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Abstract 

Establishing a data-driven pipeline for the discovery of novel materials requires the engineering of material features 
that can be feasibly calculated and can be applied to predict a material’s target properties. Here we propose a new 
class of descriptors for describing crystal structures, which we term Robust One-Shot Ab initio (ROSA) descriptors. 
ROSA is computationally cheap and is shown to accurately predict a range of material properties. These simple and 
intuitive class of descriptors are generated from the energetics of a material at a low level of theory using an incom-
plete ab initio calculation. We demonstrate how the incorporation of ROSA descriptors in ML-based property predic-
tion leads to accurate predictions over a wide range of crystals, amorphized crystals, metal–organic frameworks and 
molecules. We believe that the low computational cost and ease of use of these descriptors will significantly improve 
ML-based predictions.
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Introduction
A major objective in material science is to generate 
machine learning (ML) models that can accurately, and 
rapidly, predict a property for a given material by using 
information derived from the material’s structure only 
[1, 2]. Predicting material properties such as the energy 
bandgap would then only take a few seconds or a frac-
tion of a second using an ML model, instead of consum-
ing several hours, or even days on a supercomputer to 
perform a first principles calculation, such as density 
functional theory (DFT). With the availability of mas-
sive materials datasets such as MaterialsProject [3] and 
AFLOW [4] which host more than 3.5 million materials, 
it is becoming increasingly possible to screen materials 

for their properties [2]. To achieve such an objective, 
one must find features that can map a material structure 
against the highly nonlinear material properties. The vec-
tor of feature descriptors (the individual quantities that 
constitute the feature)1 must be unique to each material 
and feasible to calculate. An ML model can subsequently 
be trained to translate descriptors into properties i.e. per-
form the mapping of structure against property. No mat-
ter how sophisticated or “deep” the ML models are, they 
will fail as long as the descriptors are poorly chosen.
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1  The terms “features” and “descriptors” are used interchangeable in the litera-
ture. Here we refer to a “feature” as a group of “descriptors”. Note that other 
terms, including “attributes” and “fingerprints”, are also frequently used in the 
literature, and they have the same meaning as “descriptors”.
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The quality of descriptors is usually appraised by the 
ability of the descriptors to train predictive ML models. 
However, we emphasize the importance of three other 
key elements for judging the quality of descriptors, that 
are as important as their predictive power:

1.	 Meaningfulness of features: the term “meaningful 
features” appears frequently in the broad ML litera-
ture, such in in Ref. [5]. In the context of material 
science, the term loosely means that the features are 
related to a physical and/or chemical principle. An 
example is Ref. [6].

2.	 Calculation efficiency: the cost of computing the fea-
ture should be much less than that of calculating the 
target property.

3.	 Number of descriptors within a feature: the expres-
sion of a material structure into a relatively small 
number of features (i.e. a few hundreds) can ensure 
the simplicity of the ML model. Features that require 
the calculation of thousands of features entail costly 
storage requirements for datasets, higher process-
ing requirements for the utilization of the trained 
ML models, and non-transparent, or “black-box” ML 
models [5].

We call these four criteria of ML features for materials 
the MENA criteria (Meaningful, Efficient, small Number 
of descriptors, Accurate). A number of ML features have 
recently been proposed in the literature for predicting the 
various DFT-calculated properties for materials, but they 
differ in how they satisfy the MENA criteria. We classify 
these features into the following four classes:

1.	 Elemental features: this is the simplest type of fea-
tures, and the quickest to calculate. The descriptor 
values within these features are directly related to a 
property of the elements within the crystal structure 
or molecule, and therefore are physically and chemi-
cally meaningful. For example, for a crystal structure, 
a possible elemental feature is the mean atomic num-
ber and mean elemental melting point of the atoms 
within the crystal unit cell. However, these features 
are nonunique; two materials with equal composi-
tion, but different structural phases, will have the 
same elemental features. They are thus not accurate. 
It was also reported that that, in some cases, the most 
significant features for predicting a property seem to 
be counter-intuitive [6]. Using those features alone 
might work in limited cases, such as when using a 
small dataset (such as the ~ 300 materials dataset in 
Ref. [7]), but cannot be generalized for the broader 
set of materials. The reason these features work is 
related to the distribution of polymorphs in present-

day materials databases: in MaterialsProject, for 
example, the average number of polymorphs for each 
materials is ~ 1.4. If there were more polymorphs, 
elemental features might suffer from the fact that a 
material will have multiple property values (such as 
SiC, which has 27 polymorphs in MaterialsProject 
and their bandgaps range from 0 eV to 2.3 eV).

2.	 Geometry-based features: these include property-
labelled materials fragments (PLMFs) [8], crystal 
graphs [9] and symmetry functions [10], among oth-
ers. These features calculate translationally-invariant 
geometric, as well as elemental, quantities based 
purely on the material’s geometry. A simple, yet 
effective geometric descriptor is the symmetry group 
of the material’s lattice, which is ideally hot-coded 
into 230 separate zero-or-one columns. Many of the 
features in this class are mathematically very com-
plex. An example of such descriptors is the symmetry 
functions. They are evaluated from the summation 
of exponential functions of the atomic distances. The 
features in this class are generally feasible to calcu-
late.

3.	 Electronic structure features: they are calculated 
based on the electronic properties of the individual 
constituents of the material or molecule. That is, they 
are derived for separate atoms and/or bonds within 
the structure, but not for the entire structure. Exam-
ples include: the electronic structure attributes [11], 
molecular orbital attributes [12] and smooth overlap 
of atomic positions (SOAP) [13].

4.	 Ab initio-based features: examples are the molecular 
orbital energies [14] and the OrbNet Denali descrip-
tors [15]. These descriptors are calculated by per-
forming a full ab  initio calculation at a low level of 
theory, and then the output of this calculation is used 
as descriptors for predicting the system’s properties 
at a higher level of theory; that is, ML here is “cor-
recting” the outcome of low-level theory. A related 
ML procedure is the Δ-ML [16, 17], in which an 
ML model is trained to predict the difference in the 
value of a property, such as the HOMO–LUMO 
gap, between the value obtained using a high level 
of theory, and that using a low level of theory. Using 
ML to correct the results of DFT calculations has 
been known for a while [18]. The descriptors in these 
features are highly meaningful, since that they cor-
respond directly to physically-computed quantities. 
In fact, the meaning of the descriptor values over-
lap with that of the target properties, such as the 
case of using molecular orbital energies (HOMO 
and LUMO values) to train a model to predict the 
HOMO–LUMO gap. However, this class of features 
is the most expensive to calculate; a DFT calculation 
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scales as N3, where N = number of atoms in the unit 
cell [19]. Thus, the calculation of the descriptors in 
these features typically require the utilization of high-
performance computing facilities and long comput-
ing hours.

In this work we propose a new feature that can achieve 
the MENA criteria. Inspired by the ab  initio-based fea-
tures class, our robust one-shot ab initio (ROSA) descrip-
tors of a given material are DFT-based descriptors. 
However, unlike the current member features of this 
class, ROSA descriptors are not calculated self-consist-
ently; in fact, they are calculated by performing only 
one step in the self-consistent field (SCF) iteration. The 
ROSA descriptor values include the eigenvalues and 
total energy components that result from this compu-
tational step. ROSA descriptors are more computation-
ally efficient than other ab  initio-based features, equally 
meaningful, can be expressed with a small number of 
descriptors (109 descriptors, as will be explained below) 
and are highly accurate, as will be demonstrated in the 
following sections. We augment the ROSA descriptors 
with other material features, including atom-based and 
geometry features, and compare the predictive power of 
the different feature classes. We demonstrate the accu-
racy of predicting a range of material properties using the 
ROSA descriptors. These descriptors are also shown to 
be predictive for properties that are not directly related 
to a material’s energy, such as the material’s vibration 
properties. By using the energy bandgap, calculated using 
the popular Perdew-Burke-Ernzerhof (PBE) functional 
[20], as an additional input quantity, we also demonstrate 
the accuracy of predicting high-level energy properties of 
materials, namely: the HSE bandgap [21], GW bandgap 
[22] and the exciton binding energy calculated by solv-
ing the Bethe–Salpeter equation (BSE) [23]. We display a 
schematic diagram of the ROSA descriptors in Fig. 1a.

The manuscript is organized as follows: Section “Fea-
tures” introduces the ROSA feature as well as the other 
features that will be used in this work, Section “Results 
and discussion” presents the results of training machine 
learning models on a range of material properties: Sec-
tion “Energetics, mechanical and vibrational properties of 
bulk systems” is for energetic, mechanical and vibrational 
properties of bulk material properties, Section “High-
level energetics of two-dimensional materials” is for the 
higher-level energetics of two-dimensional materials, and 
Section “Prediction of properties of molecular systems” is 
for the prediction of properties molecular systems. Sec-
tion “Conclusion” is the conclusion of the work.

We examine the calculation CPU times and the cal-
culated ROSA eigenvalues, based on single-core calcu-
lations performed using Intel Xeon Scalable processor 

cores. For a sample of ~ 230 materials from the Materi-
alsProject with varying sizes, we compare the CPU time 
and the eigenvalues obtained by running a full SCF using 
VASP on a 4 × 4 × 4  k-points mesh, the ROSA feature 
calculation using the linear combination of atomic orbit-
als (LCAO) (labelled ROSA LCAO) and the plane wave 
basis set (labelled ROSA PW), and the ROSA calculation 
using VASP version 5.4.4 [24]. All of these calculations 
have been performed on a single core, to enable direct 
comparison of CPU times. The results are displayed in 
Fig. 2a. In the figure, while the CPU time of ROSA PW 
and ROSA LCAO nearly coincide for a large number of 
materials, ROSA PW takes more CPU time than ROSA 
LCAO due to the increased complexity of PW calcula-
tions in larger unit cells. For this reason, the LCAO basis 
sets are used in the present ROSA calculations. Moreo-
ver, the full SCF calculation consumes much more time 
than both ROSA PW and ROSA LCAO by 1 to 4 orders 
of magnitude, which shows the significant time saving 
that is achieved with ROSA descriptors.

In Fig. 2b, we compare the eigenvalues obtained using 
the different methods by calculating the absolute value 
of the difference between the 100 eigenvalues obtained 
using ROSA LCAO, and those obtained using ROSA PW, 
VASP PW and VASP full SCF. The eigenvalues of ROSA 
PW are close to those of ROSA LCAO, while the eigen-
values obtained using VASP full SCF and VASP PW are 
quite different from those obtained using ROSA LCAO.

Features
In this work we have utilized three groups of features: the 
ROSA feature, the atom-based statistical properties, and 
a modification of the symmetry functions introduced in 
Ref [10].

ROSA feature
Although the calculation of the descriptors in the ROSA 
feature requires a DFT calculation, it is a rather “super-
ficial” calculation, in which the applied DFT is set at the 
lowest possible level of accuracy, and only one non-self-
consistent SCF step is executed; that is, not a full SCF 
iteration. The descriptors obtained from this calculation 
are the energy eigenvalues and total energies. We use the 
python-based GPAW code (version 21.1.0) [25], which 
can be easily installed on personal computers, for these 
calculations. The spin-restricted PBE exchange–correla-
tion function is used, and calculations are performed at 
the Γ point. Note that setting the maximum iteration to 
1 without raising an error from the present version of 
GPAW required that the source code be modified. This 
ROSA calculation produces a unique set of eigenvalues 
and 9 total energy values for each material. We centre 
each set of eigenvalues at the Fermi level and consider the 
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eigenvalues corresponding to 50 occupied and 50 unoc-
cupied orbitals.

The present implementation of the ROSA feature relies 
on pseudopotentials currently available in the GPAW 
library, which does not include lanthanides and actinides. 
If the pseudopotential of any atom in the unit cell is not 
available, the algorithm substitutes it with that of the 
yttrium atom. The choice of the yttrium atom is arbitrary, 
but it had a limited impact on the accuracy of the predic-
tions of target properties in materials where a lanthanide/
actinide was substituted with Y.

Basic atom and crystal descriptors (BACD)
This set of descriptors includes the properties of the 
individual atoms in the crystal, as well as the symmetry 
information of the crystal structure. The atom-based 
descriptors include 21 elemental descriptors such as 
the bulk modulus, ionic radius, rigidity modulus and 
the molar volume. For each of these descriptors, we 
include four statistical values over all atoms within the 
crystal: mean, standard deviation, maximum and mini-
mum values. The crystal structure descriptors include 
the symmetry group, which is hot-encoded into 230 

Fig. 1  A schematic illustration of the ROSA feature. The top figure displays an ordinary DFT calculation, in which two self-consistent optimization 
loops (the electron density optimization and geometry optimization) determine the electronic structure of the ground state system. This ground 
state is identified by energy eigenvalues and total energy (the system “Energies”). The lower figure shows how ROSA feature approximate the 
properties of the ground state system: it extracts the system “Energies” before optimization and uses that to train a machine learning model to 
predict the desired properties
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columns to denote each of the 230 symmetry groups, 
and the statistical summary of the distance matrix. The 
distance matrix is the set of distances between each 
atom and its neighbouring atoms within the crystal. 
In the present implementation there are 325 BACD 
features.

Symmetry functions (G)
We calculate the following two symmetry functions for the 
crystal:

where Rij is the distance between the atoms at posi-
tions Ri and Rj. The Gi

1 and Gi
2 symmetry functions are 

Gi
1 =

∑

j

e−ρ(Rij−Rs)
2
fc(Rij)

Gi
2 =

∑

j

e−ρ(Rij−Rs)
2
e−γ |Zi−Zj|fc(Rij)

fc(x) =

{

1, x < Rc

0, x ≥ Rc

calculated for each atom i in the crystal, Gi
1 is inspired 

by the function with the same label in Ref. [10], whereas 
Gi
2 is a modification of Gi

1 in which a term containing 
the difference in atomic numbers, −γ

∣

∣Zi − Zj

∣

∣ , is added 
to the exponential function. The cutoff function fc(Rij) 
takes a simpler form than that in Ref. [10]. The variables 
ρ , Rs , γ and Rc are descriptor parameters. For each crys-
tal structure, the mean value of  Gi

1 for all atoms i in the 
crystal represents one descriptor in the feature set. This 
value is obtained for a specific choice of the variables ρ , 
Rs , and Rc . Thus, the full descriptor set for the Gi

1 func-
tion are obtained by assigning different values of ρ , Rs , 
and Rc and calculating 

∑

Gi
1/N  , where N is the number 

of atoms in the crystal. The same procedure is applied for 
the Gi

2 function, which has the additional parameter γ . In 
total we generate 600 G descriptors for the subsequent 
machine learning procedures. Thus the total number of 
descriptors, including all three classes, is 1,034.

Each of the three descriptor classes is further divided 
into groups to simplify the analysis. The ROSA descrip-
tors are divided into 3 groups: VBM (the occupied energy 
levels), CBM (the unoccupied energy levels), and e (the 
total and constituent energy components including: the 
total exchange–correlation energy, total kinetic energy, 
total Hartree energy, Fermi energy, total Coulomb energy, 
total entropy, total electron-atom interaction energy and 
total free energy). The BACD descriptors are divided into 
5 groups: SG (symmetry group), T (thermal properties of 
the elements), Geo (geometric features including the dis-
tance matrix and the lattice angles) and A (other atomic 
features). The G descriptors are divided into 2 groups: G1 
(the G1 features) and G2 (the G2 features). The analysis of 
the feature importance will involve the aggregation of the 
individual descriptor groups, as is shown in Fig. 3a.

Results and discussion
Energetics, mechanical and vibrational properties of bulk 
systems
The ROSA feature includes approximate information 
about the PBE bandgap and total energy of the system, 
and therefore, supported by the BACD and G features, 
an ML model should be able to accurately map them 
to the converged PBE and formation energy of the sys-
tem. We construct a dataset of 65,899 materials from 
MaterialsProject, of which 24,311are semiconductors 
(37%). We consider semiconductors as materials with 
a bandgap > 0.1  eV, and metals are otherwise. We train 
XGBOOST regression and classification models, and for 
all models we use 80% of the dataset as a training set, and 
reserve the remaining 20% as a test set.

First we apply the three descriptor classes for the pre-
diction of three energetic properties: the PBE bandgap, 
formation energy per atom, Ef and the bulk modulus, 

Fig. 2  a A comparison between the ROSA descriptors calculated 
using LCAO the basis set, ROSA using the PW basis set, a full SCF 
calculation using PW basis set and the ROSA using VASP. b The 
absolute value of the difference between the eigenvalues of the 
ROSA descriptors and those calculated using VASP, ROSA PW and the 
full SCF. The values are in eV, and the position of the Fermi energy 
(EFermi) is indicated with an arrow
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KVHR. For the PBE bandgap prediction, we train a clas-
sifier model to distinguish metallic from semiconduct-
ing crystals, and a regression model to predict the 
bandgap values for the materials. The classifier achieves 
an area under the curve (AUC) of 0.97. The regres-
sion model achieves an R2 = 0.89 with a mean absolute 
error (MAE) of 0.22  eV (Table  1). We train another 
regression model for the prediction of the formation 
energy per atom, and it achieves a very high accuracy: 
R2 = 0.97 with a mean absolute error (MAE) of 0.11 eV. 
These two accuracy values compare well against those 
reported in Ref. [8]. The receiver operating characteris-
tic (ROC) of the classifier model is displayed in Fig. 3b, 
and the correlation plots for the regression models are 
displayed in Fig. 3c, d.

Fig. 3  Performance of the three feature classes (ROSA, BACD and G) in the prediction of the bandgap, EG, formation energy by atom, Ef, bulk 
modulus, KVHR, the vibrational entropy, S, the specific heat, CV and the effective dielectric constant, εeff. a The feature importance matrix for 
predicting the properties by the feature groups outlined in Section “Features”. b The receiver operating characteristic (ROC) for the metal/insulator 
classification model (described in the text). c–j The correlation plots for the prediction of the regression models for EG, Ef, KVHR, S, CV, εeff, the 
bandgaps for the materials in the QOMF database and the potential energy surfaces (PESs) for amorphized diamond unit cells, respectively

Table 1  The R2 and mean absolute error (MAE) values for the 
prediction of the quantities EG, Ef, KVHR, S, CV, εeff, MOF bandgap 
for the QMOF structures and the total energy for amorphized C8 
crystals (potential energy surface, PES).

The MAE values for EG, Ef and MOF bandgaps are in eV, for KVHR it is in GPa, for S 
and CV in meV/atom/K and for the PES for C8 crystals is eV/atom

Property Dataset size R2 MAE

EG 65,899 0.89 0.22

Ef 65,899 0.97 0.11

KVHR 13,147 0.86 16

S 1,521 0.85 23

CV 1,521 0.85 13

εeff 1,521 0.66 3.2

MOF bandgap 20,425 0.86 0.31

PES for C8 crystals 5,000 0.81 0.14
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The KVHR dataset currently includes 13,147 values in 
MaterialsProject, and the dataset for the vibrational 
properties includes 1521 materials in MaterialsPro-
ject (which goes down to 1245 materials after remov-
ing structures with imaginary phonon frequencies). 
Upon training an XGBOOST regression model on pre-
dicting KVHR values, the model achieves an R2 = 0.86, 
MAE = 16 GPa (Table  1). While the accuracy of this 
model is not as high as the model trained on the PLMF 
features in Ref. [8], which achieved R2 = 0.97, the accu-
racy reported here is still a significant one because it 
covered a larger set of data than the dataset in Ref. [8].

In the feature importance matrix displayed in Fig.  3a, 
the feature importance is calculated from the total gain 
in the XGBOOST model tree. The key observation in 
the matrix is that the ROSA descriptors are the most sig-
nificant contributor to the model prediction of the PBE 
bandgap EG, and the third most significant contribu-
tor for Ef. As would be expected, the atomic features (A) 
are the prime contributor for Ef, followed by geometric 
features of the crystal. The primary ROSA descriptor 
group that contributes to the prediction of Ef is the set 
of total energy values in the pristine system, e, where as 
for the prediction of EG are the sets of VBM and CBM 
descriptors.

In order to examine the generality of the ROSA 
descriptors to non-energetic properties, we train regres-
sion models to predict three quantities that are obtained 
from the vibrational spectrum of a material: entropy, S; 
specific heat, CV; and the effective polycrystalline dielec-
tric function, εeff defined as.

Where εi is the i component of the dielectric tensor, 
i = x,y,z. The achieved accuracy of the trained regression 
models are R2 = 0.85, MAE = 23 meV/atom/K; R2 = 0.85, 
MAE = 13  meV/atom/K and R2 = 0.66, MAE = 3.2, 
respectively. These values are comparable to those 
reported in Ref. [26].

The ROSA descriptors group e plays the key role in 
determining KVHR values, as shown in Fig.  2a; it consti-
tutes the most significant set of descriptors (sum of fea-
ture importance of features in the group is ~ 51%). Owing 
to the mechanical nature of the bulk modulus, the G1 
feature group is the second most significant determinant 
of the property. The ROSA eigenvalue feature groups 
VBM and CBM together form the fourth most signifi-
cant group. These results show the importance of ROSA 
descriptors for properties that are not directly related to 
the material’s energy eigenvalues or energy components. 
Those descriptors are even significant in predicting the 

εeff =
3εxεyεz

εxεy + εxεz + εyεz
,

three vibrational properties S, CV and εeff. Given that 
these properties are strongly related to the material’s 
structure and composition, the Geo, A, G1 and G2 fea-
ture groups are the two most significant determinants of 
all three properties as shown in Fig. 3a. The ROSA eigen-
value group are less significant in determining the three 
vibrational properties.

We also examine the ability of the ROSA descriptors 
in capturing the bandgaps in a different class of systems: 
metal–organic frameworks (MOFs) and amorphized 
crystals. We trained an XGBOOST model on the entire 
QMOF database [27], which has 20,425 MOFs along with 
their PBE-calculated bandgaps. Here we used the ROSA 
and the BACD descriptors, and achieved a reasonable 
prediction accuracy, with R2 = 0.86. This value for R2 is 
close to that reported by Rosen et al. [27], where the high-
est achieved accuracy was R2 = 0.87 which was obtained 
using the crystal graph convolutional neural network. For 
amorphized systems, we trained an XGBOOST model to 
predict the total energy of an amorphized diamond unit 
cells (with 8 atoms). The amorphization was performed 
by running a molecular dynamics in GPAW using the 
effective medium potential. A dataset of 5,000 snapshots 
of the carbon system were captured, and a single-point 
calculation for each of these structures was performed 
using VASP at the PBE level of theory. The trained model 
could predict the total energy/atom with an accuracy of 
R2 = 0.81. These results assert the applicability of ROSA 
descriptors across different systems, quantities and cal-
culation methods.

High‑level energetics of two‑dimensional materials
The largest open-source dataset that provides these band-
gaps is C2DB [28], which hosts > 4000 2D materials and 
provides the HSE results for 1,302, GW bandgaps for 357 
materials and exciton binding energies for 373 materials. 
Using this dataset as a training set, Liang and Zhu have 
recently trained ML models on ~ 150 2D materials to pre-
dict the HSE, GW and BSE energies of ~ 30 materials in 
the NREL dataset (which is composed of 3D materials) 
using a set of descriptors inspired by Phillips’s ionicity 
theory [29], claiming that they demonstrated transferable 
learning of these bandgap values. The prediction accu-
racy they reported was quite high when the PBE bandgap 
is added as a feature.

However, a line of best fit can be obtained for both GW 
and HSE bandgaps based on PBE bandgaps with R2 of 
0.95 and 0.88, respectively (see Fig. 3a, b). The PBE band-
gap therefore plays the role of the ROSA descriptor; it is a 
bandgap computed with a far less level of theory than the 
GW and HSE bandgaps. However, with such a strong lin-
ear dependence, the PBE bandgap value alongside other 
features will be the most dominant feature, as can be seen 
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in the SHapley Additive exPlanations (SHAP) plots in 
Ref. [29].

We utilize the three descriptor classes to train regres-
sion XGBOOST models to predict the three quanti-
ties: HSE and GW bandgaps and the exciton binding 
energies, Eb. Note that the ROSA features that are used 
for predicting HSE and GW bandgaps and Eb are the 
same as those that were used in Section “Energetics, 
mechanical and vibrational properties of bulk systems”, 
except that the PBE bandgap is added to the former. 

The results are displayed in Fig. 4. For the HSE and GW 
bandgaps, the prediction accuracy is enhanced with 
respect to the linear fits for the HSE and GW bandgaps: 
the regression models achieve R2 = 0.95, MAE = 0.24 eV 
and R2 = 0.98, MAE = 0.24  eV, respectively (Table  2). 
The significance of the descriptor groups is displayed in 
Fig. 3c. As expected, the DFT bandgap is a very signifi-
cant feature in determining the HSE and GW bandgaps, 
where the feature importance > 90% (Fig. 4).

When the PBE bandgap is removed as a descriptor 
from the training sets, the ROSA descriptors become 
the most significant features for predicting the HSE and 
GW bandgaps. As can be seen in Fig. 3c, the e descrip-
tor group has the highest significance, followed by the 
A group. These regression models achieve R2 = 0.86, 
MAE = 0.37  eV and R2 = 0.93, MAE = 0.37  eV, respec-
tively. The e descriptor group also has the highest signifi-
cance when we train a model to predict the PBE bandgap 
values, followed by the A group. The VBM group comes 
at the third place in terms of significance in predicting 
the EPBE, EHSE bandgaps and the fourth most significant 
in predicting the EGW bandgaps.

The Eb does not directly correlate with the PBE band-
gap, and therefore the bandgap is not expected to domi-
nate the rest of the descriptors during ML training. The 
achieved accuracy for predicting Eb is R2 = 0.90 and 

Table 2  The R2 and mean absolute error (MAE) values for the 
prediction of the PBE bandgap (EPBE), the HSE bandgap with 
( EPBE
HSE

 ) and without (EHSE) using the PBE bandgap as a feature, 
the GW bandgap with ( EPBE

GW
 ) and without (EGW) using the PBE 

bandgap as a feature, and the exciton binding energy Eb.

The MAE values are in eV

Property Dataset size R2 MAE

EPBE 1302 0.90 0.16

E
PBE

HSE
1302 0.95 0.23

EHSE 1302 0.86 0.37

E
PBE

GW
357 0.98 0.26

EGW 357 0.93 0.37

Eb 373 0.89 0.18

Fig. 4  a The feature importance matrix for predicting the properties by the descriptor groups outlined in Section “Features”. The properties shown 
include the PBE bandgap, EPBE, the HSE bandgap with ( EPBE

HSE
 ) and without (EHSE) using the PBE bandgap as a feature, the GW bandgap with ( EPBE

GW
 ) and 

without (EGW) using the PBE bandgap as a feature, and the exciton binding energy Eb. (b, c) The correlation plots for and linear fitting for the HSE and 
GW bandgaps versus the PBE bandgaps. (d–h) The correlation plots for the prediction of the regression models for EPBE, EHSE, EGW and Eb, respectively
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MAE = 0.18 eV (Fig. 3g). According to the aggregated fea-
ture importance heatmap in Fig. 3a, the PBE bandgap is 
the most significant features, but with a significance that 
is ~ 34%, unlike the > 90% significance in the case of the 
HSE and GW bandgaps. The VBM replaces e as the most 
significant set of ROSA descriptors, and the G1 and G2 
descriptor groups become more pronounced than in the 

prediction of any of the HSE/GW bandgaps. This shows 
the importance of adding ROSA descriptors of varying 
degrees of accuracy to improve the prediction accuracy 
of a complex energy quantity, Eb. By adding the band-
gap of the optimized DFT calculation at the PBE level, as 
well as the non-self-consistent eigenvalues and energies 
(ROSA), the aforementioned accuracy was achievable.

Prediction of properties of molecular systems
As the forgoing analysis has been limited to crystal mate-
rials, we examine the applicability of the ROSA descrip-
tors to molecular systems. We trained a XGBOOST 
model on the entire 134 k stable small organic molecules, 
[30] for the prediction of three molecular quantities: the 
HOMO–LUMO gap EHOMO-LUMO (in eV), the isotropic 

Table 3  The R2 and mean absolute error (MAE) values for the 
prediction of the HOMO–LUMO gap EHOMO-LUMO (in eV), the 
isotropic polarizability α (in Bohr3) and the free energy G (in eV)

Property Dataset size R2 MAE

EHOMO-LUMO 133,706 0.97 0.15

α 133,706 0.98 0.85

G 133,706 1.00 11

Fig. 5  a The feature importance matrix for predicting the properties by the descriptor groups outlined in Section “Features”. The properties shown 
include the (b) HOMO–LUMO gap EHOMO-LUMO (in eV), (c) the isotropic polarizability α (in Bohr3) and (d) the free energy G (in eV)
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polarizability α (in Bohr3) and the free energy G (in eV). 
The calculations of these properties were performed 
at the hybrid exchange DFT/B3LYP level of theory. We 
build the dataset using only the ROSA descriptors VBM, 
CBM and e. The XGBOOST model that was trained on 
80% of the data achieved a very high prediction accu-
racy for the three descriptors, as displayed in Table  3: 
the prediction of EHOMO-LUMO achieved R2 = 0.97, 
MAE = 0.15 eV; α achieved R2 = 0.97, MAE = 0.15 Bohr3; 
G achieved R2 = 0.97, MAE = 0.15 eV. The feature impor-
tance and correlation plots are displayed in Fig.  5. The 
CBM descriptors are the key determinants of EHOMO-

LUMO as is the case of EG in Fig. 3a, while e descriptors are 
the key determinants G, as is the case of Ef in Fig. 3a, as 
well as α. Thus, ROSA descriptors alone are superior pre-
dictors of the electronic properties of molecular systems.

Conclusion
We introduced a novel approach to generate naturally 
meaningful and computationally efficient features for 
crystal structures with a small number of descriptors 
and high predictive power. The robust one-shot ab initio 
(ROSA) features are calculated by performing only one 
step of the self-consistent field (SCF) calculation within 
a density functional theory iteration, and obtaining the 
eigenvalues and total energies as descriptor values. We 
demonstrated that ROSA descriptors can accurately pre-
dict key material quantities such as the energy bandgap 
and the bulk modulus. They were particularly a signifi-
cant factor in accurately predicting the energy bandgap 
of metal–organic frameworks, the HOMO–LUMO gap 
of organic molecules and the potential energy surface of 
amorphized carbon crystals. An ML model trained on 
ROSA descriptors to predict a bandgap is mainly playing 
the role of the original, yet computationally expensive, 
SCF algorithm, rather than a deep learning black box. 
We also showed that the ROSA features, combined with 
atom-based and geometry features, are useful for the pre-
diction of thermal properties.
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