
Scalfani et al. Journal of Cheminformatics (2022) 14:87
https://doi.org/10.1186/s13321-022-00664-x

EDUCATIONAL ARTICLE

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Open Access

Journal of Cheminformatics

Visualizing chemical space networks
with RDKit and NetworkX
Vincent F. Scalfani*, Vishank D. Patel and Avery M. Fernandez 

Abstract 

This article demonstrates how to create Chemical Space Networks (CSNs) using a Python RDKit and NetworkX work-
flow. CSNs are a type of network visualization that depict compounds as nodes connected by edges, defined as a
pairwise relationship such as a 2D fingerprint similarity value. A step by step approach is presented for creating two
different CSNs in this manuscript, one based on RDKit 2D fingerprint Tanimoto similarity values, and another based on
maximum common substructure similarity values. Several different CSN visualization features are included in the tuto-
rial including methods to represent nodes with color based on bioactivity attribute value, edges with different line
styles based on similarity value, as well as replacing the circle nodes with 2D structure depictions. Finally, some com-
mon network property and analysis calculations are presented including the clustering coefficient, degree assortativ-
ity, and modularity. All code is provided in the form of Jupyter Notebooks and is available on GitHub with a permissive
BSD-3 open-source license: https://​github.​com/​vfsca​lfani/​CSN_​tutor​ial

Keywords:  Chemical space network, Chemical similarity network, CSN, Molecular similarity, Maximum common
substructure, RDKit, NetworkX

Graphical Abstract

*Correspondence: vfscalfani@ua.edu

University Libraries, Rodgers Library for Science and Engineering, The
University of Alabama, Tuscaloosa, AL 35487, USA

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13321-022-00664-x&domain=pdf
https://github.com/vfscalfani/CSN_tutorial

Page 2 of 13Scalfani et al. Journal of Cheminformatics (2022) 14:87

Introduction
Over the past decade, chemical space networks (CSNs)
have been introduced as a way to visualize and interpret
relationships within small molecule datasets. CSNs were
designed as an alternative representation to coordinate-
based visualizations using molecular descriptors. In a
typical CSN, compounds are represented as nodes, and
these nodes are connected with edges, where an edge is
defined as some type of relationship between the com-
pounds [1–3], including for example, 2D fingerprint-
based Tanimoto similarity [4–7], substructure-based
similarity [4, 5, 7, 8], or asymmetric Tversky similarity [9,
10].

In cases where the CSN edges represent a range of
similarity values such as fingerprint-based Tanimoto sim-
ilarity, the number of edges can be adjusted by incorpo-
rating a minimum threshold value; that is, only draw an
edge if the selected relationship between the compounds
are equal to or greater than the selected value. This is in
contrast to, for example, in the case of matched molecu-
lar pair (MMP)-based CSNs, where the edges represent
a binary relationship between the compounds (i.e., draw
edge for MMP, no edge if not a MMP) [1, 2]. In CSNs,
the molecular nodes can be visually represented as sym-
bols such as circles or 2D chemical structure depictions,
while edges are represented with lines. Additional lay-
ers of complexity can be added to the network visualiza-
tion, for example, coloring the nodes by property value
or changing the line style based on similarity value [1, 3].
Vogt et al. note that CSNs are generally considered most
useful to represent compound datasets on the order of
10 s to 1000 s of compounds, and that compounds within
the dataset should have some level of similarity or other
relationship that can be used to form connections within
a network. In addition to the useful visualizations that
CSNs provide, one advantage of generating a CSN is that
well-established network science algorithms and statisti-
cal calculations can be applied in the subsequent analysis
[2].

There are a variety of software and techniques reported
in the literature used to create CSN visualizations [3].
Specific to small molecule CSNs, reported methods
include in-house Java programs and Java Universal net-
work/graph framework [5–7, 11], in-house Python or
Java code and Gephi software [4, 8–10], and Python
NetworkX and/or Cytoscape [12, 13]. Cheminformatics
toolkits reportedly used for computing molecular rela-
tionships for use in CSNs include, for example, in-house
implementations [9], Molecular Operating Environment
[11], OEChem toolkit [7, 8, 10, 11, 13], and CDK [12]. An
example has been reported of using RDKit in a chemi-
cal network workflow. Dunn et al. used a combination
of RDKit and NetworkX to generate Chemical Library

Networks, which are similar to CSNs, with the difference
being that the nodes represent compound datasets, not
individual compounds [14].

This article will demonstrate how to generate CSNs
using RDKit [15], NetworkX [16], and Python. To our
knowledge, no such tutorial exists in the published lit-
erature nor on the open web. In fact, we were not able
to find any step by step code examples for how to gen-
erate CSNs regardless of the specific cheminformatics
toolkit or other software used. We selected RDKit and
NetworkX for this tutorial, in part because of our famil-
iarly with these tools, but also because of the popularity
of RDKit and Python in the cheminformatics community.

Overview and organization of this manuscript
Our specific use-case for this manuscript is to create
CSNs using RDKit and NetworkX with a dataset col-
lected from ChEMBL associated with the glucocorticoid
receptor (adapted from a dataset described by Zhang
et al. [7]). We note that the primary focus of this manu-
script is to demonstrate a CSN workflow from pairwise
calculations to visualization, and not focus on identify-
ing or hypothesizing any specific scientific conclusions
from the sample glucocorticoid receptor data. Within the
workflow, there are a variety of specific steps necessary
including, for example, data curation, computing pair-
wise relationships of compounds, compiling data into
the network data structure, and then plotting the net-
work. Outlined below are the workflow steps we carried
out. These workflow steps from loading data to analyz-
ing basic network properties should not be taken as “the
workflow”, but rather one workflow example of how to
approach creating CSNs with RDKit and NetworkX.

Importantly, our methods were heavily influenced and
adapted from the published reports by Bajorath and
coworkers [1, 2, 5, 7]. From their reported methods, we
were able to infer the necessary computations and steps
for creating CSNs and turn these steps into Python code.
While we used RDKit and NetworkX in this report, we
have attempted to present the steps in a way where the
methods and code could be adapted with other program-
ming workflows. In fact, our original test implementa-
tion of CSN visualizations used Wolfram Mathematica,
which we then re-wrote in Python code with RDKit and
NetworkX.

For presentation and length considerations within this
manuscript, we have focused on discussing selected key
parts of the code for CSN calculations and CSN visualiza-
tions. The complete code and additional code comments
are available as Jupyter Notebooks at https://​github.​com/​
vfsca​lfani/​CSN_​tutor​ial. The Jupyter Notebooks con-
tain the same order of steps used in the manuscript. We

https://github.com/vfscalfani/CSN_tutorial
https://github.com/vfscalfani/CSN_tutorial

Page 3 of 13Scalfani et al. Journal of Cheminformatics (2022) 14:87 	

recommend readers refer to both this manuscript and the
complete code within the Jupyter Notebooks.

Code lines in the manuscript start with the iPython-
like cell notation using the symbols, [«], denoting code
input, and, [»], denoting code output. Integer values were
not used as only selected pieces of the code are shown in
this manuscript; that is, the code shown is not necessar-
ily sequential. Lastly, in contrast to traditional scientific
manuscripts with separate Methods and Discussion sec-
tions, we have combined the Methods with Discussion in
an effort to create a readable and easy to follow tutorial
style manuscript.

Step 0—hardware, operating system, and conda
environment setup
Ubuntu 18.04.6 LTS was used on an Intel-based laptop
(Core i9-9980HK CPU @ 2.40 GHz × 16) with 32 GB
of RAM. For the development environment, a conda
(v4.14.0) python (3.10.6) environment was created with
the following recipe in a terminal:

The specific versions installed were rdkit (2022.03.5),
jupyterlab (3.4.7), numpy (1.23.3), matplotlib (3.5.3), pan-
das (1.4.4), and networkx (2.8.6).

Step 1—ChEMBL data collection
Data was collected by browsing the ChEMBL web inter-
face during September 2022. The data collection proce-
dure was adapted from one of the datasets used by Zhang
et al., specifically the glucocorticoid receptor antagonist
dataset [7]. To compile a similar dataset, we first searched
for "glucocorticoid" in the ChEMBL web interface and
then applied several selections and filters in the following
order:

1.	 Selected Targets
–	 Added Filters: Homo Sapiens

2.	 Selected CHEMBL2034 (Glucocorticoid receptor)
3.	 Selected Assays for Target CHEMBL2034

–	 Added Filters: Homo Sapiens, Single Protein For-
mat, Scientific Literature, 9-Direct single protein
target assigned, D-Direct protein target assigned

4.	 Selected Browse Activities
–	 Added Filters: Ki, molecular weight under 600, Tar-

get - CHEMBL2034
5.	 Exported and saved data as a CSV file, which con-

tained 459 entries of compounds and associated
ChEMBL data.

The exported CSV ChEMBL dataset is provided in the
Additional file 1 and is redistributed according to the
ChEMBL Data license with a Creative Commons Attri-
bution-Share Alike 3.0 Unported License [17–19].

Step 2—load the data into a Python variable and curate/
prepare compound data
We used the Pandas data analysis library [20, 21] to
read the glucocorticoid receptor data into a Data-
Frame variable, and then created a DataFrame with
only the data we would be using in the CSNs, includ-
ing the ChEMBL IDs, SMILES, and Ki values. The
Pandas DataFrame variable was selected as it has a
number of builtin methods that make data transforma-
tions straightforward on delimiter separated data. We
applied several data cleanup procedures and checks to
the collected glucocorticoid receptor data. First, com-
pounds with no associated Ki values were removed.
This was followed by checking for presence of salts
as disconnected SMILES by basic string matching a
period symbol. As string matching can miss edge-
cases, it is preferred to fully parse the SMILES with
a cheminformatics toolkit and then perform pattern
matching with chemical perception. For example, one
potential edge-case with disconnections is if any of the
provided SMILES use dot disconnect bonds with ring
closures; that is, the presence of a dot disconnect bond
does not actually guarantee that the compound has
more than one component [22]. As a result, we vali-
dated that all compounds in the glucocorticoid dataset
did indeed contain only one fragment using the RDKit
GetMolFrags function, which can be used to identify
the number of molecule fragments:

For datasets containing disconnected structures, there
are several well-established procedures and tutorials in
the cheminformatics literature for how to handle salts
and other standardization protocols (vide infra). The next
task was to merge duplicate compound data by averaging
Ki values for identical compounds (equivalent ChEMBL
ID and SMILES) with multiple Ki values [7]. The final
filtered and merged list of the original ChEMBL pro-
vided SMILES, now totaling 404, were checked that they
were unique from each other using Python sets. We also

Page 4 of 13Scalfani et al. Journal of Cheminformatics (2022) 14:87

double checked this by parsing the ChEMBL SMILES
and validating that the RDKit canonicalized SMILES
were unique from each other:

We did not perform any specific chemical structure
standardization such as the normalization of functional
groups, as we relied on the data and small molecule
standardization protocols implemented in ChEMBL, for
the purposes of this tutorial [23]. For more advanced dis-
cussions regarding the importance and methods of data
curation in cheminformatics and structure standardiza-
tion procedures, particularly when compiling data from
multiple sources, see the published articles by Fourches
et al.[24, 25]. In addition, the open-source presentation
materials from the RSC Open Science Workshop from
Landrum on molecular standardization, contain several
examples with Python and RDKit [26].

Step 3—Compile the network node data (compounds
and associated pKi values)
For compiling the final node data, the Ki values in
the pandas DataFrame were converted to pKi values
(pKi = − log10(Ki)). This was followed by setting the
DataFrame index column to the SMILES. In this case,
setting the index column to SMILES was appropriate
because we already validated that the SMILES strings
were all unique from each other. The data was then saved
as a dictionary variable, node_data, for all downstream
calculations. In the node_data variable, SMILES are the
unique dictionary keys, and the dictionary values are the
associated ChEMBL ID and pKi data:

Using dictionary variables for both the node data
and edge data (Step 4) was a convenient data structure
for working with NetworkX and molecular data, as

dictionaries are both straightforward to index and pro-
grammatically loop through.

Step 4—compile network edge data by computing
pairwise similarity relationships of compounds
We created two different edge datasets for the CSNs,
one based on the Tanimoto Similarity of two compounds
using RDKit fingerprints, and another CSN based on a
maximum common substructure (MCS)-based similar-
ity calculation [7]. To compute these similarity values,
we first created a list of all possible unique combinations
of the compounds using the Python itertools combina-
tions method with the SMILES (reminder: the 404 final
SMILES were previously checked for uniqueness from
each other). The number of pair combinations, equiva-
lent to possible edges, for 404 unique nodes was 81,406:

The number of pair combinations can quickly become
difficult to handle computationally. For example, with
1000 nodes, the unique pair combinations would jump to
nearly 500,000. Increasing the number of nodes to 2000
would create about 2 million pair combinations, several
orders of magnitude greater than the number of nodes.
In addition, as Zhang et al. notes, the MCS-based simi-
larity calculation is computationally intensive, and so it
is likely only reasonable to work with around 1000 nodes
on standard personal computers, at least for MCS-based
calculations [7].

The SMILES subset pairs were converted to a diction-
ary variable, named subsets, and the RDKit mol objects
were added to the dictionary such that each subset pair
has its own dictionary integer key and the associated
SMILES and mol objects as the values:

At this point, we computed the pairwise similarity val-
ues for the edges. The Tanimoto Similarity values were

Page 5 of 13Scalfani et al. Journal of Cheminformatics (2022) 14:87 	

computed as follows using the RDKit fingerprints with
default parameters:

The RDKit fingerprint calculations for the ~ 81,000
pairs of compounds was fast, completing in about 3 min
on the Core i9-based laptop used. Next, we wrote a
Python RDKit function to compute the MCS-based simi-
larity value using the equation reported by Zhang [7].
For the purposes of this tutorial, we added a 10 s timeout
option to the RDKit FindMCS function, which serves to
return the best MCS match found within 10 s, and speed
up the calculations if certain comparisons are taking too
long. This seemed like a reasonable parameter to add as
well, as the RDKit “Getting Started” documentation sug-
gests that most of the time, the FindMCS comparison
takes less than a second [15].

In addition to the FindMCS function being computa-
tionally demanding, Python defaults to single core pro-
cessing. We found that computing 80,000 tc_mcs values
was incredibly slow with single core processing. As a
result, we used the Python multiprocessing module,
which allowed us to loop through the 80,000 pairs of mol
objects and compute the tc_mcs function across multi-
ple processors (Jupyter Notebooks). With this method
and using 14 of the 16 cores of an Intel Core i9-9980HK
(2.4 GHz × 16) CPU, the computation took about one
hour. The final subsets data structure was as follows:

We recognize that not all readers will have access to a
core i9 (or faster) computer workstation. As such, we ran

the same computation on a 10 year old laptop with an
Intel Core i5-2520 M (2.5 GHz × 4) CPU with 8 GB RAM,
using 3 of the 4 cores and all ~ 80,000 MCS-based simi-
larity values were computed in about four hours. Since
the edge data computations can take a while to compute,
these were saved as a Python pickle file, eliminating the
need to re-compute the edge data for the downstream
analysis and CSN visualizations (Additional file 1).

Step 5—select a threshold value for edges to include
in the network
The subsets dictionary variable, containing the edge data,
was filtered based on the values of the Tanimoto simi-
larity or the MCS-based similarity value; that is, not all
possible edges are included in the CSNs. There are two
approaches to filtering the edge data, the first would be
to select a threshold value of similarity (e.g., > 0.5), and
the second is to target a specific final edge density (edges
/ total edges) [7], then calculate the value of similarity
needed to match the target edge density. We selected a
filtering value of >= 0.68 for the RDKit fingerprint Tani-
moto-based similarity CSNs, which created an edge den-
sity of 0.095 (~ 10%):

For the MCS-based similarity CSNs, the edge density
of 0.095 was targeted to find the filtering value of 0.635
for the MCS-based similarity value (Jupyter Notebooks).

The selected edge density of ~ 10% is higher than val-
ues used in the literature for CSNs, which are typically
2–5% [2, 5, 6]. For the dataset we used, achieving an edge
density of ~ 3% would require a threshold value of ~ 0.9
for the Tanimoto and MCS-based similarity CSNs. We
selected a higher edge density for the purpose of this
tutorial for two main reasons: (1) we wanted to incorpo-
rate a range of similarity values into the network visuali-
zations in order to demonstrate creating different edge
line styles based on these values, and (2) obtaining a
lower edge density created a high number of small indi-
vidual connected components in the graph, which we
wanted to avoid to simplify the visualizations. Tuning
and selecting an appropriate edge density is an impor-
tant consideration when studying CSNs as many network
properties are affected by edge density [2, 5–7]. Using the
methods and code described in this article, it is straight-
forward to experiment with different edge densities by
simply adjusting the threshold filtering value and execut-
ing the code for the downstream visualizations and calcu-
lations. Lastly, we removed any nodes (compounds) from
the node_data dictionary variable that do not appear in

Page 6 of 13Scalfani et al. Journal of Cheminformatics (2022) 14:87

the filtered edge data. This step removes the occurrence
of nodes without any edges. For the tanimoto-based sim-
ilarity CSNs the final number of nodes was 393 and 7739
edges, and for the MCS-based CSNs, the final number of
nodes was 398 and number of edges was 7709.

Step 6—add node and edge data to the network graph
and plot
After initializing an empty graph variable, the edge data
including the compound SMILES (smi1, smi2) and their
associated similarity value (Tanimoto or MCS-based
similarity) were added to the graph by looping through
the filtered subset edge data created in Step 5:

The NetworkX Graph.add_edge method automatically
creates the nodes from the edges (nodes are the SMILES
strings). However, we also added the node attributes
using the Graph.add_node method in order to include
the associated ChEMBL ID and pKi values:

With the edge and node data added to the network
graph, we now have all of the pieces in place to start cre-
ating visualizations. NetworkX provides graph drawing
functionality using the Matplotlib library [27]. To create
a basic plot, first a layout algorithm and parameters are
selected, followed by the NetworkX draw function:

The spring 2D layout was selected because of its suc-
cessful use in reported CSNs [5, 7, 9]. The NetworkX
spring layout uses the Fruchterman-Reingold force-
directed algorithm, which ultimately creates separate
clusters/communities of connected nodes [7, 28]. By
default, the NetworkX spring layout uses the weights
of the edges (e.g., similarity values) within the force-
directed calculations, where a larger weight equates to a
stronger attractive force between the nodes in the algo-
rithm. We found that the similarity weight values had
minimal visual impact on the overall layout of the CSNs
(perhaps due to their similar magnitude). As a result, it
is likely that the edge distance between connected nodes

and space between individual clusters of nodes do not
scale with similarity relationship value, which is consist-
ent with other applications of the Fruchterman-Reingold
algorithm for CSNs without weighted edge values [2, 7].

Step 7—adjust plot settings such as node color based
on pKi value, node size, and add legends
Figure 1 is an acceptable basic CSN plot, however, by
adjusting a few network drawing plotting parameters, it
is possible to improve the amount of information that
the CSN visualization conveys. The first adjustment to
the CSN network drawing was to incorporate the pKi
values as node colors. This was accomplished by looping
through the graph’s node pKi attributes and creating a list
of colors based on a conditional range of values from 4 to
11, with an increment of 1:

The color_map list can then be added into the network
drawing with the node_color drawing option. Additional
adjustments were also added in including a smaller node
size, node edge border, and a grey color for the network
edges:

Fig. 1  A basic spring layout CSN (Tanimoto Similarity variant) with
the glucocorticoid dataset compounds. The Tanimoto Similiarity
threshold was set to >= 0.68

Page 7 of 13Scalfani et al. Journal of Cheminformatics (2022) 14:87 	

Since NetworkX uses Matplotlib for the drawing func-
tionality, it is also possible to annotate the plot with a
color bar legend by adding a second axis and defining the
color bar bounds and attributes (Jupyter Notebooks).

Step 8—Identify and plot specific components
of the network
Figures 1 and 2 depict the overall CSN visualization,
however, it is useful to also identify and explore sections,
or individual connected components of the graph. With
NetworkX, the individual connected graphs can be enu-
merated and saved as a list:

The list of individual connected graphs can then be
plotted similarly to the entire CSN network. However,
since the connected graphs contain less nodes than the
entire CSN network and offer a “zoomed in” view, it is
possible to incorporate features in addition to node color
such as node labels and different line styles based on sim-
ilarity value [3, 29]. Node labels can be added by looping
through the nodes and creating, for example an integer
label for each node, while the line styles can be adjusted

by filtering the edges into individual edge lists based on
attribute value (Fig. 3):

The custom node labels and edge lists can then be
plotted with the NetWorkX drawing functionality using
the draw_networkx_labels, draw_networkx_edges
functions (Jupyter Notebooks).

Finally, the labeled nodes can be identified and fur-
ther analyzed by looping over the graph nodes and

Fig. 2  A spring layout CSN (Tanimoto Similarity variant) with
the glucocorticoid dataset compounds. The Tanimoto Similiarity
threshold was set to >= 0.68. Node color represents pKi value

Fig. 3  A spring layout CSN component (MCS Similarity variant) with the glucocorticoid dataset compounds. The nodes are labeled with index
values, node color represents pKi value, and line style is dependent on MCS-based similarity value

Page 8 of 13Scalfani et al. Journal of Cheminformatics (2022) 14:87

indexing out the SMILES, ID values, and pKi values,
into, for example, a DataFrame variable:

Step 9—replace circle nodes with 2D chemical structures
As images can be plotted on Matplotlib axes and incor-
porated into network visualizations in NetworkX [30], it
is possible to replace the representation of compounds as
nodes with 2D structure depictions (Fig. 4). The work-
flow for plotting the nodes as 2D structures in a Net-
workX graph included: (A) obtaining the positions to
plot the structure images; (B) looping through the nodes
(SMILES), and then; (C) using the RDKit rdMolDraw2D
module to create 2D structure drawings as PNG images

Fig. 4  A spring layout CSN component (MCS Similarity variant) with the glucocorticoid dataset compounds. The nodes are plotted as 2D
compound images and line style is dependent on MCS-based similarity value

Page 9 of 13Scalfani et al. Journal of Cheminformatics (2022) 14:87 	

with transparent backgrounds. Step C of the workflow is
shown below:

There are a couple limitations to be aware of when
plotting nodes as 2D structures using this method. The
first limitation is that the scaling size of the 2D structure
images may need to be manually adjusted depending on
the number of structures in the network (Jupyter Note-
books). This limitation is easily overcome, however, since
it only requires adjusting one value manually until an
appropriate size is found. We have found scaling values
in the range of 0.04 to 0.1 to be appropriate for plotting
5–40 structure images.

One advantage of the Matplotlib/NetworkX CSN plot-
ting method with 2D structure images is that the code to
produce the network visualization is relatively straight-
forward and can be accomplished with about 15 lines
of code. The produced static network images work well
for creating high quality traditional scientific visualiza-
tions of networks on the order of 10 s of structures, how-
ever they are not well suited for attempting to navigate
through an entire CSN or large component thereof (e.g.,
100 s of nodes). For visualizing larger networks with 2D
structure images, it is likely that some type of interac-
tive network visualization would be needed. One method
for creating interactive CSNs with 2D structures, which
would incorporate well into the Python/NetWorkX/
RDKit workflow described in this tutorial, would be to
use the ipycytoscape Jupyter Notebook widget [31]. The
ipycytoscape widget was recently featured in an RDKit
User Group Meeting presentation for creating interactive
scaffold networks (a type of fragmentation chemical net-
work) [32, 33]. While creating interactive CSNs is beyond
the scope of this tutorial, we plan to experiment with the
ipycytoscape widget in the near future to evaluate its
potential for creating CSNs with RDKit and NetworkX.

Step 10—adjust 2D structure plot settings such as color
based on pKi value and add legends
The basic 2D structure network depiction created in
Step 9 (Fig. 4) can be enhanced by incorporating in

color based on pKi value and adding in the ChEMBL
IDs as labels. To accomplish this, we wrote an RDKit
Python function, highlight_mol, that accepts SMILES,
a string label, and a color name as input. The highlight_
mol function then returns the depicted 2D drawing
PNG image with all atoms and bonds highlighted:

The highlight_mol function was then incorporated
into the workflow for plotting the nodes as 2D struc-
tures as described in step 9. The input data for the high-
light_mol function was obtained by looping through
each node in the graph and indexing out the respective
pKi and ChEMBL ID value attributes (Jupyter Note-
books). To complete the visualization, a color bar and
legend were added (Fig. 5).

Step 11—compute network properties—clustering
coefficient, degree assortativity, and modularity
NetWorkX includes many builtin functions for calculat-
ing network properties and applying network science
algorithms into CSN analysis workflows. In this tutorial,
we focused on demonstrating calculations for three com-
mon network properties including the clustering coeffi-
cient, degree assortativity, and modularity.

The clustering coefficient is a value between 0 and 1
that quantifies the ratio of the number of closed loops of
three nodes that are in the network [34]. For example, in
a CSN, for each pair of two compounds connected with
an edge, the average clustering coefficient would then
quantify the number of occurrences where the two com-
pounds are both connected (similar) to a third neigh-
boring compound [5, 7]. The clustering coefficient in
NetworkX can be computed with the builtin clustering

Page 10 of 13Scalfani et al. Journal of Cheminformatics (2022) 14:87

function using the CSN graph as input and optionally the
weights of the edges. If the weights of the edges are used
(e.g., similarity values), these are incorporated into the
clustering coefficient calculation with a weight intensity
factor [35, 36]. The average clustering coefficient for the
weighted glucocorticoid CSN was 0.76 and 0.71 for the
Tanimoto similarity and MCS-based similarity, respec-
tively (Jupyter Notebooks).

The degree assortativity is a measure of correlation
between the degrees of nodes (number of edges con-
nected to node). The value ranges from -1 to 1. The larger
the value, the more assortative the network, which, in
short, indicates that similar node degrees are neighbors
(e.g., high degree nodes connected to high degree nodes)
[2, 5, 34]. CSNs reported in the literature typically have
positive degree assortativity, which is a result of forming
individual connected components or clusters of similar
compounds in the network [5, 6]. In NetworkX, there is

a builtin function, degree_assortativity_coefficient, that
can be used with the CSN graph as input and optionally
the similarity weights as input. The degree assortativity
for the weighted glucocorticoid CSN was 0.96 and 0.84
for the Tanimoto similarity and MCS-based similarity,
respectively (Jupyter Notebooks).

Modularity is a value that quantifies the separation of
similar nodes (e.g. nodes connected with many edges)
into distinct clusters or communities [5, 34]. To compute
the modularity of the CSNs in NetworkX, first, commu-
nities need to be detected using an optimization function
[6], followed by then inputting the detected community
component graphs into the NetworkX modularity func-
tion. Using the NetworkX greedy_modularity_commu-
nities function for community detection of the weighted
glucocorticoid CSNs, the Tanimoto similarity network
had 18 communities with a modularity value of 0.62, and

Fig. 5  A spring layout CSN component (MCS Similarity variant) with the glucocorticoid dataset compounds. The nodes are plotted as 2D
compound images with color highlighting for pKi values and line style dependent on MCS-based similarity value

Page 11 of 13Scalfani et al. Journal of Cheminformatics (2022) 14:87 	

the MCS-based CSN had 13 communities with a modu-
larity of 0.71 (Jupyter Notebooks).

Since the NetworkX community detection functions
allow saving a list of the individual communities as
nodes, it is possible to then loop through the list of nodes
and add distinct colors to each node depending on the
community for the CSN visualization (Fig. 6):

Interestingly, while we included the similarity edge val-
ues as an optional weight parameter in the spring layout,
clustering coefficient, degree assortativity, and commu-
nity detection network calculations, CSNs in the litera-
ture do not generally include the similarity weights into
the network. Studying weighted CSNs is an area of inter-
est and opportunity as pointed out in a 2016 review arti-
cle by Vogt et. al [2]. However, to our knowledge there
has only been a single report studying weighted CSNs. Ito
and Ohnishi created weighted CSNs based on Tanimoto
similarity relationships without incorporating any mini-
mum threshold to include edges into the network; that is,
all edges are included in the network, and the topology
of the network is not influenced by a minimum similar-
ity value [37]. As such, there is certainly an opportunity
for the cheminformatics community to further evaluate
the suitability of weighted CSNs and if a combination
of a threshold parameter and weighted edges (as in this
tutorial) would afford new information in the analysis of
CSNs.

Conclusions
This tutorial demonstrated how to use RDKit and Net-
workX to create CSNs based on RDKit fingerprint
Tanimoto similarity and a maximum common substruc-
ture-based similarity. A variety of CSN visualizations of
varying complexity were created including CSNs with
circle node representations, node color based on bioac-
tivity attribute, edge thickness dependent on similarity
value, and 2D structure depictions as nodes. With this
manuscript and the included Jupyter Notebooks (Addi-
tional file 1), readers interested in generating CSNs

should be able to adapt the code for their own use in
research and teaching. We hope that code in this tuto-
rial will provide a starting point for more CSN related
cheminformatics research, including further comparison
of CSNs to weighted CSNs (incorporating edge values
into network calculations), which, to our knowledge has
not yet been extensively studied in cheminformatics [2].
In addition, we suspect that selected parts of the tutorial
workflow described in this report could be adapted for
generating chemical library networks (where nodes rep-
resent collections of compounds) [14]. Finally, we plan to
continue our work on CSN tutorials by creating interac-
tive CSNs in the near future.

Abbreviations
CSN: Chemical space network; MMP: Matched molecular pair; MCS: Maximum
common substructure.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s13321-​022-​00664-x.

Additional file 1. ChEMBL glucocorticoid dataset (CSV file).

Acknowledgements
The work presented in this manuscript was produced with open source soft-
ware including the Linux Ubuntu operating system, RDKit, NetworkX, Pandas,
Matplotlib and other supporting software packages. Thank you to all of the
contributors; this work would not have been possible without the excellent
software and documentation provided by these open source projects.

Fig. 6  A spring layout CSN (MCS Similarity variant) with the
glucocorticoid dataset compounds. The nodes are colored based
on community cluster detected using the NetworkX greedy_
modularity_communities function

https://doi.org/10.1186/s13321-022-00664-x
https://doi.org/10.1186/s13321-022-00664-x

Page 12 of 13Scalfani et al. Journal of Cheminformatics (2022) 14:87

Author contributions
VFS directed the project, developed code, and wrote the manuscript. VDP
contributed significantly to the workflow and prototyping code. AMF contrib-
uted substantial improvements and additions to the code. All authors read
and approved the manuscript.

Funding
Not applicable.

Availability of data and materials
All code (as Jupyter Notebooks) needed to reproduce the results in this article
are available on GitHub with a BSD-3 License: https://​github.​com/​vfsca​lfani/​
CSN_​tutor​ial

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare they have no competing interests.

Received: 21 October 2022 Accepted: 27 November 2022

References
	1.	 Maggiora GM, Bajorath J (2014) Chemical space networks: a powerful

new paradigm for the description of chemical space. J Comput Aided
Mol Des 28:795–802. https://​doi.​org/​10.​1007/​s10822-​014-​9760-0

	2.	 Vogt M, Stumpfe D, Maggiora GM, Bajorath J (2016) Lessons learned
from the design of chemical space networks and opportunities for new
applications. J Comput Aided Mol Des 30:191–208. https://​doi.​org/​10.​
1007/​s10822-​016-​9906-3

	3.	 Recanatini M, Cabrelle C (2020) Drug research meets network science:
where are we? J Med Chem 63:8653–8666. https://​doi.​org/​10.​1021/​acs.​
jmedc​hem.​9b019​89

	4.	 Kunimoto R, Bajorath J (2018) Combining similarity searching and
network analysis for the identification of active compounds. ACS Omega
3:3768–3777. https://​doi.​org/​10.​1021/​acsom​ega.​8b003​44

	5.	 Zhang B, Vogt M, Maggiora GM, Bajorath J (2015) Comparison of
bioactive chemical space networks generated using substructure- and
fingerprint-based measures of molecular similarity. J Comput Aided Mol
Des 29:595–608. https://​doi.​org/​10.​1007/​s10822-​015-​9852-5

	6.	 Zwierzyna M, Vogt M, Maggiora GM, Bajorath J (2015) Design and
characterization of chemical space networks for different compound
data sets. J Comput Aided Mol Des 29:113–125. https://​doi.​org/​10.​1007/​
s10822-​014-​9821-4

	7.	 Zhang B, Vogt M, Maggiora GM, Bajorath J (2015) Design of chemi-
cal space networks using a Tanimoto similarity variant based upon
maximum common substructures. J Comput Aided Mol Des 29:937–950.
https://​doi.​org/​10.​1007/​s10822-​015-​9872-1

	8.	 Kunimoto R, Bajorath J (2017) Exploring sets of molecules from patents
and relationships to other active compounds in chemical space net-
works. J Comput Aided Mol Des 31:779–788. https://​doi.​org/​10.​1007/​
s10822-​017-​0061-2

	9.	 Wu M, Vogt M, Maggiora GM, Bajorath J (2016) Design of chemical space
networks on the basis of Tversky similarity. J Comput Aided Mol Des
30:1–12. https://​doi.​org/​10.​1007/​s10822-​015-​9891-y

	10.	 Kunimoto R, Vogt M, Bajorath J (2017) Tracing compound pathways using
chemical space networks. Med Chem Commun 8:376–384. https://​doi.​
org/​10.​1039/​C6MD0​0628K

	11.	 de la VegadeLeón A, Bajorath J (2016) Chemical space visualization:
transforming multidimensional chemical spaces into similarity-based

molecular networks. Future Med Chem 8:1769–1778. https://​doi.​org/​10.​
4155/​fmc-​2016-​0023

	12.	 Lepp Z, Huang C, Okada T (2009) Finding key members in compound
libraries by analyzing networks of molecules assembled by structural
similarity. J Chem Inf Model 49:2429–2443. https://​doi.​org/​10.​1021/​ci900​
1102

	13.	 Wollenhaupt S, Baumann K (2014) inSARa: intuitive and interactive SAR
interpretation by reduced graphs and hierarchical MCS-based network
navigation. J Chem Inf Model 54:1578–1595. https://​doi.​org/​10.​1021/​
ci400​7547

	14.	 Dunn TB, Seabra GM, Kim TD et al (2022) Diversity and chemical library
networks of large data sets. J Chem Inf Model 62:2186–2201. https://​doi.​
org/​10.​1021/​acs.​jcim.​1c010​13

	15.	 Landrum G, contributors Rdk (2022) rdkit/rdkit: 2022_03_5 (Q1 2022)
Release

	16.	 Hagberg AA, Schult DA, Swart PJ (2008) Exploring network structure,
dynamics, and function using NetworkX. In: Varoquaux G, Vaught T,
Millman J (eds) Proceedings of the 7th Python in science conference.
Pasadena, CA USA, pp 11–15

	17.	 ChEMBL Data Licensing. https://​chembl.​gitbo​ok.​io/​chembl-​inter​face-​
docum​entat​ion/​about#​data-​licen​sing

	18.	 Creative Commons—CC BY-SA 3.0 License. https://​creat​iveco​mmons.​
org/​licen​ses/​by-​sa/3.​0/

	19.	 Gaulton A, Hersey A, Nowotka M et al (2017) The ChEMBL database in
2017. Nucleic Acids Res 45:D945–D954. https://​doi.​org/​10.​1093/​nar/​
gkw10​74

	20.	 McKinney W (2010) Data structures for statistical computing in Python. In:
Walt S van der, Millman J (eds) Proceedings of the 9th Python in science
conference, pp 56–61

	21.	 The Pandas development team (2022) pandas-dev/pandas: Pandas 1.4.4.
https://​doi.​org/​10.​5281/​zenodo.​35091​34

	22.	 Dalke, Andrew Combinitorial Library Generation with SMILES. In: Com-
binitorial Library Generation with SMILES. http://​www.​dalke​scien​tific.​
com/​writi​ngs/​diary/​archi​ve/​2004/​12/​12/​libra​ry_​gener​ation_​with_​smiles.​
html. Accessed 20 Oct 2022

	23.	 Bento AP, Hersey A, Félix E et al (2020) An open source chemical structure
curation pipeline using RDKit. J Cheminform 12:51. https://​doi.​org/​10.​
1186/​s13321-​020-​00456-1

	24.	 Fourches D, Muratov E, Tropsha A (2010) Trust, but verify: on the impor-
tance of chemical structure curation in cheminformatics and QSAR
modeling research. J Chem Inf Model 50:1189–1204. https://​doi.​org/​10.​
1021/​ci100​176x

	25.	 Fourches D, Muratov E, Tropsha A (2016) Trust, but verify II: a practical
guide to chemogenomics data curation. J Chem Inf Model 56:1243–1252.
https://​doi.​org/​10.​1021/​acs.​jcim.​6b001​29

	26.	 Landrum, Greg RSC_OpenScience_Standardization. In: RSC_Open-
Science_Standardization. https://​github.​com/​gregl​andrum/​RSC_​OpenS​
cience_​Stand​ardiz​ation_​202104. Accessed 20 Oct 2022

	27.	 Hunter JD (2007) Matplotlib: a 2D graphics environment. Comput Sci Eng
9:90–95. https://​doi.​org/​10.​1109/​MCSE.​2007.​55

	28.	 Noack A (2009) Modularity clustering is force-directed layout. Phys Rev E
79:026102. https://​doi.​org/​10.​1103/​PhysR​evE.​79.​026102

	29.	 NetworkX Weighted Graph Drawing. In: NetworkX weighted graph draw-
ing. https://​netwo​rkx.​org/​docum​entat​ion/​stable/​auto_​examp​les/​drawi​
ng/​plot_​weigh​ted_​graph.​html. Accessed 20 Oct 2022

	30.	 NetworkX Custom Node Icons Drawing. In: NetworkX custom node icons
drawing. https://​netwo​rkx.​org/​docum​entat​ion/​stable/​auto_​examp​les/​
drawi​ng/​plot_​custom_​node_​icons.​html. Accessed 20 Oct 2022

	31.	 ipycytoscape. In: ipycytoscape. https://​github.​com/​cytos​cape/​ipycy​tosca​
pe. Accessed 20 Oct 2022

	32.	 Landrum G (2020) RDKit UGM what’s new. https://​github.​com/​rdkit/​
UGM_​2020/​blob/​master/​Noteb​ooks/​Landr​um_​Whats​New.​ipynb.
Accessed 20 Oct 2022

	33.	 Kruger F, Stiefl N, Landrum GA (2020) rdScaffoldNetwork: the scaffold net-
work implementation in RDKit. J Chem Inf Model 60:3331–3335. https://​
doi.​org/​10.​1021/​acs.​jcim.​0c002​96

	34.	 Newman M (2018) Networks. Oxford University Press

https://github.com/vfscalfani/CSN_tutorial
https://github.com/vfscalfani/CSN_tutorial
https://doi.org/10.1007/s10822-014-9760-0
https://doi.org/10.1007/s10822-016-9906-3
https://doi.org/10.1007/s10822-016-9906-3
https://doi.org/10.1021/acs.jmedchem.9b01989
https://doi.org/10.1021/acs.jmedchem.9b01989
https://doi.org/10.1021/acsomega.8b00344
https://doi.org/10.1007/s10822-015-9852-5
https://doi.org/10.1007/s10822-014-9821-4
https://doi.org/10.1007/s10822-014-9821-4
https://doi.org/10.1007/s10822-015-9872-1
https://doi.org/10.1007/s10822-017-0061-2
https://doi.org/10.1007/s10822-017-0061-2
https://doi.org/10.1007/s10822-015-9891-y
https://doi.org/10.1039/C6MD00628K
https://doi.org/10.1039/C6MD00628K
https://doi.org/10.4155/fmc-2016-0023
https://doi.org/10.4155/fmc-2016-0023
https://doi.org/10.1021/ci9001102
https://doi.org/10.1021/ci9001102
https://doi.org/10.1021/ci4007547
https://doi.org/10.1021/ci4007547
https://doi.org/10.1021/acs.jcim.1c01013
https://doi.org/10.1021/acs.jcim.1c01013
https://chembl.gitbook.io/chembl-interface-documentation/about#data-licensing
https://chembl.gitbook.io/chembl-interface-documentation/about#data-licensing
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/
https://doi.org/10.1093/nar/gkw1074
https://doi.org/10.1093/nar/gkw1074
https://doi.org/10.5281/zenodo.3509134
http://www.dalkescientific.com/writings/diary/archive/2004/12/12/library_generation_with_smiles.html
http://www.dalkescientific.com/writings/diary/archive/2004/12/12/library_generation_with_smiles.html
http://www.dalkescientific.com/writings/diary/archive/2004/12/12/library_generation_with_smiles.html
https://doi.org/10.1186/s13321-020-00456-1
https://doi.org/10.1186/s13321-020-00456-1
https://doi.org/10.1021/ci100176x
https://doi.org/10.1021/ci100176x
https://doi.org/10.1021/acs.jcim.6b00129
https://github.com/greglandrum/RSC_OpenScience_Standardization_202104
https://github.com/greglandrum/RSC_OpenScience_Standardization_202104
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1103/PhysRevE.79.026102
https://networkx.org/documentation/stable/auto_examples/drawing/plot_weighted_graph.html
https://networkx.org/documentation/stable/auto_examples/drawing/plot_weighted_graph.html
https://networkx.org/documentation/stable/auto_examples/drawing/plot_custom_node_icons.html
https://networkx.org/documentation/stable/auto_examples/drawing/plot_custom_node_icons.html
https://github.com/cytoscape/ipycytoscape
https://github.com/cytoscape/ipycytoscape
https://github.com/rdkit/UGM_2020/blob/master/Notebooks/Landrum_WhatsNew.ipynb
https://github.com/rdkit/UGM_2020/blob/master/Notebooks/Landrum_WhatsNew.ipynb
https://doi.org/10.1021/acs.jcim.0c00296
https://doi.org/10.1021/acs.jcim.0c00296

Page 13 of 13Scalfani et al. Journal of Cheminformatics (2022) 14:87 	

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research ? Choose BMC and benefit from: ? Choose BMC and benefit from:

	35.	 Onnela J-P, Saramäki J, Kertész J, Kaski K (2005) Intensity and coherence of
motifs in weighted complex networks. Phys Rev E 71:065103. https://​doi.​
org/​10.​1103/​PhysR​evE.​71.​065103

	36.	 Saramäki J, Kivelä M, Onnela J-P et al (2007) Generalizations of the cluster-
ing coefficient to weighted complex networks. Phys Rev E 75:027105.
https://​doi.​org/​10.​1103/​PhysR​evE.​75.​027105

	37.	 Ito MI, Ohnishi T (2019) Weighted network analysis of biologically relevant
chemical spaces. https://​doi.​org/​10.​48550/​ARXIV.​1911.​05259

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1103/PhysRevE.71.065103
https://doi.org/10.1103/PhysRevE.71.065103
https://doi.org/10.1103/PhysRevE.75.027105
https://doi.org/10.48550/ARXIV.1911.05259

	Visualizing chemical space networks with RDKit and NetworkX
	Abstract
	Introduction
	Overview and organization of this manuscript
	Step 0—hardware, operating system, and conda environment setup
	Step 1—ChEMBL data collection
	Step 2—load the data into a Python variable and curateprepare compound data
	Step 3—Compile the network node data (compounds and associated pKi values)
	Step 4—compile network edge data by computing pairwise similarity relationships of compounds
	Step 5—select a threshold value for edges to include in the network
	Step 6—add node and edge data to the network graph and plot
	Step 7—adjust plot settings such as node color based on pKi value, node size, and add legends
	Step 8—Identify and plot specific components of the network
	Step 9—replace circle nodes with 2D chemical structures
	Step 10—adjust 2D structure plot settings such as color based on pKi value and add legends
	Step 11—compute network properties—clustering coefficient, degree assortativity, and modularity

	Conclusions
	Acknowledgements
	References

