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Abstract 

Molecular property prediction (MPP) is vital in drug discovery and drug reposition. Deep learning-based MPP mod-
els capture molecular property-related features from various molecule representations. In this paper, we propose a 
molecule sequence embedding and prediction model facing with MPP task. We pre-trained a bi-directional encoder 
representations from Transformers (BERT) encoder to obtain the semantic representation of compound fingerprints, 
called Fingerprints-BERT (FP-BERT), in a self-supervised learning manner. Then, the encoded molecular representa-
tion by the FP-BERT is input to the convolutional neural network (CNN) to extract higher-level abstract features, and 
the predicted properties of the molecule are finally obtained through fully connected layer for distinct classification 
or regression MPP tasks. Comparison with the baselines shows that the proposed model achieves high prediction 
performance on all of the classification tasks and regression tasks.
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Introduction
Molecular property prediction (MPP) is an important 
issue in drug design and substance discovery. It is condu-
cive to improving chemical design, reducing research and 
development costs and accelerating the process of drug 
discovery. According to the different predicted proper-
ties, the molecular property prediction problem can be 
divided into classification tasks (such as toxicity) and 
regression tasks (such as atomization energy). Traditional 
methods based on density functional theory have explicit 
physical images but are time consuming when processing 
large numbers of molecules. In recent years, the predic-
tion of compound properties based on machine learn-
ing has attracted extensive attention from researchers, 
among which quantitative structure-activity relationships 
(QSAR) are one of the commonly used methods. The 

main idea of QSAR is that the structure of a molecule 
determines its properties; that is, the biological activity of 
a compound can be predicted by its molecular structure. 
Another major application of QSAR is virtual screening 
in drug discovery, which reduces the number of candi-
date compounds that need to be experimentally tested, 
thus reducing development costs and speeding up the 
drug discovery process.

Traditional QSAR methods use classical machine 
learning methods such as support vector machines 
(SVM) and random forests. However, in a 2012 Kag-
gle competition (Merck Molecular Activity Challenge), 
the champion team used the deep learning method to 
increase the accuracy rate by 15% compared with the 
traditional method [1]. Ma et al. [2] compared the per-
formance of a deep learning model with random forest 
on a set of QSAR datasets, including the Kaggle dataset, 
and found that the performance of the deep learning 
method was better in most cases. Xu et al. [3] applied a 
multitask neural network and discussed the reasons for 
performance differences caused by multitasks. The suc-
cessful application of these deep learning techniques 
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greatly improved the accuracy of the QSAR method, 
which led to more extensive research.

Deep learning techniques have been widely used in 
molecular property prediction. Yang et al. [4] compared 
two different models for predicting molecular proper-
ties, one using fixed molecular fingerprints/molecular 
descriptors and the other using graph convolutional 
neural networks to learn molecule representations. 
Liu et al. [5] proposed a multilevel graph convolutional 
neural network (MGCN), which predicted molecular 
properties based on density functional theory. Wang 
et al. [6] proposed a molecular embedding layer based 
on graph convolution, but it also retained molecular 
fingerprints to enhance generalization performance. 
Jeon and Kim [7] proposed FP2VEC, a molecular fea-
turizer based on molecular fingerprints, which repre-
sented each compound as a group of trainable vectors 
and built a QSAR model to verify the ability of FP2VEC 
to extract molecular features. The above molecular 
embedding method achieved good performance, but it 
must be carried out under supervised conditions.

Natural language processing (NLP) takes human lan-
guage as the research object, and the techniques used 
in this field can also be applied to biological data. Some 
models explicitly refer to the encoders in NLP, treating 
molecules as sentences and atoms or substructures as 
words, thus achieving various embeddings of mole-
cules. These encoders capture the generalizable features 
of molecular via self-supervised learning and subse-
quently transfer the pre-trained embedding model to 
downstream tasks. For example, the FP2VEC method 
treated the substructures obtained by the molecular 
fingerprint algorithm as words and performed word 
embedding [7]. The Mol2Vec method used the word-
2vec model for the substructures [8].

Recently, many remarkable pre-trained models for 
learning the representations of chemical molecules 
have been proposed based on the Transformer model, 
specifically the bi-directional encoder representations 
from Transformers (BERT) model [9–15]. Compared 
to word2vec, BERT consists of multiple Transformer 
encoders that can capture contextual information 
simultaneously to learn the word vector that integrates 
contextual information [16, 17].

A proper molecular representation method is essen-
tial for molecular property prediction. Most of the 
Transformer- and BERT-based models take as input 
of the common simplified molecular-input line-entry 
system (SMILES) strings. They often adopt the atom-
level tokenization that usually ignores substructure or 
branch information of molecules to some extent [18]. 
And that tokenization may also result in simplicity of 

the training tasks. Besides, the SMILES may cause a 
large number of ‘synonyms’ in the vocabulary [13].

Compared with atom-level representations, sub-
string-level representation provides some substructure 
information or fragments of the molecule in detail [18]. 
The vocabulary for the substring-level representation 
is physicochemically meaningful due to the fact that 
several atoms can form small atomic groups, which 
can further form larger atomic groups, and then these 
larger groups constitute molecules [18].

Thus, we built the substring-level vocabulary by using 
the extended-connectivity fingerprints (ECFP) genera-
tion algorithm [8, 19] on a big corpus. Then the molec-
ular sentences can be captured as the model input.

Meanwhile, various task-specific pre-training strat-
egies were explored in [9, 11–13, 15]. The MolBERT 
devised the pre-training strategies of SMILES equiva-
lence and predicting the normalized set of descriptors 
for each molecule [9]. The X-MOL designed a genera-
tive model by generating a valid and equivalent SMILES 
representation of the same molecule [11]. However, the 
strategy is not from a language-modelling perspective. 
Thus the Chemformer explored the pre-training tasks 
of short sequence masking and SMILES similarity [12]. 
The K-BERT employed the atom feature prediction, 
molecular feature prediction and contrastive learning 
pre-training tasks [13].

Motivated by the successful applications of the BERT 
in molecular encoding [9, 20], we propose a mol-
ecule property prediction framework composed of a 
pre-trained BERT encoder called Fingerprints-BERT 
(FP-BERT) to obtain the semantic representation of a 
molecule, by self-supervised learning using a corpus 
containing millions of molecule sentences. Then, the 
encoded molecular representation by the FP-BERT is 
input to the convolutional neural network (CNN) to 
extract higher-level abstract features, and the predicted 
properties of the molecule are finally obtained through 
fully connected layer for distinct classification or 
regression MPP tasks, such as the Absorption, Distri-
bution, Metabolism, Excretion and Toxicity(ADME/T) 
prediction.

Different from the mainstream, we employed the 
molecular sentences to pre-train the BERT encoder, 
and we explored the substructure masking pre-training 
task. The novelties of this paper are summarized below:

1.	 We take molecular sentence as the model input 
to pre-train the BERT encoder by predicting the 
masked substructural features of a molecule;
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2.	 We built the physicochemically meaningful vocabu-
lary for substructures, to leverage the atomic neigh-
bor information in molecular representations.

Methods
The framework of FP-BERT based MPP framework is 
shown in Fig. 1. The proposed MPP method in this paper 
consists of two parts: the pre-trained FP-BERT model 
on the left; and the neural network for the downstream 
prediction tasks on the right. To pre-train the FP-BERT, 
a large number of unlabeled compound molecules in 
the form of SMILES are converted into an ECFP [19] of 
radius 1 (as shown in Fig. 1 on the upper left) using the 
RDKit [21], and then a list of substructure identifiers 
and molecular sentences are obtained by molecular fin-
gerprint sentence generator. Herein, a corpus contain-
ing 2 million molecular sentences is built up and fed into 
the BERT model in a self-supervised learning manner 
to obtain a pre-trained FP-BERT encoder. In the down-
stream prediction model, a neural network consists of 
the pre-trained FP-BERT as the input encoder, the CNN 
layer, a global max-pooling layer and fully connected 
layer. The network is trained in a supervised manner with 

the FP-BERT fixed according to various downstream 
molecular property prediction tasks.

Molecular fingerprint encoding based on a language 
model
Inspired by self-supervised learning in NLP, we regard 
the compound substructures derived from the Morgan 
algorithm as words and the compounds as sentences to 
construct a corpus of compound molecules. Then, this 
corpus is used to pre-train the BERT model. The pre-
trained BERT model can generate a high-dimensional 
embedding representation of the substructure for any 
compound. Thus, any compound represented by sub-
structures is converted to a molecular representation in 
vector form, and downstream tasks such as molecular 
property prediction can be further completed.

 Generation of molecular sentence
In NLP, each sentence consists of a sequence of words. In 
chemistry, each molecule consists of a set of molecular 
substructures. Thus, a compound can be understood as 
a sentence, each substructure as a word, and the encod-
ing of the entire compound can be obtained by repre-
senting each substructure as a vector. To enumerate the 
substructures in compounds and encode them, we first 

Fig. 1  The architecture of FP-BERT based MPP model
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use the Morgan algorithm [22] to generate ECFP fin-
gerprints and extract the substructures (i.e., “words”) 
existing in the compounds and then generate the corre-
sponding molecular sentence for each molecule. We ran-
domly select compounds from the E15 [23] dataset. The 
E15 compound dataset is the diverse real drug-like subset 
of the ENA dataset provided by the Enamine Corpora-
tion, and it contains 15.5M molecules and their SMILES 
representations.

The initial SMILES representation of a compound is an 
ASCII string S= “ s1s2s3 · · · sn ”, where si ( i ∈ {1, 2, · · · , n} ) 
can be Arabic numerals, English letters and special sym-
bols. These characteristics in the SMILES string are used 
to represent atoms or chemical bonds in the compound. 
For example, a SMILES representation of 1-nitropropane 
is CCCN(=O)=O, where ‘(’ and ‘)’ denote the beginning 
and the end of the branch, ‘=’ represents a double bond, 
and ‘C’, ‘N’ and ‘O’ denote the carbon atom, nitrogen 
atom and oxygen atom, respectively.

In this paper, the algorithm is used to generate the cor-
responding ECFP fingerprint from the SMILES repre-
sentation to construct the molecular sentence [19, 22]. 
The main idea is to take each atom si in the sequence of 
SMILES as the center and find substructural fragments 
si0 and si1 with radius 0 and radius 1 in the molecu-
lar structure. si0 contains the information of the atom, 
while si1 contains the neighboring node information. 
Then, the two substructures si0 and si1 generated by 
atom si are mapped into the corresponding substructure 
identifiers a0i  and a1i  , respectively. In addition, all sub-
structure identifiers are sorted according to the order 

of each atom in the SMILES string and the radius of 
the substructure to obtain an atom identifier sequence 
L=[a01, a

1
1, a

0
2, a

1
2, · · · , a

0
p, a

1
p ], where a0i  , a

1
i  ( i ∈ 1, 2, · · · , p) 

are 4-byte integers and p represents the number of atoms 
in the SMILES sequence. L is the molecular sentence 
of the molecule, and its generation process is shown in 
Fig.  2. The specific steps of the above generation algo-
rithm are shown below.

The molecular sentence generation process has three 
sequential stages.

1. Each atom (except the hydrogen atoms and bonds 
to hydrogen atoms) is initially assigned a fixed length 
integer identifier a0i  that is hashed from the properties 
of the atom i and its attached bonds. An integer can be 
regarded as an indexes of a virtual bit string, and a bit of 
the virtual string indicates the existence(s) of a substruc-
ture or substructures. The hash function is used to map 
atom properties of arbitrary size to fixed-size integer 
identifiers to improve the storage efficiency. The property 
set consists of the properties, such as atomic number, the 
number of adjacent heavy atoms (non hydrogen atoms) 
of the central atom, the number of adjacent hydrogen 
atoms of central atom, formal charge, and an additional 
attribute: whether the atom is a part of the ring. These 
integer identifiers are collected to form the initial finger-
print set L0 = {a01, a

0
2, · · · , a

0
p};

2. The integer identifier set is updated iteratively. 
At the first iteration, substructures centering at initial 
atoms with radius 1 are matched. Then the integer iden-
tifier a1j  for the jth substructure is captured by hashing, 
and all the newly generated identifiers are added to the 

Fig. 2  The generation of molecular sentences
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fingerprint set. The identifiers for iteration 1 contain 
information about each atom’s immediate neighbors. At 
the tth iteration, the identifier for the kth substructure 
with radius t is updated to atk , and the generated iden-
tifier for each substructure is added to the fingerprint 
set of the last iteration to form a new fingerprint set 
Lt = {a01, a

0
2, · · · , a

0
p, a

1
1, a

1
2, · · · , a

1
p, · · · , a

t
1, a

t
2, · · · , a

t
p};

3. The updating process iterates until the substruc-
ture radius reaches a specific threshold, then duplicate 
or equivalent identifiers are removed. Finally, according 
to the atomic order in the canonical SMILES and the 
radiuses of substructures, sort all the identifiers in the 
fingerprint set to obtain the molecular sentence L.

Pre‑training description of BERT
The self-supervised pre-training of this study is con-
ducted using respective corpuses contains millions of 
unlabeled compounds which are all processed accord-
ing to the molecular sentence generation method 
introduced in 2.1.1, resulting in 3352 atom identifiers 
(words). The dictionary used in this paper has a total 
of 3357 words. In addition to these atom identifiers, it 
also contains five special words [PAD], [UNK], [CLS], 
[SEP], and [MASK]. Each molecule in the corpus is a 
sentence composed of substructure identifiers. These 
molecular sentences are used as the word embedding 
vectors in the input sequence of the BERT model, and 
the segmentation embedding vectors and the posi-
tion embedding vectors are concatenated to the input 
sequence. These three embedding vectors are sent to 
the Transformer encoder to learn the representation of 
the compound. The most important module in BERT is 
the self-attention mechanism. The self-attention mech-
anism adjusts the weight of each word in the input 
sequence to obtain a global representation vector con-
taining the context.

In this paper, the task of pre-training FP-BERT is a 
masked language modeling (MaskedLM), which ran-
domly masks a portion of the words in the input sentence 
and attempts to predict those masked words. As shown 
in Fig. 3, the MaskedLM task randomly covers up to 15% 
of words in each sentence composed of substructures in 
the training corpus and attempts to predict those words 
that are covered. For those covered words, the following 
three strategies are adopted:

1.	 Replace the masked word with [MASK] with 80% 
probability;

2.	 Replace the masked word with a random word with a 
probability of 10%;

3.	 Stay the same with 10% probability.

The pre-training task MaskedLM can make the FP-BERT 
model more dependent on the contextual information to 
predict the masked words, which gives the model a certain 
degree of error correction capability [24].

After the pre-training process is completed, taking 
the molecular sentence of any compound as input, the 
FP-BERT model generates the encoded representation 
of the molecule. The output of the model is a list of the 
state vector Ti ∈ R

H corresponding to each compound 
substructure, where H represents the hidden size and 
i ∈ {1, 2, · · · , n} . All substructure vectors form the encoded 
representation T=[T1,T2, · · · ,Tn ] of the compound.

Molecular property prediction model
After obtaining the appropriate molecular representa-
tion, a prediction model can be constructed to predict the 
molecular properties. CNNs can capture the local features 
of grid-like data and have been successfully applied in the 
field of image processing and natural language processing. 
In this paper, we build a molecular property prediction 
model based on the CNN framework. This CNN-based 
prediction model is mainly composed of a one-dimensional 
convolutional layer, a global max-pooling layer, and a fully 
connected layer.

First, we use a 1D convolutional neural network to per-
form feature extraction on the compound representation 
vector obtained by the BERT model according to

where xin ∈ R
n×256 represents the learned molecular 

representation, n represents the number of tokens in the 
input sequence, ⊛ represents the convolution operation, 
wconv represents the parameters to be learned, and oconv 

(1)oconv = Conv1d(xin ⊛ wconv)

T1 T2 Tn

E1 E2 En

847957 2592785 4578730

847957 [MASK] 4578730

BERT

Fig. 3  Pre-training procedures for BERT
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represents the output after passing through the 1D con-
volutional network. In addition, after the convolution 
layer, we use ReLU as the activation function.

After feature extraction by CNN, max feature omax can 
be selected from oconv by the max-pooling operation to 
achieve dimensionality reduction and parameter sharing.

Finally, the fully connected network outputs the predic-
tion results of the molecular properties of the compound 
according to

where wfc represents the parameter matrix of the fully 
connected layer, bfc represents the deviation, f represents 
the ReLU activation function, and y represents the pre-
diction results of the CNN model. In the classification 
task, y is a one-hot vector, which represents whether the 
molecule has the current property, and in the regression 
task, y is a real number, which represents the specific 
property value of the molecule.

For the classification task, we use the cross-entropy loss 
function to optimize our model according to

where ti represents the true label of sample i, yi repre-
sents the probability that sample i is predicted to be a 
positive sample, and n represents the number of samples.

For the regression task, we use the mean squared error 
loss function to optimize our prediction model according 
to

where ti represents the real property value of sample i, yi 
represents the predicted property value of sample i, and n 
represents the number of samples.

Performance evaluation method and hyperparameter 
setting
In this paper, the molecular property prediction model 
used ReLU as the activation function. For classification 
data sets, the prediction performance of the model was 
evaluated using ROC-AUC, which represents the area 
under the receiver operating characteristic curve. The 
calculation process of AUC is shown as follows,

(2)y = f(omax · wfc + bfc)

(3)Loss = −
1

n

n
∑

i=1

ti · log yi + (1− ti) · log(1− yi)

(4)Loss = −
1

n

n
∑

i=1

(yi − ti)
2

(5)

AUC =
1

M × N





�

i∈positive

ranki −
M × (1+M)

2





where M and N represent the number of positive and 
negative samples, respectively, and ranki represents the 
ranking of the score of sample i among all n samples.

For regression datasets, the prediction performance of 
the model was evaluated using root mean squared error. 
The calculation process of RMSE is shown as follows:

where ti represents the real property value of sample i, yi 
represents the predicted property value of sample i, and n 
represents the number of samples.

The R2 metric reflects the goodness of fit and it is cal-
culated on the training set wherein RSS is the residual 
sum of squares and TSS is the total sum of squares, and y 
is the mean of the predicted values.

The Q2 metric reflects the goodness of prediction and it is 
calculated on the test set wherein PRESS is the predictive 
residual error sum of squares.

Results and discussion
To evaluate the performance of the FP-BERT model, we 
conducted comparison experiments on five regression 
datasets and two classification datasets for molecular 
property prediction. On the HIV and the BBBP classifica-
tion datasets, we compared the FP-BERT with the bench-
mark models: FP2VEC [7], MolBERT [9], FCNN [25] 
and Bypass [25]. On the regression datasets ESOL, Free-
solv, and Lipophilicity, we compared FP-BERT with the 
benchmark models MolBERT, FP2VEC and FCNN. On 
regression datasets Malaria and CEP, we compared FP-
BERT with the benchmark models FP2VEC and ECFP. 
In addition, to validate the influence of the corpus size in 
the pre-training of FP-BERT, we also provide the results 
of the FP-BERT pre-trained on 10 million compound 
molecular sentences.

(6)RMSE =

√

√

√

√

1

n

n
∑

i=1

(yi − ti)2

(7)

R2 = 1− RSS/TSS

RSS =

n
∑

i=1

(yi − ti)
2

TSS =

n
∑

i=1

(y− ti)
2

(8)

Q2 = 1− PRESS/TSS

PRESS =

n
∑

i=1

(yi − ti)
2
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Datasets
In the experiment, we used the HIV dataset and the 
BBBP dataset for classification, and the ESOL dataset, the 
FreeSolv dataset, the Lipophilicity dataset, the Malaria 
dataset, and the CEP dataset for regression, to train and 
validate the proposed MPP model. These datasets are 
taken from the literatures [25] and [26]. In each dataset, 
the compound is represented as a SMILES string. The 
datasets are described as follows.

HIV dataset [27]: The HIV dataset is an experimental 
measurement of the ability to inhibit HIV replication. 
The HIV dataset contains 41,127 compounds and 
their ability of inhibition with binary labels.
BBBP dataset [28]: The BBBP dataset is blood-brain 
barrier penetration with binary labels. The dataset 
has a total of 2050 compounds.
ESOL dataset [29]: The ESOL dataset includes 
measurements of the water solubility of small com-
pounds. Water solubility is represented as a meas-
ured log solubility in moles per liter. The ESOL 
dataset includes 1128 compounds and their water 
solubility.
FreeSolv dataset [30]: The FreeSolv dataset contains 
the hydrogen-free energy of small compounds in a 
water environment measured by experiment and 
computer simulation. The dataset contains 642 mol-
ecules and their hydrogen-free energy.
Lipophilicity dataset: The Lipophilicity dataset con-
tains an octanol/water distribution coefficient at pH 
7.4 measured experimentally. The dataset has 4200 
compounds and their corresponding values.
Malaria dataset [31]: The Malaria dataset includes 
the experimentally measured half-maximal effec-
tive concentration (EC50) values of a sulfide-resist-
ant strain of Plasmodium falciparum, which is the 
source of malaria. The Malaria dataset has 9,998 
compounds and their EC50 values.
CEP dataset [32]: The CEP (Clean Energy Project) 
dataset includes the candidate molecules that are 
suitable for solar cell materials. The CEP dataset has 
29,978 compounds and corresponding CEP values.

All datasets were divided into the training set, vali-
dation set and test set at a ratio of 8:1:1. The regression 
datasets used the random splitting method, while the 
classification dataset used the scaffold splitting method. 
The scaffold splitting method [33–35] splits the samples 
based on their two-dimensional structural frameworks, 
and it attempts to divide structurally different molecules 
into different subsets, then the structural differences of 
the compounds among the training, validation and test 

sets increase. Thus, the splitting offers a more difficult 
evaluation setting than the random splitting. And the 
scaffold splitting method can be used to testify the gener-
alization of the model.

Experiment setting
In the molecular representation learning process of the 
FP-BERT model, the embedding dimensionality of each 
substructure is 256. In the training process of the neural 
network model, the hyperparameters include the learn-
ing rate, the length of the convolution kernel, the num-
ber of convolution kernels, and the number of neurons 
in the fully connected layer. In the classification task, the 
learning rate is 0.001, the length of the convolution ker-
nel is 5, the number of convolution kernels is 512, and the 
number of neurons in the fully connected layer is 256. In 
the regression task, the learning rate is 0.001, the length 
of the convolution kernel is 1, the number of convolution 
kernels is 2048, and the number of neurons in the fully 
connected layer is 256.

To avoid overfitting, we pre-trained the FP-BERT up to 
40 epochs on all compound data sets with the early stop-
ping scheme. In the experimental setup, we let the train-
ing of the models proceed until the accuracy parameter 
on a validation data set shows no sign of improvement 
for a given number of epochs, and then revert back to the 
best model found during the training.

Experiments on classification tasks
For the classification task, we compare our FP-BERT 
based MPP models with the baselines, including the 
FP2VEC model [7], MolBERT model [9], FCNN model 
[25] and Bypass model [25]. And the featurizer FP-BERT 
are pre-trained by 2 million and 10 million compounds, 
respectively. Then, our MPP model is trained by the 
labeled data in the HIV or BBBP datasets to conduct the 
downstream task-specified classification. To make a fair 
comparison with the benchmark models, the datasets are 
prepared in the same way. To evaluate the accuracy of the 
prediction model, we use the average ROC-AUC of five 
independent experiments on the test set as the experi-
mental result of the classification task. In addition, we 
use the standard deviation to measure the stability of the 
model. The experimental results of the classification task 
are shown in Table 1. We also ran the FP2VEC model and 
recorded the ROC-AUC value and the standard devia-
tion. The experimental results of the MolBERT, FCNN 
and Bypass model are taken from the literatures [9, 25].

It can be observed that our models and the Mol-
BERT achieve highest prediction performance in the 
classification task: the FP-BERT model (Ours-2) pre-
trained on 10 million compounds captures the best 



Page 8 of 13Wen et al. Journal of Cheminformatics           (2022) 14:71 

result on HIV while the MolBERT achieves the best 
result on the BBBP dataset. Different from our mod-
els pre-trained only by the canonical masked language 
modeling (MaskedLM) task proposed by BERT, the 
MolBERT was pre-trained on two additional tasks: the 
SMILES-EQ and the PHYSCHEMPRED tasks. In the 
SMILES-EQ task, the MolBERT was trained to predict 
whether the two inputs represent the same molecule. In 
the PHYSCHEMPRED task, the MolBERT attempts to 
predict the normalized set of descriptors for each mol-
ecule. The task combination makes the encoder pre-
trained more sufficiently and may lead to better feature 
representation ability. In addition, the PHYSCHEM-
PRED pre-training task is close to the down-stream 
QSAR task, possibly boosting the model predictive 
performance.

Compared to the MolBERT, the Ours-2 method pre-
trained only on the MaskedLM task has reached the 
superior results to all the benchmarks on the HIV dataset 
and second best result on the BBBP dataset, meanwhile, 
the results of the Ours-1 model pre-trained on 2 million 
compounds are also competitive. The observations pos-
sibly indicate the effectiveness of our physicochemically 
meaningful vocabulary and taking molecular sentence 
as model input. The similar results can be found from 
the Fig.  4 that the ROC curves of our FP-BERT based 
MPP model almost cover the ROC curve of the FP2VEC 
model.

Figure  5 shows comparative PR curves of our meth-
ods versus the FP2VEC method. On the HIV dataset, the 

Ours-2 model reaches the highest PR metric and the best 
PR curve, demonstrating the superior predictive perfor-
mance. On the BBBP dataset, the Ours-1 model achieves 
the best PR value. The above observations can indicate 
the high performance of our FP-BERT featurizer.

In addition, the Ours-2 model obtains better results on 
both the HIV and BBBP datasets than the Ours-1. The 
observation may indicate that the BERT-style molecular 
representation model improves with bigger dataset in a 
range. But the prediction model performance depends on 
multiple factors, that may be related to the pre-training 
dataset size, the specific downstream dataset and task.

The strong generalization ability of our FP-BERT based 
MPP model can be testified in light of the strict setting 
of the scaffold dataset splitting and the imbalance in 
datasets. The scaffold splitting ensures the dissimilarity 
between the training and testing datasets. We calculated 
the average similarity of each molecule on the training 
dataset to all the molecules on the testing dataset. The 
left violin plot of Fig.  6 shows the similarity between 
training and testing datasets on HIV and the right plot 
shows the similarity on BBBP.

Table 1  The ROC-AUC scores on the test datasets

Model Featurizer HIV BBBP

FP2VEC FP2VEC 0.757 ± 0.006 0.713 ± 0.006

FCNN ECFP 0.698 ± 0.037 0.688 ± 0.005

Bypass ECFP 0.693 ± 0.026 0.702 ± 0.006

Ours-1 FP-BERT (2 M) 0.765 ± 0.006 0.696 ± 0.004

Ours-2 FP-BERT (10 M) 0.776 ± 0.005 0.714 ± 0.008

MolBERT MolBERT 0.747 ± 0.000 0.750 ± 0.000

Fig. 4  ROC curve on the HIV dataset

Table 2  The RMSE scores on test sets for the ESOL, FreeSolv and 
Lipophilicity datasets

Model Featurizer ESOL FreeSolv Lipophilicity

Ours-1 FP-BERT (2M) 0.67 ± 0.04 1.14 ± 0.06 0.66 ± 0.02

Ours-2 FP-BERT (10M) 0.67 ± 0.07 1.07 ± 0.18 0.67 ± 0.02

FP2VEC FP2VEC 1.06 ± 0.10 1.56 ± 0.22 0.84 ± 0.02

FCNN ECFP 1.12 ± 0.15 1.87 ± 0.07 0.86 ± 0.01

MolBERT MolBERT 0.552 ± 0.07 1.523 ± 0.66 0.602 ± 0.01
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The max similarity on HIV is 0.3652 and the median 
value is 0.2278 (as shown by a light blue ball), the mean 
value is 0.2199 (as shown by a red line). The max similar-
ity on BBBP is 0.3956 and the median value is 0.2436, the 
mean value is 0.2317. The result certifies the molecules in 
the testing dataset are dissimilar to the molecules in the 
training dataset.

To explore the reason for low PR values on HIV, we 
computed the ratio of positive samples on classification 
datasets. The ratio of positive samples on HIV is only 
0.035 compared to that of 0.765 on BBBP. Thus, the 
false positive predictions may exert a great influence on 
the model precision on HIV. The highly imbalance on 
the HIV dataset possibly causes the much lower PR val-
ues than that on BBBP.

Fig. 5  Comparative PR curves of our methods versus the FP2VEC 
method

Fig. 6  Similarity between training and testing datasets

Table 3  The RMSE scores on test sets for the Malaria and CEP 
datasets

Featurizer Network Malaria CEP

Ours-1 FP-BERT (2M) 1.03 ± 0.06 1.21 ± 0.07
Ours-2 FP-BERT (10M) 1.05 ± 0.02 1.22 ± 0.04

FP2VEC CNN 1.01 ± 0.02 1.34 ± 0.04

ECFP Linear 1.13 ± 0.03 2.63 ± 0.09

Neural network 1.36 ± 0.10 2.00 ± 0.09
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Experiments on regression tasks
For regression tasks, we evaluate our MPP models on 
the ESOL, FreeSolv Lipophilicity, Malaria and CEP 
datasets. To evaluate the performance of the prediction 

model in regression tasks, we report the average RMSE 
of five independent experiments on the test set and use 
the standard deviations to measure the stability of the 
model. We also provide R2 , Q2 and the p-value from t test 

Fig. 7  RMSE values of our MPP model versus measured values
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in terms of RMSE values of FP-BERT versus FP2Vec to 
further certify the regression performance of FP-BERT. 
The results are shown in Tables  2, 3 and 4. The bench-
mark results are directly taken from the literature [7, 9, 
25] and [26].

In Tables  2 and 3, similar to the classification tasks, 
our models and the MolBERT still show better regres-
sion performance. The Ours-2 model provides the best 
performance on FreeSolv, the Ours-1 achieves the low-
est RMSE value on CEP. Meanwhile, the Ours-1 and 
Ours-2 models achieve close performance. The Mol-
BERT, possibly due to its sophisticated pre-training 
strategies, captures the best results on ESOL and Lipo-
philicity. Our models still achieve comparative results, 
and capture superior RMSE metrics to that of the 
FP2VEC and FCNN on ESOL and Lipophilicity. For the 
Malaria dataset, our FP-BERT based models achieve a 
slightly weaker performance than that of FP2VEC but 
are still superior to the other benchmark models.

The above observations can indicate the high per-
formance of our MPP models for regression tasks. And 
our proposed models perform generally better than 
other molecular fingerprint-based methods, those are 
the FP2VEC, FCNN nad ECFP, in regression tasks. Fur-
thermore, our FP-BERT featurizer can effectively learn 
molecular representation using 2 million compounds, but 
the featurizer promotes a little with the bigger dataset.

Figure  7 illustrates the RMSE values of our MPP 
model versus observed properties on the five regres-
sion datasets, wherein the model is pre-trained on 10 
million data. A perfect model is expected to provide a 
yi = ti line where yi means the predicted value and ti 
means the ground truth. We observed that the densi-
ties of scatter points in the five sub figures were high 
around the yi = ti line. That indicates our model can 
capture accurate predictive results visually.

We also report the statistical metrics of our model 
to further evaluate its performance in regression tasks. 
We conducted the proposed method and the bench-
marking FP2VEC method for five times independently, 

then the p-value was computed by paired t-test in 
terms of the RMSE values.

Our MPP model achieved impressive R2 and Q2 val-
ues on 4 out of 5 datasets, demonstrating the FP-BERT 
model has high accuracies of fitness and prediction on 
the 4 regression tasks. We can also testify that our MPP 
model outperforms FP2VEC with p-values of far lower 
than 0.05 on the 4 out of 5 regression tasks. However, FP-
BERT captures p-value = 0.092 on the Malaria dataset, 
demonstrating that the RMSE difference between our 
model and FP2VEC is not significant statistically on that 
dataset.

Conclusions
This paper proposed a molecular property prediction 
method FP-BERT based on the pre-trained language 
model BERT and the CNN based prediction model. 
The pre-trained BERT model treats each substructure 
of a compound as a word and treats each compound as 
a sentence and it is used to encode each molecule. And 
the CNN block is used to extract high-level features from 
the learned molecular representation, then the fully con-
nected layer is used to predict and output the property 
prediction result of each molecule. Experimental results 
showed that the proposed method achieves good perfor-
mance in both regression and classification tasks, dem-
onstrating the strong molecular representation ability of 
FP-BERT and proving that it is feasible to apply the con-
cepts and techniques in NLP to computational biology. 
However, there are still some limitations of this study, the 
model can only predict the same properties as the dataset 
it was trained on, and this may be improved by the multi-
task learning in the future.
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