Organic nitrogen compounds
According to Moreno and Peinado, “Nitrogen com-
pounds  can be classified as mineral or organic. (…) 
Organic compounds, in contrast, are carbon and hydro-
gen compounds that contain a nitrogen atom” [31]. In 
the context of DrugTax, organic nitrogen compounds are 
simply organic compounds that contain nitrogen atoms. 
As such, we identify nitrogen atoms upon kingdom attri-
bution completion (C.S. 17). Pyrrole-2-carboxylate, an 
example of this superclass, can be found in Fig. 1-xii.

Nucleosides and nucleotides
According to Sparkman et  al. “Nucleosides  consist of a 
purine or a pyrimidine base and a ribose or a deoxyribose 
sugar connected” [32]. Nucleotides, on the other hand, are 
defined by Joseph, A. as “A nucleotide is a subunit of DNA 
or RNA that consists of a nitrogenous base (A, G, T, or C 
in DNA; A, G, U, or C in RNA), a phosphate molecule, 
and a sugar molecule (deoxyribose in DNA, and ribose in 
RNA)” [33]. Considering these definitions, nucleotides 
are simply nucleosides with phosphate groups. As such, 
to identify nucleosides and nucleotides is necessary to 
encounter any combination of cytosine, adenine, gua-
nine, thymine, uracil with either ribose or deoxyribose 
(C.S.18). The nucleosides and nucleotides superclass are 
represented with guanine in Fig. 1-xiii.

Organic oxygen compounds
As shown by Lee and Meyer [34], the quantification of 
oxygen in organic compounds can be detrimental in 
characterizing said compounds. DrugTax also identifies 
whether the input drug has oxygens or not (C.S.17). The 
organic oxygen compounds superclass is illustrated with 
ethanol Fig. 1-xiv.

Organophosphorus compounds
According to Müller “Organophosphorus com-
pounds with phosphorus–carbon multiple bonds provide 
a rich and fascinating coordination chemistry” [35]. By 
identifying phosphorus in an organic compound (C.S.17), 
we can recognize organophosphorus compounds. The 
organophosphorus compounds superclass is depicted 
with diethyl phosphonate Fig. 1-xv.

Lignan and neolignans
Sang and Zhu states: “Lignans  form a group of phenolic 
compounds with a backbone of two phenylpropanoid 
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(C6C3) units” [36]. According to this definition, Drug-
Tax identifies lignans and neolignans according to the 
occurrence of either p-propyphenol or phenylpropane 
(C.S.19). The lignans and neolignans superclass is shown 
with matairesinol Fig. 1-xvi.

Organic polymers
Yadav and Sinha states that organic polymers are long, 
chained macromolecules composed of many repeat-
ing  monomer  units” [37]. As such, DrugTax identifies 
repeating patterns in the molecules of the organic king-
dom to identify organic polymers (C.S.20). The organic 
polymers superclass is depicted with starch Fig. 1-xvii.

Hydrocarbons
According to Enerijiofi “Hydrocarbons  are a group of 
chemical organic compounds composed of carbon and 
hydrogen” [38]. In this case, if the input molecule has not 
atoms besides carbon and hydrogen, DrugTax will clas-
sify the molecule as a hydrocarbon (C.S.21). The hydro-
carbons superclass is depicted with octane Fig. 1-xviii.

Hydrocarbon derivatives
Extending from the definition of Enerijiofi, hydrocarbon 
derivatives are organic compounds derived from hydro-
carbon in which there are atoms different from carbon 
and hydrogen. DrugTax uses the same function (C.S.21) 
to identify both hydrocarbons and hydrocarbon deriva-
tives. The hydrocarbon derivatives superclass is por-
trayed with ethanol Fig. 1-xix.

Organic anions
According to Sekine et  al.:”Organic anions are chemi-
cally heterogeneous substances possessing a carbon back-
bone and a net negative charge” [39]. As such, DrugTax 
accounts identifies as organic cations the organic mol-
ecules with a negative net charge (C.S.22). The organic 
anions superclass is showed with phosphate Fig. 1-xx.

Organic cations
In contrast with Sekine et al.’s definition of organic ani-
ons, organic cations carry a net positive charge. As such, 
the same process can be applied (C.S.22), this time con-
sidering an overall positive net charge. The organic cati-
ons superclass is shown with choline Fig. 1-xxi.

Organic zwitterions
According to Hadjesfandiari and Parambath: “Zwitteri-
ons  contain both positive- and negative-charged groups, 
with an overall neutral charge“ [40]. Considering this def-
inition, DrugTax leverages the same approach of the pre-
vious two superclasses (C.S.22), for organic cations and 
anions. However, in this case, it is important to highlight 

that zwitterions are not merely organic compounds 
without a charge. They must have an equal number of 
negative and positive charges. The organic zwitterions 
superclass is depicted with ammonium propionate in 
Fig. 1-xxii.

Carbenes
Savin states: “A carbene is a neutral divalent carbon spe-
cies containing two electrons that are not shared with 
other atoms” [41]. As such, DrugTax identifies carbenes 
as organic molecules with unpaired electrons at a carbon 
atom (C.S.23). The carbenes superclass is depicted by 
dichlorocarbene in Fig. 1-xxiii.

Organic 1,3‑dipolar compounds
The IUPAC Compendium of Chemical Terminology 
defines dipolar compounds as “Electrically neutral mol-
ecules carrying a positive and a negative charge in one of 
their major canonical descriptions” [42]. Further along, it 
extends the definition to 1,3-dipolar compounds as “those 
in which a significant canonical  resonance  form can be 
represented by a separation of charge over three atoms” 
[42]. According to this definition, DrugTax identifies 
organic 1,3-dipolar compounds if they simultaneously 
possess positive and negative charges. However, the net 
charge should be neutral, and the compound must have 
one atom separating the atoms with the opposing charges 
(C.S.24). Nitrone molecule was chosen as an example, 
and it is depicted in Fig. 1-xxiv.

Organopnictogen compounds
IUPAC defines pnictogens as an atom belonging to group 
15 of the periodic table, which include nitrogen, phos-
phorus, arsenic, antimony and bismuth [43]. To iden-
tify organopnictogens, DrugTax leverages the list of the 
group 15 atoms (C.S.1) and checks whether there are any 
bounds between these atoms and carbons (C.S.25). The 
organopnictogen superclass is depicted with N-(4-phe-
nylamino-quinazolin-6-yl)-acrylamide in Fig. 1-xxv.

Acetylides
According to the IUPAC Compendium of Chemical 
Terminology, acetylides obey the following principles: 
“Compounds arising by replacement of one or both 
hydrogen atoms of acetylene (ethyne) by a metal or other 
cationic group. E.g.,  NaC≡CH  monosodium acetylide. 
By extension, analogous compounds derived from termi-
nal  acetylenes,  RC≡CH” [44]. By using the list of metal 
atoms (C.S.1), DrugTax identifies acetylides as organic 
compounds with a triple covalent bond between two car-
bon atoms, with at least one of them, bounded to a metal 
atom (C.S.26). Lithium acetylide is portrayed as an exam-
ple of this superclass in Fig. 1-xxvi.
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Inorganic
As previously mentioned, and in accordance with Classy-
Fire [13], DrugTax considers five possible superclasses 
for inorganic compounds, listed in the next subsections. 
As these definitions are overall quite straightforward and 
elementary, we will present equally simple definitions.

Homogenous metal compounds
Homogenous metal compounds are inorganic com-
pounds that contain only metal atoms. These atoms, 
however, are not necessarily all atoms of the same metal. 
The list of metals was retrieved from C.S.1. The code to 
identify homogenous metal compounds can be found at 
C.S.27. The homogenous metal superclass is illustrated as 
cerium with mixed metals Fig. 1-xxvii.

Homogenous non‑metal compounds
Homogenous non-metal compounds are inorganic 
compounds that contain only non-metal atoms. The 
list of metals was retrieved from C.S.1. The code to 
identify homogenous non-metal compounds can be 
found at C.S.28. As an example, gas helium is shown in 
Fig. 1-xxviii.

Mixed metal/non‑metal compounds
Mixed metal/non-metal compounds are inorganic com-
pounds that can contain simultaneously metal and non-
metal atoms. The list of metals was retrieved from C.S.1. 
The code to identify homogenous non-metal compounds 
can be found at C.S.29. Potassium nitrate is depicted as 
an example in Fig. 1-xxix.

Inorganic salts
The superclass of inorganic salts consists of inorganic 
compound with one or more charges, either negative or 
positive ones. The code to identify inorganic salts can be 
found at C.S.30. The inorganic salts superclass is depicted 
with sodium chloride in Fig. 1-xxx.

Miscellaneous inorganic compounds
The identification of miscellaneous inorganic compounds 
is dependent on the previous four inorganic superclasses. 
If a given compound does not fit any of these super-
classes, it is considered a miscellaneous inorganic com-
pound. Cyanide (Fig. 1-xxxi) was chosen to illustrate this 
superclass.

DrugTax bulk analysis and plotting tools
One of the main purposes of this work was to allow bulk 
analysis of chemical properties of drugs to enable proper, 
tailored, and comprehensive categorization of small 
ligands. With that in mind, DrugTax has an additional 
tool for bulk ligand analysis, which makes use of kingdom 

and superclass attribution to perform categorization 
of small molecules. These categories account for mul-
tiple superclasses, in the cases in which this is possible. 
Firstly, it was added a short functionality to fetch the iso-
meric SMILES from the drug name, by using pubchempy 
(C.S.31). Then, using C.S. 1–30, the different superclasses 
for each ligand are listed (C.S.32).

By retrieving summary data from the input list of 
SMILES, DrugTax uses individual small ligand informa-
tion to generate a fast characterization tool of small mol-
ecule datasets. Furthermore, by making use of UpSetPlot 
[14], DrugTax can depict many intersecting sets (in the 
form of small ligand superclasses), which is often limited 
by more conventional forms of visualization. The plots 
are generated from the summary information previously 
retrieved and can be tuned to avoid close to empty super-
class aggregations (C.S.33).

Results and case study
To exemplify the usage of DrugTax, we developed a short 
approach that assembles a dataset focused on drugs 
associated with a variety of known viruses. Firstly, we 
performed a query using PUG-REST (Power User Inter-
face–Representational State Transfer) [45], a web inter-
face of PubChem [1] that allows the programmatic access 
of information of chemical compounds present in the 
database. The requests to the server are made through 
URLs (Uniform Resource Locators). To comply with 
PUG-REST’s request volume limit, 100 compounds are 
fetched at a time, while the total amount of compounds 
to be analyzed must be specified by the user. This param-
eter ultimately affects the size of the resulting dataset. 
The compounds are scraped by the iterating over the list 
of CIDs (Compound ID).

Another parameter that must be specified by the user 
are the keywords related to the dataset one wants to cre-
ate. These keywords must be present in the more relevant 
bioassays titles, in this case, the keywords were chosen 
after looking at the most frequently appearing terms in 
the titles of Journal of Virology [46] studies (accessed on 
the 29th of July 2022). The chosen keywords affect the 
size, diversity, and quality of the dataset, and so a good 
selection is key. It is also to note that these keywords are 
case sensitive and can also be present inside a word. The 
used keywords were: DENV, HIV, H1N1, virus, viral, 
Viral, SARS, Virus, HCV, influenza, Influenza, HSV, 
HHV, EBOV, MERS. This query was performed over 
700.000 compounds.

To build a dataset relevant in the settings of both a bio-
logical problem and ML implementation, it was relevant 
to narrow the compounds according to their activity. As 
such, we selected only compounds that were featured 
in biological activity studies. To fulfill these criteria, we 
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explored the information related to bioassays, regarding 
our compounds, in PubChem [1]. Bioassays are analyti-
cal methods to calculate the potency of chemical com-
pounds in biological beings, making them a good source 
of experimentally proven data that can be accessed easily 
through PUG-REST [45]. We retrieved the correspond-
ing bioassays for each compound.

Regarding the bioassays that were relevant for Drug-
Tax’s purpose a selection took place, respecting the fol-
lowing conditions:

•	 Exclusive to the compound: The study must have the 
compound as the only studied chemical (an activity 
value is presented).

•	 Related to the input keywords: The study title must 
have at least one of the keywords introduced by the 
user.

•	 Conclusive: The result of the bioassay must be either 
“Active” or “Inactive”, any other results like “Unspeci-
fied” or “Inconclusive” were excluded.

•	 Target protein: There must be an ID of a protein tar-
get.

After performing this selection, our dataset was 
reduced to 10.567 unique compounds, targeting 367 
unique proteins. However, several bioassays can involve 
the same protein-compound pair, and therefore were 
subsequently removed. As the activity values can vary, 
a pair was only considered as active if more than 50% of 
the studies indicate so, the same applies to the inactive, 
but if it is exactly 50% the pair was taken as inconclusive 
and removed. This analysis was performed by replac-
ing the activity values by numbers (1 for active and 0 for 
inactive). As such, we simultaneously consider the posi-
tively reported interactions (active) and their counterpart 
(inactive). The surge of ML-based approaches further 

stressed out the need to report both positive and nega-
tive results, giving rise to new research terms like Struc-
ture Inactive Relationships (SIR), which complements 
the more standard Structure Activity Relationships 
(SAR) approaches [47]. After performing this final step 
of pre-processing, the dataset still tallied a total of 10.556 
unique compounds and 367 unique proteins.

Finally, it was necessary to retrieve these compounds 
in a usable format, for which we considered SMILES. A 
request was conducted PUG-REST [45] returning the 
isomeric SMILES string of the compound using the CID. 
Achieving a list of 10.556 SMILES representing unique 
virus-related compounds, these were tested using our 
new developed package—DrugTax. Running the Drug-
Tax class on the compounds, their object representa-
tion, including superclass categorization and DrugTax 
features did not exceed 10 s, on a common portable lap-
top (16  Gb RAM and 11th Gen Intel Core i7-11370H, 
3.30  GHz CPU). After retrieving the computed data on 
table format, we proceeded with the bulk analysis and 
plotting devices of DrugTax, yielding the UpSetPlot [14] 
in Fig.  2. As expected, most of the compounds belong 
to the organic kingdom, although a few exceptions were 
observed in the form of inorganic salts and/or mixed 
metal/non-metal inorganic compounds. The most recur-
ring superclass was hydrocarbon derivatives, with few 
hydrocarbons present (organic molecules containing only 
carbon and hydrogen). The most populated aggregation 
of superclasses were organic molecules that fit the super-
classes: hydrocarbon derivatives, organoheterocyclic, 
organic oxygen, organic nitrogen and organopnictogens.

Applications
DrugTax was developed to simplify molecule charac-
terization. In particular, we deliver a comprehensible 
molecule categorization as well as clear and humanly 

Fig. 2  UpSetPlot displaying the bulk analysis of 10.567 unique compounds related to virus research
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interpretable features, which yields a set of simple and 
fundamental level applications. For example, Drug-
Tax package could be applied to generate similar-
ity searches, chemical space visualization, clustering, 
taxonomy-property relationships, among others. The 
results could then be combined with different easy-
to-implement visualization tools. For instance, for 
similarity search, a hierarchical clustering plot could 
capture the stratified difference between the various 
molecules. Likewise, for chemical space visualization, 
by using DrugTax features and projecting the feature 
vectors into two dimensions with Principal Component 
Analysis (PCA) or the more recent Uniform Manifold 
Approximation and Projection (UMAP), users could 
then produce different scatterplots colored by taxo-
nomic kingdom or superclass.

Due to its easy deployment and installation, DrugTax 
is a tool whose potential can unfold extensively.

Conclusions
DrugTax exhibits very fast performance with an easy-
to-use interface available on PyPI (https://​pypi.​org/​proje​
ct/​DrugT​ax/) and GitHub (https://​github.​com/​Morei​
raLAB/​DrugT​ax). It extends on the work of Classyfire 
[13] with novel features oriented towards data science, 
ML and AI solutions. Its heavily focused on interpretable 
pharmacological data and features, key for the scientific 
community, as well as the Pharma sector. DrugTax offers 
flexible solutions in an intuitive setting that explores the 
possibilities of SMILES representations for ML and AI 
solutions on a data-centric setting.
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