
Bajorath et al. Journal of Cheminformatics           (2022) 14:82  
https://doi.org/10.1186/s13321-022-00661-0

MEETING REPORT

Chemoinformatics and artificial intelligence 
colloquium: progress and challenges 
in developing bioactive compounds
Jürgen Bajorath1, Ana L. Chávez‑Hernández2, Miquel Duran‑Frigola3,4, Eli Fernández‑de Gortari5, 
Johann Gasteiger6, Edgar López‑López2,7, Gerald M. Maggiora8, José L. Medina‑Franco2*, 
Oscar Méndez‑Lucio9, Jordi Mestres10,11, Ramón Alain Miranda‑Quintana12, Tudor I. Oprea13,14,15,16, 
Fabien Plisson17, Fernando D. Prieto‑Martínez18, Raquel Rodríguez‑Pérez19, Paola Rondón‑Villarreal20, 
Fernanda I. Saldívar‑Gonzalez2, Norberto Sánchez‑Cruz10,21 and Marilia Valli22 

Abstract 

We report the main conclusions of the first Chemoinformatics and Artificial Intelligence Colloquium, Mexico City, June 
15–17, 2022. Fifteen lectures were presented during a virtual public event with speakers from industry, academia, 
and non-for-profit organizations. Twelve hundred and ninety students and academics from more than 60 countries. 
During the meeting, applications, challenges, and opportunities in drug discovery, de novo drug design, ADME-Tox 
(absorption, distribution, metabolism, excretion and toxicity) property predictions, organic chemistry, peptides, and 
antibiotic resistance were discussed. The program along with the recordings of all sessions are freely available at 
https://​www.​difac​quim.​com/​engli​sh/​events/​2022-​collo​quium/.
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Introduction
In the setting of a growing number of applications and 
developments of computational approaches to drug dis-
covery and related fields, of an increasing frequency 
of virtual meetings [1, 2], and of efforts to enhance the 
education of students [3, 4], the first Chemoinformatics 
and Artificial Intelligence (AI) Colloquium organized by 
a Latin American country was held in Mexico City, June 
15–17, 2022. The virtual meeting featured talks by 15 
international experts. Table 1 presents the full program. 
The speakers, eight of which were from Latin American 

Countries or of Latin American origin, have a broad per-
spective as they work in academia, large pharmaceutical 
companies, new start-ups, public research institutions 
and non- profit organizations.

Twelve hundred and ninety participants, from more 
than 67 countries, including México, India, Colombia, 
Brazil, Perú, United States, Cameroon, Ecuador, Argen-
tina, and Germany, had access to the talks through Zoom, 
YouTube, and the Facebook channels of the School of 
Chemistry at the Universidad Nacional Autónoma de 
México (UNAM). The group of participants was made 
up 659 students (51.1%), 242 academics (18.8%), 236 
researchers (18.3%), 119 industry professionals (9.2%), 
and 34 with other non-disclosed profiles (2.6%) from 
more than 40 institutions in Mexico and other countries.

The meeting was hosted by the Department of Phar-
macy in UNAM’s School of Chemistry. Recordings of all 
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talks and the full program are freely available at https://​
www.​difac​quim.​com/​engli​sh/​events/​2022-​collo​quium/. 
The following sections summarize the key developments 
presented and discussed during the meeting. The content 
is organized into six sections: following the introduction, 
the effectiveness and challenges of chemoinformatics and 
AI methods are considered, followed by a discussion of 
the opportunities afforded by these methods, general 
insights, and an overview of the material. The report ends 
with a discussion of the overall conclusions.

Challenges of chemoinformatics and AI methods
Professor Johan Gasteiger, the first speaker in the Col-
loquium, stated three of the fundamental questions 
in chemistry: (1) what structure do I need for a certain 
property?, (2) how do I make this structure?, and (3) how 
do I synthesize this and characterize this compound? 
Answers to the first question involve structure-property 
or structure-activity relationships, to the second question 

involve synthesis design, and to the third question involve 
reaction prediction and structure elucidation. In many 
instances, answers to these questions can be found in the 
vast amount of data stored in publicly accessible data-
bases, which contain information on millions of com-
pounds, their structures and reactions, as well as many of 
their chemical and biological properties. Because of the 
size and complexity of this data, chemoinformatics tools 
are essential if one is to utilize this information effectively 
in order to answer important chemical questions (vide 
supra) [4].

Inductive learning, i.e. learning from examples, is an 
important mode of learning in chemistry, which typi-
cally arises in the interpretation and analysis of data. 
The objective of most artificial intelligence (AI) meth-
ods is to emulate human reasoning by machine or auto-
mated processes. Thus, inductive learning methods such 
as machine learning (ML) and deep learning (DL), have 
many applications in chemistry. In fact, the application 

Table 1  Program of the chemoinformatics and artificial intelligence colloquium and related links

a In order of presentation
b Each lecture is associated with the references given in the far-right column and vice-versa

Speakera Affiliation (country) Lectureb Related 
links and 
references

Johann Gasteiger University of Erlangen- Nuremberg (Germany) Chemistry in times of artificial intelligence [4–7]

Marilia Valli University of São Paulo (Brazil) Brazilian biodiversity chemical space into NuBBE 
database

[8]

Fernando Prieto D. Prieto-Martínez National Autonomous University of México 
(Mexico)

A bird’s eye view of AI in structure-based drug 
design

[9–11]

Paola Rondón-Villarreal Industrial University of Santander. Currently 
Universidad de Santander (Colombia)

Machine learning in virtual screening and pep‑
tide’s design

[12]

Fabien Plisson Center for Research and Advanced Studies of the 
National Polytechnic Institute (CINVESTAV-IPN) 
(Mexico)

Probing the limits in AI-driven peptide design [13]

Miquel Duran-Frigola Ersilia Open Source Initiative (UK) Ersilia, a hub of AI/ML models for infectious and 
neglected tropical diseases

[14, 15]

Eli Fernández-de Gortari International Iberian Nanotechnology Laboratory 
(INL) (Portugal)

The role of generated chemical space in ML-
based virtual screening

[16–18]

Norberto Sánchez-Cruz Chemotargets, LLC (Spain); National Autono‑
mous University of México (Mexico)

Deep graph learning for protein-fragment bind‑
ing predictions

[19]

Raquel Rodríguez-Pérez Novartis (Switzerland) Machine learning for the prediction of ADME 
properties in pharmaceutical industry

[20, 21]

Jordi Mestres Chemotargets, LLC (Spain) Challenges and benefits of integrating the pre‑
clinical-to-postmarketing safety data continuum

[19]

Gerald M. Maggiora University of Arizona (USA) Development of a soft rule of five [22]

Ramón A. Miranda-Quintana University of Florida (USA) Extended similarity analysis: from pair of mol‑
ecules, to chemical space and beyond

[23, 24]

Jürgen Bajorath University of Bonn (Germany) DeepSARM: From structural and SAR analysis to 
compound design and optimization

[25, 26]

Oscar Méndez-Lucio Recursion Pharmaceuticals (USA) Geometric deep learning for structure-based 
drug design

[27]

Tudor I. Oprea Roivant Sciences (USA) Learning from machine learning: some lessons 
from a gene-centric Alzheimer’s model

[28, 29]
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of AI, specifically artificial neural networks (ANN), in 
chemistry and drug design has a long history [7]. Recent 
developments in AI methods have led to a resurgence 
and increased interest in this field. Sufficient knowledge 
and correct application (beyond the hype) are necessary, 
particularly for students, early career researchers, and 
investigators interacting with computational chemists 
or data scientists [30]. It is clear that AI has applications 
in many areas of chemistry such as property prediction, 
reaction prediction, synthesis planning, structure elu-
cidation, drug design, food chemistry, agrochemistry, 
risk assessment of chemicals, development of cosmetic 
products, material science, and process control [6, 31]. 
Because of the wide spectrum of applications of chemo-
informatics and AI in chemistry, the colloquium was cen-
tered on three major areas: identifying and developing 
small molecules as drug candidates, peptides, and natural 
products [32]. The following subsections summarize the 
challenges that were discussed during the meeting.

Data issues
Data is a cornerstone for the generation of information 
and knowledge. Hence, data quantity and quality are 
vital to the development and performance of chemoin-
formatics and AI methods. Thus, academia, start-ups, 
and industry should, as a scientific community, prior-
itize access to data, which is as balanced and complete 
as possible. For example, activity data associated with 
ligand-target interactions should also include data asso-
ciated with inactive ligands in order to capture weak or 
non-existent interaction data. In that way researchers will 
be able to access the full spectrum of available knowl-
edge [33]. Moreover, such a “holistic” viewpoint would 
help cope with the data imbalance present in many drug 
design and compound optimization campaigns.

Data curation and the construction of reliable data-
bases are major issues that also need to be addressed. 
Poorly curated databases complicate the assessment of 
the predictive performance of AI models. Combining 
efforts could, however, facilitate access to new and inter-
esting data. Examples include natural products, metal-
lodrugs, safety, preclinical, and toxicological databases, 
which complement the current data available in the pub-
lic domain and offer new perspectives on the known data 
[34–36]. There are, however, potential conflicts of inter-
est related to the publication of sensitive data associated 
with intellectual property. For example, post-marketing 
(pharmacovigilance) data that might be biased related to 
the time and clarity of data shared.

Technical challenges
One of the most important issues in chemoinformat-
ics is how to compare molecules. There are two equally 

important aspects to this issue: (1) how to represent the 
information in a molecular structure in a computation-
ally appropriate form and (2) how to determine the struc-
tural relationship of one molecule to another using this 
information. In the first instance, a common approach 
in widespread use today is the development of ‘vector-
ized’ representations of molecular structure such as 
that exemplified by Extended Connectivity Fingerprints 
(ECFP) [37] or MACCS key fingerprints [38], that repre-
sent the structural features of molecules as binary vectors 
whose components are based on the presence or absence 
of specific substructural features. In addition, SMILES 
sequences and molecular graphs are being used as fea-
tures for the most recent neural networks architectures. 
Many of these and closely related methods provide a 
basis for developing all manner of AI models. An impor-
tant caveat regarding these approaches is that they deal 
almost exclusively with 2D molecular structures. Three-
dimensional structural features, such as multiple confor-
mations, are rarely treated for a variety of reasons.

Once the structural information has been appropriately 
represented, the issue now becomes how to compare 
molecular structures. Traditionally, this has been done 
based on assessments of the structural similarity [39] of 
pairs of molecules, using any one of a number of similar-
ity measures (aka similarity functions or coefficients), the 
most popular being that developed by Jaccard and Tani-
moto [40, 41]. Recently, Miranda et al. have developed a 
new, highly efficient method, which facilitates compari-
son of multiple molecules simultaneously [22, 23], open-
ing up new possibilities in drug research.

Unfortunately, molecular similarities are representa-
tion dependent. Thus, different structural representations 
will typically lead to different similarity values, even if the 
same similarity function is used. Although this appears 
to be a severe limitation of structural similarity methods, 
in many instances they appear to produce reasonable 
results in similarity-based database searches, which lie at 
the heart of LBDD methods [42], which are described in 
greater detail in “Ligand and structure-based drug design 
methods” and “Ligand-based drug-design opportunities”.

Molecular similarity provides a suitable basis for con-
structing chemical spaces, which play an important role 
in LBDD. Chemical spaces are composed of a set of mol-
ecules and the set of pairwise similarities relating them to 
each other. Thus, they are dependent upon the molecular 
representation and similarity measure used in their con-
struction, and they are, of course, also subject to the lack 
of invariance of all structural similarity measures.

Chemical spaces are typically represented in two ways, 
coordinate-based and network-based. Coordinate-based 
chemical spaces are generally of high-dimension, and 
thus are subject to the ‘Curse of Dimensionality’ [43, 44]. 
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Lower-dimensional subspaces, in many instances, are 
employed for the purpose of visualization, however, with 
a concomitant loss of information.

Chemical space networks (CSN) provide an alterna-
tive representation that is not afflicted by the Curse of 
Dimensionality [45]. This combined with the availability 
of efficient algorithmic methods for characterizing the 
properties of very large networks, such as the Internet, 
make CSNs the preferred means for representing very 
large chemical spaces. Although it is difficult to perceive 
relationships visually in very large chemical spaces rep-
resented by CSNs, the important point here is that the 
structure of network data facilitates its analysis.

Chemical spaces lie at the heart of LBDD (see  “Ligand 
and structure-based drug design methods” and “Ligand-
based drug-design opportunities” for a fuller discus-
sion), but because of their representation dependence 
they are not unique. However, as noted earlier, this may 
not in many instances materially affect the effectiveness 
of ligand-based searches of chemical spaces [42]. Mag-
giora has provided a relatively comprehensive discussion 
of molecular representations, similarity measures, and 
chemical spaces, which should be consulted for more 
details [46].

Chemical Checker [15] signatures were proposed in 
order to facilitate the conversion of bioactivity data to a 
format readily amenable to ML methods. The concept 
of chemical space is continuing to evolve. Its applica-
tion has been extended to data visualization and to the 
study of structure-property relationships, lead optimi-
zation, data fusion, and data-driven decision making, to 
name a few applications. However, many different types 
of descriptors are available to represent different classes 
of compounds, e.g., natural products, peptides, metallo-
drugs, drug-like, and lead compounds. The extensive list 
of possible molecular representations raises a significant 
question, viz. “what are the most suitable descriptors for 
my dataset?” In specific cases, the answer combines dif-
ferent kinds of features or types of data such as chemi-
cal or topological features, and physical or biological 
data. However, it is not easy to collect, order, and organ-
ize such heterogeneous information. In order to enter an 
era where chemical and biological spaces are integrated, 
the development of new methodologies is required for 
assessing chemical and biological similarity and for han-
dling genes, proteins, omics data, and chemical data in a 
consistent manner [47].

Another challenge is the implementation of filters to 
select molecules according to pre-defined rules such 
as Lipinski’s Rule of Five (Ro5). Maggiora discussed the 
importance of ‘soft’ methods for selecting compounds 
according to Ro5. Zadeh et  al. define soft methods as 
an emerging computational approach that parallels the 

remarkable ability of the human mind to reason and 
learn in an environment of uncertainty and imprecision. 
Such methods tend to produce more realistic molecular 
property relationships as discussed by Maggiora and co-
workers [22].

Ligand and structure‑based drug design methods
LBDD methods focus entirely on the structure of the 
ligand. By contrast, SBDD methods focus on the struc-
ture of both the ligand and the binding site in its target 
proteins and/or nucleic acids. Thus, obtaining data in the 
latter case is typically more difficult.

Because of the greater availability of data on ligand 
structure, AI methods are more effective, enabling the 
study of very large volumes of diverse data in LBDD 
studies. SBDD approaches, on the other hand, have not 
yet fully explored the utility of AI, although a significant 
amount of research is currently in progress. One reason 
for this is the availability of structural data needed in 
SBDD studies, which require data on the ligand and on 
its binding site. By comparison, structure, activity, and 
physicochemical data typically required in LBDD studies, 
is considerably more available. Because of the limitations 
of current computational methods, generation of fully 
reliable 3D conformational states or binding modes is 
not possible in all cases, although significant strides have 
been made in computational docking methods, some of 
which are now capable of docking more than a billion 
compounds to a given binding site [48, 49]. In addition, 
recent progress in AI-driven de novo protein structure 
prediction (see below) has provided an unprecedented 
wealth of putatively reliable structural templates, with 
coverage recently approaching the entire protein universe 
[10, 50, 51].

General challenges
A current limitation of computational approaches in aca-
demic settings is related to the relatively limited amount 
of computational processing capacity. However, over the 
next few years accessibility to cost effective, highly effi-
cient hardware could increase dramatically, reducing 
budgetary and time requirements for developing and 
evaluating new ML algorithms. Other essential chal-
lenges discussed during the meeting included the appli-
cation of chemoinformatics and AI methods to better 
understand unexplored, rare, and neglected diseases. 
More consistent communication and collaboration 
between academia, start-ups, and large industries is also 
desirable in order to foster a viable synergy and help the 
transfer of in silico knowledge ultimately to the clinic.
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Opportunities for chemoinformatics and AI 
methods
Ligand‑based drug‑design opportunities
In addition to in  vitro and in  vivo methods, in silico 
methods can enhance serendipity and help to rational-
ize phenomena that experimental methods alone cannot 
explain. For example, serendipity in drug design can lead 
to unexpected but potentially positive results, as exempli-
fied by the discovery of Lyrica (pregabalin) [52]. An excel-
lent opportunity for ligand-based methods to enhance 
compound comparisons is through the addition or aug-
mentation [15] of chemical and physicochemical prop-
erty data, of in vitro, in vivo, and ‘omics’ biological data, 
and of preclinical, clinical, and post-marketing pharma-
covigilance data. The added information would support 
the development of a comprehensive similarity search-
ing capability that would likely, in specific instances, be 
able to identify chemical mimetics capable of reverting 
disease signatures. For example, drug-design procedures 
might be developed for reversing (or preventing) molecu-
lar pathway alterations or for predicting toxicity or safety 
issues for marketed drugs [53].

Two new applications, Extended Similarity Indices 
[23, 24] and the structure–activity relationships Matrix 
(SARM) approach and its deep learning extension (Deep-
SARM) [25], were presented at the Colloquium by Quin-
tana (Talk 12) and Bajorath (Talk 13), respectively. These 
applications support multiple procedures such as analog 
series identification (fragmentation?), analysis of de novo 
drug-design signatures, similarity searching, and visuali-
zation of SAR and chemical spaces.

Structure‑based drug‑design opportunities
Over the past few decades, SBDD has attained a sig-
nificant degree of maturity. This is especially true with 
regard to structure-based virtual screening, which has 
made remarkable progress despite its intrinsic limitations 
[54, 55]. In recent years, DL has been used in attempts 
to further improve the performance of SBDD methods. 
Perhaps the most well-known example of this is the usage 
of DL for protein structure prediction. De novo struc-
ture prediction with Alphafold [10] RoseTTAfold [50], 
or other programs [51, 56] has yielded many protein 
models of near-experimental accuracy which has further 
expanded the opportunities and the applicability domain 
of homology modeling. Protein models are now increas-
ingly used for prediction of many biophysical properties 
[57].

Other uses of AI in SBDD include, but are not lim-
ited to, potential energy functions that are similar to 
quantum-chemical descriptions (ANAKIN-ME) [9]. For 
example, DFT-like interaction potentials at the computa-
tional cost of a geometrical optimization with molecular 

mechanics; force field development [58]; enhanced sam-
pling by means of collective variables [59]; Boltzmann 
generators trained to identify transition states [60]; pro-
tein-ligand interaction fingerprints [61] such as SPLIF 
[62] or ECIF [63], and scoring functions like GNINA [64]. 
Recently, the geometric DL approach was used to learn 
distance distributions and ligand-target interactions and 
to predict the binding conformation of bioactive com-
pounds. This potential performs as well as or better than 
well-established scoring functions [27]. Geometry DL 
uses a mesh on the protein surface [65] as a molecular 
representation.

New approaches to CADD based on AI methodologies
Chemoinformatics helps transform data into information 
and subsequently into knowledge in support of decision 
making. New techniques and methodologies have con-
tributed significantly to encoding and analyzing chemi-
cal, biological, and clinical data patterns. For example, 
different types of neural networks (e.g., neural, deep neu-
ral, Kohonen-Self Organizing Maps (SOM), and graph-
based) [7] support multitask learning, which facilitates 
the exploration and exploitation of synergies between 
prediction tasks in complex systems. This potentially 
alleviates the need for system reduction or approxima-
tion, an attractive approach for holistic drug discovery 
and design. Furthermore, it is possible to use these new 
techniques and methodologies for improving graph-
based pharmacophoric representations, fragment-based 
drug design, de novo drug design, binding energy pre-
dictions, and consensus classification models [18]. How-
ever, there are a number of caveats associated with these 
approaches that must be addressed in order for them to 
be fully mature.

De novo drug design and generative models
  De novo drug design is one of the areas benefiting from 
DL. For example, DeepSARM is a deep learning exten-
sion of SARM for generative fragment-based analog 
design. DeepSARM [26] introduces chemical novelty 
into the design process based on recent developments in 
generative modeling adaptation and the further develop-
ment of chemical language models. Iterative DeepSARM 
(iDeepSARM) [25] can rationally modify and extend 
sequence-to-sequence models and add iterative com-
pound optimization and core-structure modifications.

Deep Graph Learning (DGL) which is based on ANNs, 
is capable of learning from graph-structured data [66]. 
It is included as part of the ProSurfScan platform devel-
oped by Chemotargets. This platform has been success-
fully applied to the identification of novel compounds for 
different targets. It yielded the first AI-designed drug for 
Huntington’s disease, which is currently in clinical trials 
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[67]. ProSurfScan allows estimation of the compatibility 
and binding mode of fragments on different regions of 
a protein surface. Therefore, the protein surface is rep-
resented as a complete graph consisting of nodes with 
pharmacophoric features derived from the analysis of a 
triangulated mesh representation of the protein surface 
[68, 69]. Two complementary methods are employed to 
carry out the predictions. A clique detection algorithm is 
used to compare the protein surface with known surfaces 
associated with fragments from ligands present in struc-
tures from the Protein Data Bank (PDB) (aka fragment 
environments). This allows placement of the fragment 
based on the largest subgraph found between the frag-
ment-environment and the protein surface. In addition, a 
series of DGL models is built using Graph Convolutional 
Neural Networks (GCNN) that estimate the compatibil-
ity of the fragments with respect to distinct regions of the 
protein surface.

Fernandez-de Gortari discussed the use of genera-
tors [16, 18] based on Variational Autoencoders (VAE), 
a deep neural network architecture. He discussed their 
advantage for constructing molecules with multi-target 
profiles and properties of pharmaceutical interest from 
lead molecule seeds. The methodology is based on using 
generators obtained from reasonable mutations of frag-
ments [17], obtained by exchanging structurally similar 
fragments on the lead molecule seed based on a hypo-
thetical continuous SAR for the development of a ML-
based virtual screening classifier of Sarco(endo)plasmic 
reticulum Ca2+-ATPase (SERCA) inhibitors.

Machine learning for the prediction of ADME‑Tox 
properties
Low efficacy associated with bioavailability problems and 
adverse drug effects have been recognized as one of the 
main causes of attrition during clinical trials [70]. Thus, 
the number of possible causes for a compound to fail 
or to have barely tolerable adverse effects is quite large. 
Moreover, in vitro and in vivo characterization of a com-
pound’s properties can become very costly and time-con-
suming. For all of these reasons, considerable effort has 
been made to develop computational models for predict-
ing ADME-Tox properties [70]. AI models have leveraged 
the information available in heterogeneous ADME-Tox 
data sets and helped to improve the accuracy of early 
drug efficacy and safety predictions. There is an increas-
ing number of public and private sector initiatives aimed 
at the generation and evaluation of prospective mod-
els to assist decision-making processes and to generate 
future innovations for predicting ADME-Tox properties. 
Initiatives are also underway to permit public use and 
comparison of ML/DL models to increase confidence 
in and acceptance of these predictions. For example, 

Therapeutics Data commons (TDC) was introduced as a 
platform to systematically access and evaluate ML models 
across the entire range of therapeutics, accessible via an 
open python library [71, 72]. TDC encompasses AI-ready 
datasets and learning tasks for therapeutics; sets of tools 
to support data processing, model development, valida-
tion, and evaluation; and a collection of ‘leaderboards’ to 
support model comparison and benchmarking.

Other ML models derive hypothetical properties such 
as brain penetration (Kp) from limited experimental data 
or characterize in  vivo properties from in  vitro assay 
data. In a study conducted by Rodríguez-Pérez’s group, 
multitask learning based on Graph Neural Networks 
(MT-GNN) showed superior performance to other ML 
approaches based solely on in  vitro brain penetration 
data [20]. These promising models have considerable 
potential for practical applications in other property pre-
diction tasks.

To provide a partial solution to the data issues and 
improve early drug safety assessment, an effort has been 
made to integrate preclinical and post-marketing drug 
safety data with other commonly used sources of infor-
mation, such as chemical structure data and preclinical 
assays. Current trends focus on developing novel systems 
approaches to drug safety that offer a more mechanis-
tic view of predictive safety based on similarity to drug 
classes, interaction with secondary targets, and interfer-
ence with biological pathways beyond the traditional 
identification of chemical fragments associated with 
selected toxicity criteria [53]. An example of the inte-
gration of this information is CLARITYPV [73], a web 
platform for translational safety and pharmacovigilance 
studies that track side effects throughout all phases of the 
drug discovery and development process.

Importance of natural products in drug discovery
Natural products have historically contributed to drug 
discovery as a source of diverse, structurally complex 
bioactive molecules that have evolved to fulfill specific 
biological functions. However, drug development from 
NPs is more complex, costly, and inefficient than drug 
development from small molecules [74]. Similarly, the 
small amount of bioactivity data associated with NPs has 
limited potential applications of ML and DL in the study 
of naturally occurring compounds. Initiatives such as 
the NuBBEDB, a virtual database of NPs and their deriva-
tives from the Brazilian biodiversity [75, 76], have paved 
the way for developing new NP databases and projects 
like LOTUS [77] for NP storage, search, and analysis. A 
number of different chemoinformatics [78] and AI [32] 
applications have been proposed for analyzing the data 
collected to date. The main applications have focused 
on understanding the biological activity of NPs, carrying 
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out the systematic search for bioactive NPs with respect 
to a molecular target of interest, and guiding the chemi-
cal synthesis of NP analogs with simplified structures 
and improved activity. The NuBBEDB database has been 
expanded in collaboration with CAS (Chemical Abstracts 
Service). Currently, more than 54,000 substances are 
described with information on chemical, biological, and 
pharmacology data that can be explored in order to ana-
lyze their medicinal chemistry potential. Recent work on 
target predictions for compounds in the NuBBEDB led to 
the identification of chalcones with potential application 
for the treatment of Chagas disease [79].

General opportunities
Access to AI technology and international network-
ing can also accelerate the development of drugs for 
neglected diseases, Alzheimer’s disease, and antibiotic 
resistance. The research group of Oprea developed ML 
models to identify a potential gene relevant to suscepti-
bility to Alzheimer’s disease [29]. This analysis also iden-
tified potential risk genes including FRRS1, CTRAM, 
SCGB3A1, FAM92B/CIBAR2, and TMEFF2.

Other chemoinformatics, ML, and DL models were 
proposed as a means of identifying compounds to com-
bat antibiotic resistance, which is found in all parts of the 
world [80]. Peptides have been proposed as suitable alter-
natives since they display biological activity against bac-
teria, viruses, fungi, and parasites [81, 82]. Antimicrobial 
peptides (AMP) have a low propensity for bacteria resist-
ance [83, 84]. The research group of Rondón-Villarreal 
[12] developed an AMP library using the CAMPR3 [85] 
database, and genetic algorithms. The peptide library 
was designed with specific physicochemical properties 
(charge, hydrophobicity, isoelectric point, and stability 
index) and tested against Escherichia coli, Pseudomonas 
aeruginosa and methicillin-resistant Staphylococcus 
aureus. This library could potentially lead to the discov-
ery of potent antimicrobial peptides.

However, the challenges of peptide design might 
require addressing multiple parameters such as high tox-
icity, poor oral bioavailability, thermal and pH stability, 
and functional promiscuity in concert. In addition, costs 
associated with experimental time, human resources, 
and equipment involved [13], must also be accounted 
for. Chemoinformatics, ML, and DL approaches should 
provide a means for developing safe AMPs with reduced 
toxicity, predict their antibacterial activity and drug-like-
ness profile, and accelerate antibiotic discovery [86, 87]. 
Plisson et al. [13] proposed an ML-guided discovery and 
design project related to non-hemolytic peptides. The 
workflow is composed of collecting compounds for an 
AMP database, computing 56 physicochemical descrip-
tors; developing binary-classifier models to predict 

hemolytic nature and activity; estimating the domain of 
applicability, and applying optimized models to the dis-
covery of non-hemolytic AMPs from a known database 
(e.g., APD3) or design novel sequences. The models used 
in this study include support vector machines, decision 
trees, random forest, gradient boosting, and k-nearest 
neighbors. This research is part of a growing series of 
predictive and generative ML models applied to support 
the discovery and design of bioactive peptides, includ-
ing antimicrobial peptides [56, 63]. The authors applied 
multivariate outlier detection to delineate the bounda-
ries of their predictive models (i.e., applicability domain) 
leading to the identification of outlying sequences [9]. To 
date, little work is being carried out on estimating the 
domain(s) of applicability of peptide modeling, although 
it is necessary for the parallel application of multiple pre-
dictors on a given sequence space.

Recommendations for new generations of scientists
Some speakers shared their experiences as scientists. This 
section summarizes some general recommendations for 
future scientists. The early-career scientist should choose 
topics that open new possibilities and should not adhere 
to a single approach or technology. “If you have your 
data, run your own benchmarks tests, build your own 
models, and try to interpret them in context. Metrics are 
irrelevant. The only proof is unbiased predictivity”.

One should always review the original publications to 
ensure integrity of information sources and avoid dilu-
tion or subjective bias. “Verify what you see, doubt what 
you find, and always obtain independent confirmation of 
your observations to validate your work”.

Do not be afraid to say, “I do not know.” Omniscient 
human beings are rare. Be ready to learn continuously. 
Focus on problem-solving skills; they are more impor-
tant than static learning and memorization of facts. 
Always prize creativity and out-of-the-box thinking. As 
you progress in your career, you will learn that people are 
the most important asset. If someone “steals” your ideas, 
which does happen, remember that this is a form of flat-
tery. It is not sufficient to only generate one great idea in 
your scientific life (the, indeed, it should be taken away 
…). Rather, one needs to generate new ideas continuously 
to cultivate individual creativity.

Discussion
Limited open-source data is a major bottleneck to AI 
approaches in many areas including drug discovery and 
design. It is hoped that synergy between academia, start-
ups, and pharmaceutical companies will further increase 
available data for learning, accelerate the design of new 
drug candidates, and reduce the gap that often exists 
between academia and industry. This may, however, be a 
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fond hope as the entities in the pharmaceutical industry 
typically have different research agendas from academic 
scientists, and there is, of course, the issue of proprietary 
data that is an important constraint on the sharing of 
data generated within pharmaceutical companies.

Chemoinformatic methods, including ML/DL 
approaches, offer significant benefits for the discovery 
and development of bioactive compounds. However, one 
of the major drawbacks of ML/DL methods discussed 
during the Colloquium was the lack of or limited inter-
pretability of their predictions. This is more evident for 
DL approaches, in which the user has no knowledge 
about internal features (or priorities) of the model and 
their assignment.

Poorly curated databases and unbalanced datasets also 
complicate model assessment and interpretation. Better 
benchmarks and guidelines need to be established for the 
characterization and analysis of ML models, following 
the example of quantitative structure-activity relation-
ship modeling.

It was also pointed out during the conference that 
regardless of the many statistics and metrics available to 
evaluate the performance of a predictive model, “true” 
validation requires prospective predictions and their 
experimental assessment. However, prospective predic-
tions are not without pitfalls and thus require careful 
evaluation of the interdisciplinary context in which such 
predictions and associated experiments are conducted. 
Machine and deep learning models are only approxima-
tions to the underlying mechanistic components of the 
system under investigation. In this case, as Oprea pointed 
out we should ask ourselves: “Is what I am doing relevant 
to the problem I am trying to solve?”

Regardless of the speakers’ diverse research environ-
ments and settings (Table 1), it was clear from the meet-
ing that the number of opportunities in ML in career 
development is increasing. This is happening in aca-
demia, in research institutes, and in large and small phar-
maceutical companies. This outcome from the meeting 
was valuable for the students, particularly those wonder-
ing about their professional future in this area and hav-
ing to decide about their next career steps [88]. It was 
also valuable for students and early career investigators 
to become aware of the career paths of many speakers 
who have transitioned from different disciplines and have 
made significant scientific contributions in the exciting 
computer-aided drug design field. Several speakers with 
20 to 30 or more years of experience, made the transi-
tion to computer-aided drug discovery from quantum 
mechanics, organic chemistry, biochemistry, computer 
engineering, medicine, and pharmacology. Their career 
paths are varied, and there is not a single straight path 
from one discipline to another. Research interests and 

opportunities evolve, and researchers adapt to the cur-
rent needs, which can change.

During the meeting, some speakers shared their experi-
ences in scientific publishing (which is crucial in science 
and has practical implications in academia). A highlight 
is that the speakers emphasize the need to be persis-
tent while pursuing a research idea. For example, Prof. 
Gasteiger shared that his most cited paper was initially 
rejected for publication three times. This message is cru-
cial for students and young scientists who often get dis-
couraged by the rejection of a submitted manuscript. The 
message is that ‘persistence pays off’.

Figure  1 shows the impact of chemoinformatics and 
AI approaches that have been around at all stages of 
the drug-discovery process, from target selection to the 
pharmacovigilance of approved drugs. The current tech-
nologies allow the use of a huge diversity of data (atomic, 
chemical, biological, clinical, and post market data) in 
combination with different approaches (e.g., data fusion, 
clustering, ML, DL, pairwise comparisons, dimension-
ality reduction, and networks) to classify, predict, or 
recognize patterns in order to explain or decode new 
knowledge, opening up a vast repertoire of possible com-
binations of methods that are applicable to the solution 
of drug-design problems.

Conclusion
The virtual Chemoinformatics and Artificial Intelligence 
Colloquium, Mexico City, June 15–17, 2022, provided an 
overview of the current developments, specific applica-
tions, and areas of opportunity in the application of AI, 
ML, and DL methods to the discovery and design of bio-
active molecules. The perspective was provided by speak-
ers at different career levels working in different research 
environments worldwide. During the colloquium, the 
role of chemists, chemoinformaticians, and data scien-
tists in accelerating drug discovery and development, 
which regularly takes 10–15 years, was discussed.

The colloquium was the first open-access event hosted 
in a country in Latin America focused on chemoinfor-
matics and AI and open to the scientific community, as 
it was accessible to registrants from more than 60 coun-
tries. It is expected that in the next few years, the Latin 
American community will be more integrated with 
chemoinformatics and AI methods being developed 
worldwide. Since it is known that scientific English can 
be a barrier for many that must be overcome, courses in 
English at the undergraduate level will be offered to pro-
mote practice among the students. Future editions of the 
meeting will include hands-on tutorials/workshops and 
poster/oral presentations by students. Also, it is expected 
that future meetings will be hybrid in order to benefit 
from one-on-one discussions and to facilitate the rapid 
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Fig. 1  Overview of applicability of chemoinformatics and AI technologies on drug design. A Main contributions of chemoinformatics and AI 
technologies on each step in the drug design process. B Combination of data, approaches, and type of results used in drug design
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dissemination and contact with interested persons for 
which traveling is difficult.

The current colloquium is an early but hopefully con-
tinued effort to join other educational events on chem-
oinformatics that have a long tradition such as the 
chemoinformatics and pharmacy informatics schools 
that are periodically held at the University of Strasbourg 
in France, or the University of Vienna in Austria.
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