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Abstract 

The relationships between molecular structures and their properties are subtle and complex, and the properties of 
odor are no exception. Molecules with similar structures, such as a molecule and its optical isomer, may have com-
pletely different odors, whereas molecules with completely distinct structures may have similar odors. Many works 
have attempted to explain the molecular structure-odor relationship from chemical and data-driven perspectives. The 
Transformer model is widely used in natural language processing and computer vision, and the attention mechanism 
included in the Transformer model can identify relationships between inputs and outputs. In this paper, we describe 
the construction of a Transformer model for predicting molecular properties and interpreting the prediction results. 
The SMILES data of 100,000 molecules are collected and used to predict the existence of molecular substructures, and 
our proposed model achieves an F1 value of 0.98. The attention matrix is visualized to investigate the substructure 
annotation performance of the attention mechanism, and we find that certain atoms in the target substructures are 
accurately annotated. Finally, we collect 4462 molecules and their odor descriptors and use the proposed model to 
infer 98 odor descriptors, obtaining an average F1 value of 0.33. For the 19 odor descriptors that achieved F1 values 
greater than 0.45, we also attempt to summarize the relationship between the molecular substructures and odor 
quality through the attention matrix.
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Introduction
Smell plays an important role in all aspects of life and is 
thus an important property of all compounds. The rela-
tionship between molecular structure and odor quality is 
an essential research topic. Studies on this relationship 
may lead to predictions of the odor of a molecule, odor 
synthesis, and even the artificial synthesis of molecules 
with specific odors. However, studying the odors of dif-
ferent substances is challenging. A previous study [1] 
showed that molecules with similar structures may have 

very different odors, while molecules with similar odors 
may have completely distinct structures. In addition 
to the subtle relationship between molecular structure 
and odor, aspects such as sex, age, and disease history 
can affect odor perception. Therefore, special training is 
required to label the odors of substances, which increases 
the difficulty of labeling the odors of chemical com-
pounds. Thus, to date, the relationship between molecu-
lar structure and odor remains difficult to specify.

Machine learning has been applied in a wide range 
of fields, including physics and chemistry, and various 
molecular structure property prediction methods have 
been proposed [2–5]. These methods can be divided into 
feature-based methods and feature-free methods accord-
ing to the type of data that are input into the model. Fea-
ture-based methods take the generated fixed molecular 
features (such as molecular fingerprints and molecular 
parameters) as model inputs and use various algorithms 
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(e.g., random forest and support vector machines) to 
predict the molecular properties. Feature-free methods 
predict specific molecular properties by automatically 
extracting molecule features that are related to those 
properties using methods such as graph neural networks 
[6] or graph kernels [7]. In addition to predicting molec-
ular properties such as water solubility and lipophilicity, 
feature-free methods use artificial neural networks to pre-
dict additional essential properties, such as the molecular 
energy, dipole moment and molecular dynamics [8, 9], 
allowing us to compute this information faster than using 
computational chemistry methods. In molecular property 
prediction, the interpretability of the model is particu-
larly important [10], as model interpretability allows us 
to investigate the relationship between molecular struc-
ture and different properties at the molecular, atomic, and 
subatomic levels. Although feature-based methods use 
fixed features, the resulting model usually provides some 
interpretability. In contrast, feature-free methods flexibly 
extract features according to the properties to be pre-
dicted; however, the models are not often interpretable. 
Therefore, we aim to develop a feature-free method that 
allows interpretation of the extracted features.

At present, approximately 4000 odorants have been 
labeled with their corresponding odor. The smells of 
odorants have been labeled with odor descriptors (ODs), 
such as ‘sweet,’ ‘fruity,’ and ‘green.’ These data intro-
duce the possibility of using data-driven approaches in 
molecular structure-odor studies. Several studies have 
used machine learning methods for OD prediction. For 
example, Keller et al. [11] used molecular parameters to 
predict the scores of 19 kinds of odors, achieving a cor-
relation coefficient of 0.55. In contrast to most studies 
on OD prediction, this study attempted to predict scores 
corresponding to ODs through regression rather than 
classification, making it difficult to compare the results 
with those of the studies mentioned below. Shang et  al. 
[12] predicted 10 ODs using molecular parameters, 
achieving an F1 value greater than 0.8. However, data 
augmentation was applied by synthesizing similar data 
points based on the original dataset before dividing the 
dataset into training and test sets. Therefore, the test set 
was essentially contaminated. Sanchez-Lengeling et  al. 
[13] combined two datasets and predicted 138 ODs using 
a graph neural network (GNN) [3, 14], with the previous 
output layer applied to cluster the ODs. Although the 
average F1 value was 0.36, the clustering results showed 
that the outputs in the last layer were closer to each other 
when the corresponding molecules were labeled with 
ODs in similar categories. Chacko et  al. [15] used the 
same dataset as Keller et al. [11] to predict the pleasant-
ness and intensity of odors, as well as two ODs (sweet 
and musky). The corresponding F1 values of the two ODs 

on the test set were 0.84 and 0.69. The dataset used by 
Chacko et al. contained 480 samples, and the ratio of the 
training set to the test set was 9:1. Thus, the results may 
not be stable because of the small number of samples in 
the test dataset. Debnath and Nakamoto [16] predicted 
three ODs (fruity, green, and sweet) using the mass spec-
tra of different molecules and achieved an average F1 
value of 0.51.

In recent years, the Transformer model has been 
widely used in image processing [17, 18] and natural lan-
guage processing [19, 20] because of its flexible atten-
tion mechanism. In addition to processing sentences and 
images, the Transformer model can take more flexible 
input forms (such as graphs) by using relative positional 
embedding [21, 22]. In terms of interpretability, the 
Transformer model results can naturally be interpreted 
according to its attention mechanism. Several Trans-
former models for molecular property prediction have 
been developed in recent years. Karpov et  al. [23] used 
the SMILES data of molecules in the form of strings as the 
model input and predicted various molecular properties, 
such as the melting and boiling points. When molecules 
are represented in nonstring forms, the relative posi-
tional information between atoms must be used as one of 
the inputs to the model. Maziarka et al. [24, 25] predicted 
molecular properties by adding the relative positional 
information of the atoms to the attention matrix, and 
Maziarka et al. [26] used carefully designed functions to 
express the positional relationship between atoms based 
on Maziarka et  al. [24]. Both of these works interpret 
the model by visualizing the attention mechanism in the 
encoder. Hutchinson et al. [27] and Thölke [28] predicted 
several more essential properties, such as the molecular 
energy, dipole moment, and molecular dynamics. They 
not only used carefully designed functions to express the 
positional relationship between atoms but also computed 
the outputs according to a more physical approach. For 
example, they predicted the atomic forces by comput-
ing the derivative of the predicted atomic energies with 
respect to the relative position.

In this research, we adopt a feature-free method and 
use the Transformer model to predict ODs. We first pre-
dict the existence of molecular substructures using the 
Transformer model and then evaluate the performance 
of the attention mechanism in terms of model interpret-
ability by visualizing the attention matrix. Finally, we use 
the model to predict ODs and visualize the attention 
matrices.

The main contributions of this study can be summa-
rized as follows:

•	 We finetune a Transformer model for predicting 
molecular properties and interpreting the results.
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•	 Experiments are conducted to predict the existence 
of various substructures and to investigate the inter-
pretability of the attention mechanism in the Trans-
former model.

•	 The developed Transformer model is used to predict 
ODs, and the attention matrix is visualized to iden-
tify OD structural features.

Methods and experiment
Model
The original Transformer model [19] was developed for 
machine translation and consists of an encoder and a 
decoder. Each layer in the encoder contains one attention 
module, which can be regarded as a self-attention mech-
anism through which each word in the input sentence 
interacts with related words. Each layer in the decoder 
contains two attention modules. The first attention mod-
ule is also a self-attention mechanism that enables the 
word that is currently being translated to communicate 
with other translated words. The second attention mod-
ule is used to obtain information about the source lan-
guage for the current word.

A sentence is considered as a sequence of words. By 
adding position information as a positional embedding 
to the embedding of the input word, the original Trans-
former can consider the word order. Molecules are three-
dimensional (3D) structures that are composed of atoms. 
The relationship between atoms in a molecule cannot be 
represented by the positional embeddings used in the 
original Transformer because the bonds between atoms 
must be represented.

The Molecular Attention Transformer (MAT) model 
[24] was developed to predict molecular properties such 

as water solubility and blood-brain barrier penetration. 
The MAT model provides a creative solution for identify-
ing the relationship between atoms. As shown on the left 
side of Fig. 1, the MAT model replaces positional embed-
ding by adding adjacency and distance matrices to the 
attention matrix. The attention mechanism in the MAT 
model is formulated as

where �1 , �2 , and �3 are hyperparameters; Q, K, and V are 
the query matrix, key matrix, and value matrix (as in the 
original Transformer); D and A are the distance matrix 
and adjacency matrix, respectively; and g(d) = exp(−d) 
is an elementwise function.

In this study, we propose a model based on the origi-
nal Transformer and MAT models. We do not use more 
complex interatomic distance formulas or more distant 
neighborhood information as the direct inputs to the 
model, as used by Maziarka et al. [26]. Instead, we expect 
the model to automatically learn more complex distance 
and adjacency relationships through multiple heads and 
multiple encoder layers. The key features of the proposed 
model can be summarized as follows: (1) changes the 
attention calculation; (2) adds a decoder-like structure to 
the model to improve interpretability; and (3) introduces 
a contrastive loss function to the model.

In the MAT model, attention is calculated by sum-
ming the inner product between the atom attributes, 
adjacency matrix, and distance matrix. According to 
Eq. (1), if the inner product between two atoms is large 
and these two atoms are far away from each other, infor-
mation is exchanged between the two atoms, which is 

(1)

Attention =

(

�1softmax

(

QKT

√

dk

)

+ �2g(D)+ �3A

)

V ,

Fig. 1  The details of the encoder and decoder-like modules are shown on the left and right. Encoder: The inputs to the encoder are embedded 
atomic features (embedded af), the adjacency matrix, and the distance matrix. The outputs of the encoder are atomic attributes (attribute af). 
Decoder-like module: the inputs are vectors (embedded cls) corresponding to different outputs from the encoder



Page 4 of 16Zheng et al. Journal of Cheminformatics (2022) 14:88

unreasonable. In this study, we change Eq. (1) to the fol-
lowing equation:

Qadj is obtained by a linear transformation of the input to 
the encoder layer ( Qadj = XW

Q
adj , where X is the input to 

the encoder layer and WQ
adj is a learnable parameter); 

Qdist , Kadj , Kdist , Vadj , and Vdist can be obtained in the 
same way. On the basis of Eq. (2), message passing 
between two atoms based on their inner product value 
occurs only when the atoms are connected by a chemical 
bond or the atoms are close to each other.

In the MAT model, the output of the encoder is directly 
passed through a pooling layer before the molecular 
properties are predicted by the fully connected layers. We 
add a decoder-like module, similar to the original Trans-
former, to visualize the relationship between the atoms 
and outputs. The proposed model is shown in Fig. 2. In 
natural language, the words in a sentence are related to 
each other. However, in most cases, ODs are not neces-
sarily related to each other. Therefore, we use a decoder-
like module, namely, the Transformer decoder without 
the self-attention mechanism, as shown on the right side 
of Fig. 1. The output of the transformer encoder is trans-
mitted to this decoder-like module. As shown in Fig.  2, 
the input to the decoder-like module is embedded clsi , 
which is obtained by passing a scalar of value 1 through 
a single fully connected network. Thus, embedded clsi is a 

(2)

Attention =

(

softmax

(

QadjK
T
adj

√

dk

)

⊙ A

)

Vadj

+

(

softmax

(

QdistK
T
dist

√

dk

)

⊙ g(D)

)

Vdist ,

learnable input for targeti . The attention in the decoder-
like module is computed by considering embedded clsi 
as the query and the outputs of the encoder as the key 
and value. This attention mechanism in the decoder-
like module is expected to obtain better predictions by 
emphasizing atoms that are related to the molecular 
properties, thereby enabling the visualization of impor-
tant substructures that affect the prediction results.

The contrastive loss function has been widely used in 
self-supervised learning in recent years [29, 30]. The 
application of the contrastive loss to supervised learning 
[31] can also improve model performance. We directly 
apply this contrastive loss to our model, and the defini-
tion of the loss function is shown in Eq. (3).

P(i) is a set that includes all samples whose labels are the 
same as sample i, | • | is a function that counts the number 
of elements in a set, zi is a feature vector with unit length 
corresponding to sample i, A(i) is a set that includes all 
samples in the batch except sample i, and τ is a hyper-
parameter. The contrastive loss function brings feature 
vectors of samples with the same label closer while sepa-
rating feature vectors of samples with different labels.

Experiment
We conducted two experiments in this research. The 
first experiment aimed to predict whether the input mol-
ecule has some specific substructure using our proposed 
Transformer model. The second experiment predicted 
ODs using the proposed Transformer model.

(3)

Lcontrastive =
∑

i∈batch

Li =
∑

i∈batch

−1

|P(i)|

∑

p∈P(i)

log
exp(zizp/τ)

∑

a∈A(i) exp(ziza/τ)

Fig. 2  Proposed model: the inputs are atomic features (af), there are multiple decoder-like modules for different targets, and there is a single fully 
connected layer between attribute cls and the targets
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We used two different datasets for these two experi-
ments. We collected SMILES data for 100,000 molecules 
from ChEMBL [32] for the substructure predictions. The 
ChEMBL database is a bioactive dataset covering more 
than 2 million compounds, which ensures that we have 
sufficient data for substructure prediction. For the OD 
prediction experiment, we collected 4,240 odorants and 
their corresponding ODs from TheGoodScentsCompany 
[33]. Among the datasets that provide OD labels, The-
GoodScentsCompany provides more data that is easier 
to obtain. In addition to odorants, we collected 222 mol-
ecules that were annotated as odorless from TheGood-
ScentsCompany. RDKit with default settings was used 
to compute the atomic properties, adjacency matrices, 
and distance matrices of all molecules. For both datasets, 
we removed molecules for which the distance matrix 
could not be calculated and molecules with more than 60 
atoms. Finally, 98,324 and 4,365 samples were used in the 
substructure prediction and OD prediction experiments, 
respectively. The model inputs were the atomic proper-
ties presented in Table 1. The code used for the experi-
ments can be found at [34].

Substructure prediction
The purpose of this experiment was to test the perfor-
mance of the Transformer model in predicting the exist-
ence of substructures and to investigate the interpretation 
ability of the model by visualizing the attention mecha-
nism in the decoder-like module. We designed 24 sub-
structures and combinations of multiple substructures 
and predicted these substructures with our proposed 
model. Fig. 3 shows descriptions of the 24 substructures 
and the corresponding number of positive samples. Sub-
structures No. 0 to No. 11 are individual substructures, 
and substructures No. 12 to No. 23 are combinations of 2 
or 3 substructures.

The 98,324 samples were divided into training and test 
sets at a ratio of 5:1. Because we have sufficient data in 
this experiment and predicting the existence of sub-
structures is a relatively simple task, we did not consider 
a wide range of hyperparameter settings. The hyperpa-
rameter settings examined in this experiment are listed 
in Table 2. In addition to the parameters listed in Table 2, 
similar to the original Transformer, each encoder and 
decoder layer includes an attention module and a two-
layer pointwise feedforward network with the same 
number of units as the dimension of the atomic attrib-
utes, both of which end with a dropout layer with a rate 
of 0.1. Except for the layers used to convert the Q, K, and 
V matrices, which do not use the activation function, and 
the final output layer, which uses the sigmoid activation 
function, the rest of the fully connected layers use ReLU 
as the activation function. The learning rate was set to 
7e-5 in this experiment.

In the multihead attention mechanism, each decoder 
layer should contain multiple attention matrices. Hence, 
our visualization results are the sum of the attention 
matrices of multiple heads. An example of visualizing the 
attention in the decoder-like module is shown in Fig. 4. 
This figure shows the visualization results of a molecule 
predicted by a model with three decoder-like layers. The 
three subfigures correspond to the attention mecha-
nisms of the three decoder-like layers. The values in the 
attention matrices are indicated by the shade of the blue 
circle covering each atom, with light blue indicating a 
small value and dark blue indicating a large value. (In the 
default RDKit settings, the atoms are identified by differ-
ent colors depending on the atomic number; for example, 
‘O,’ ‘N,’ and ‘S’ are written in red, blue, and yellow, respec-
tively. Thus, the red character ‘O’ in Fig. 4 is not relevant 
to the attention.)

In addition to visualizing the attention matrices, we 
attempted to quantify the performance of the attention 

Table 1  Atomic features

Values

Atomic identity C, O, S, N, Cl, Na, P, F, Mg, I, Br, Zn, Fe, As, Ca, B, 
Si, K, Co, Cr, H, Al, others

Number of heavy neighbors 0, 1, 2, 3, 4, other

Number of hydrogen neighbors 0, 1, 2, 3, 4, other

Is aromatic 0, 1

Is in ring 0, 1

Hybridization type S, SP, SP2, SP3, SP3D, SP3D2, unspecified, other

Chirality CW, CCW, unspecified, other

Formal charge 0, -1, 1, -2, 2, 3, 4, other

Explicit valence 0, 1, 2, 3, 4, 5, 6, 7, other

Implicit valence 0, 1, 2, 3, other



Page 6 of 16Zheng et al. Journal of Cheminformatics (2022) 14:88

mechanism in terms of identifying atoms related to predic-
tions. For one molecule, we picked out the atoms contained 
in a target substructure and summed the corresponding 
attention values according to

where Ti is the set of atoms contained in the i-th target 
and attni(a) denotes the attention value of atom a when 
predicting the i-th target. (Note that each attention 

(4)
∑

a∈Ti

attni(a),

Fig. 3  Details of the substructure experiment

Table 2  Hyperparameters used in the substructure prediction 
experiment

Setting 1 Setting 2 Setting 3 Setting 4

Number of heads 12 12 12 12

Dimension of a single 
head

15 15 15 15

Number of encoder layers 6 6 6 6

Number of decoder layers 1 2 3 4

Average F1 value 0.985 0.970 0.976 0.966

Fig. 4  Visualization of a sample result
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matrix sums to 1 for all atoms; thus, the value of Eq. (4) 
should be between 0 and 1, with larger values indicat-
ing that the attention mechanism better identifies atoms 
related to the target substructure.) In later experiments, 
we visualized the sum of the attention matrices of all 
decoder layers and all heads. Therefore, the sum of the 
attention values of all atoms in a molecule is the product 
of the number of heads ( nh ) and the number of decoder 
layers ( ndc ). The performance of the attention mechanism 
in terms of identifying related atoms is evaluated as

To compute the sum of the attention values of the target 
atoms, we calculated the variance of the attention val-
ues of the target atoms. A large variance indicates that 
the attention mechanism tends to identify only some 
of the target atoms, while a small variance denotes that 
the attention mechanism uniformly identifies the target 
atoms. For each molecule, the variance is calculated as

where |Ti| is the number of atoms that belong to the 
target.

OD prediction
The number of positive samples of most ODs is less 
than 1/10 of the dataset, with ‘fruity’ having the most 
positive samples (1334). Moreover, 10 ODs have more 
than 400 positive samples, namely, ‘fruity’, ‘sweet’, 
‘green’, ‘floral’, ‘woody’, ‘herbaceous’, ‘fresh’, ‘fatty’, ‘spicy’, 
and ‘waxy’. Among the ODs, 98 ODs had more than 50 
positive samples. We predicted these 98 ODs in this 
experiment.

In the OD prediction experiment, we compared the 
following six models. Proposed model: a model with 
the attention calculated using (2); MAT-attn: a model 
with the attention calculated using Eq. (1); ADJ-only: 
a model with the attention calculated using Eq. (7); 
DIST-only: a model with the attention calculated using 
Eq. (8); Simplified decoder: the model shown in Fig. 5, 
which was created based on the proposed model by 
simplifying the decoder-like module to a sum pool-
ing layer; MAT-model: the original MAT model. ADJ-
only and DIST-only were used to investigate the role 
of the adjacency and distance matrices. The simplified 
decoder model was used to investigate the effect of the 
decoder-like module.

(5)
∑

a∈Ti
attni(a)

nh · ndc

(6)
1

|Ti|

∑

a∈Ti

(

attni(a)−

∑

a
′
∈Ti

attni(a
′

)

|Ti| · nh · ndc

)2

,

The ratio of the training set to the test set was fixed at 5:1. 
The hyperparameter settings used in this experiment are 
listed in Table  3. In this experiment, class weights were 
used in the loss function, e.g., for each OD, the weight of 
each negative sample was 1, and the weight of a positive 
sample was equal to (number of all samples - number of 
positive samples)/number of positive samples.

Results and discussion
Substructure prediction results
The best average F1 value for the 24 substructure pre-
diction experiment was 0.983, which was achieved with 
12 15-dimensional heads, six encoder layers, and one 
decoder layer. The individual F1 values for the 24 sub-
structures were all greater than 0.9, as shown in Fig.  3. 
The average F1 values for the other hyperparameter set-
tings are listed in Table 2 and are generally very similar 
to one another. In summary, our proposed Transformer 
model can detect the existence of substructures and com-
binations of substructures.

Next, we investigated the ability of the attention mech-
anism to interpret the prediction results by visualizing 
the attention matrix in the decoder-like module. We vis-
ualized only true positive (TP) samples (positive samples 
that were predicted correctly). The visualization results 
of the model that achieved the best average F1 value 
(six encoder layers and one decoder layer) are shown in 
Fig. 6. We visualize the results of 3 substructures in Fig. 6; 
the visualizations of the other substructures show the 
same trends as these 3 substructures. More TP results 
corresponding to each substructure can be found at [34]. 
According to Fig. 6, for No. 1, the attention mechanism 
identifies only part of the atoms in the target instead of 
all the atoms included in the target substructure. For sub-
structure No. 11, the attention mechanism identifies only 
O-O in the target and does not identify the single O. This 
result shows that the attention mechanism does not iden-
tify the atoms in the substructures that are similar to the 
target. For substructure No. 23, even molecules that con-
tain only cCc are identified as positive, and the attention 
mechanism identifies both CC(C)C and cCc. This result 
shows that the attention mechanism can identify atoms 
in all composition substructures related to the target.

Figure 6 shows that the attention mechanism clearly 
identifies several atoms contained in the target sub-
structures. To investigate the role of the attention 

(7)Attention =

(

softmax

(

QKT

√

dk

)

⊙ A

)

V

(8)Attention =

(

softmax

(

QKT

√

dk

)

⊙ g(D)

)

V
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mechanism in multiple decoder layers, we visualized 
models with two, three, and four decoder layers. Fig-
ure  7 shows the visualization results for each indi-
vidual decoder layer. When the model has multiple 
decoder layers, the attention mechanism in each 
decoder layer can identify atoms related to the tar-
get substructure, which inspired us to visualize the 
sum of the attention mechanisms in all decoder lay-
ers. Figure  8 shows the visualization results of the 
summed attention, illustrating that models with 

Fig. 5  Simplified decoder model

Table 3  Hyperparameters used in the OD prediction experiment

Values Optimal OD 
prediction 
setting

Number of heads 6, 8, 10, 12 8

Dimension of a single head 30, 50 30

Number of encoder layers 5, 6, 7, 8 7

Number of decoder layers 1, 2 2

τ in contrastive loss 0.3, 0.7, 1.0 0.7
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different numbers of decoder layers can accurately 
identify atoms in the target substructures. Moreo-
ver, we used Eq. (5) to quantify the performance of 
the attention mechanisms with different numbers 
of decoder layers. We calculated Eqs. (5) and (6) for 
all targets and all samples. The average values of Eq. 
(5) for all 16 substructures corresponding to the four 

hyperparameter settings in Table  2 are 0.704, 0.602, 
0.594, and 0.565, and the corresponding average val-
ues of Eq. (6) are 0.335, 0.204, 0.205, and 0.166. The 
attention mechanism in the model with one decoder 
layer tends to identify the target substructures with 
larger values and locates fewer atoms belonging to 
the target. From the above results, we can draw the 
following conclusions: (1) the attention mechanisms 

Fig. 6  Visualization of the substructure prediction results
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in the decoder layers can be used to interpret the 
prediction results; (2) for TP samples, the attention 
mechanisms identify only certain atoms instead of all 
atoms in the target substructures; and (3) for models 
with multiple decoder layers, the sum of the atten-
tion mechanisms in all decoder layers can identify the 
atoms related to the predictions.

Fig. 7  Visualization of the attention in each decoder layer for models with two, three, and four decoder layers

Fig. 8  Visualization of the summed attention matrices

Table 4  OD prediction results

Macro F1 Micro F1

Proposed model 0.338 0.418

ADJ-only 0.333 0.417

DIST-only 0.316 0.398

MAT-attn 0.325 0.397

Simplified decoder 0.310 0.395

MAT model 0.264 0.351
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OD prediction results
The hyperparameter settings used in the OD prediction 
experiment and the optimal OD prediction settings are 
presented in Table 3. The results of our proposed model 
and the comparison model are shown in Table  4. The 
proposed model and the ADJ-only model achieve very 
similar results. Therefore, the attention values calculated 
by Eqs. (2) and (7) have similar effects on the results. 
We expected to introduce the 3D structure information 
of the molecules through g(D) in Eq. (2); however, the 
experimental results show that adding the distance infor-
mation in this way does not enable the model to use the 
3D structure information. This finding may be because 
there are relatively few samples, or the model itself may 
not have the ability to learn 3D structural information 
according to the distance matrix. The proposed model 
and the MAT-attn model obtain similar F1 results. 
Therefore, we conducted an approximate randomization 
test to verify whether the differences between these two 
results were meaningful. The p value was 0.009 when we 
compared the proposed and MAT-attn models.

The best average F1 value was achieved by the model 
with two decoder layers. Unlike the substructure pre-
diction experiment, visualizing the attention of the first 
decoder layer shows that the attention mechanism tends 
to identify all atoms with similar values. This result may 
be caused by having relatively few samples. In fact, the 
same phenomenon was observed in the substructure 
prediction experiment when using the same number of 
samples as in the OD prediction experiment. However, 
even if we increase the number of samples to approxi-
mately 100,000 and perform the OD prediction experi-
ment, there may still be a tendency for the first encoder 
layer attention mechanism to mark all atoms with similar 

values, it may be necessary to collect information about 
the whole molecule to predict the odor, as a result of 
the factors affecting the odor of a molecule being highly 
complex.

Regarding attention visualization, we first visualized 
the attention of the model that achieved the best F1 
value. We visualized the attention of the second decoder-
like layer. More visualization results can be found at [34]. 
Nineteen ODs obtained F1 values greater than 0.45. To 
ensure that the visualization results are meaningful, 
we visualize only these 19 ODs. Figure  9 shows several 
visualization results of TP samples for ‘fruity’, ‘musk’, 
‘aldehydic’ and ‘fatty’. For these four ODs, the attention 
mechanism tends to identify C(=O)O, carbon in a large 
ring, C=O and long carbon chains, respectively. How-
ever, for the remaining ODs, no obvious features are 
marked in the corresponding positive samples.

According to the substructure visualization experiment 
results, the attention mechanism annotates only certain 
atoms in the substructures instead of all related atoms. 
The atoms in each substructure are randomly annotated 
by the attention mechanism; that is, the marked atoms 
vary depending on the model initialization. To determine 
the substructures associated with the ODs, we repeat-
edly trained the models with the same hyperparameter 
settings and visualized the atoms that were frequently 
annotated by the attention mechanisms in the differ-
ent models. Specifically, we trained the models with the 
same hyperparameters 100 times and created a counter 
for each atom in each molecule in the samples. For each 
model, we then identified the top k atoms in a given mol-
ecule with the largest attention values and increased the 
counters corresponding to these k atoms by 1. Finally, we 
determined the atoms with counter values greater than n. 

Fig. 9  Visualization of the OD prediction results
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Fig. 10  Visualization results of TP samples in the OD prediction experiment when k = 5, n = 50
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Fig. 11  Visualization results of TN samples in the OD prediction experiment when k = 5, n = 50
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We visualized the attention mechanisms of 100 models 
with k = 5 and n = 50.

Since we considered 100 models, when we visualized 
the TP and TN (true negative samples, e.g., negative sam-
ples that were predicted correctly) samples, we chose 
positive samples that 90 of the 100 models predicted 
ODs as positive and negative samples that 85 models pre-
dicted as negative. Figure 10 shows the partial results of 
the TP samples of 19 ODs. In Fig. 10, because k is limited 
to five atoms, the ‘fatty’ and ‘musk’ visualization results 

are not as good as those in Fig.  9. For the other ODs, 
we can observe some clear features. According to the 
TP sample visualization results, we attempted to sum-
marize the feature substructures for each OD, and the 
summary results are shown in the 4th column of Table 5. 
The number of positive samples in the test set corre-
sponding to the 19 ODs is shown in the second column 
of Table  5. (We note that an OD corresponds to multi-
ple feature substructures, and we summarize the features 
that appear most frequently in the visualization results.) 

Table 5  Summary of visualization results

p F1 TP Substructure constraint TN Summary features

Fruity 242 0.636 Mainly annotates C(=O)O C(=O)O and no atoms of 
C(=O)O in a ring.

Mainly C(=O)OH C(=O)O

Sweet 208 0.509 Multiple structures, including 
C(=O)O

C(=O)O Mainly C(=O)OH Multiple structures, including 
C(=O)O

Green 189 0.520 C=C, C=O C=O, C=C, CC(C)C and none 
of atoms in a ring

CC(=C)C C=O and C=C without 
CC(=C)C

Floral 147 0.541 Multiple substructures, 
including C(=O)O, C(=O), 
C with 3 carbon neighbors, 
c1ccccc1

c1ccccc1C(=O)O or ‘A∼A(∼
A)∼A’

No obvious features Multiple substructures, includ-
ing C(=O)O, C(=O), C with 3 
carbon neighbors, c1ccccc1

Woody 107 0.517 CC(C)(C)C and three atoms of 
CC(C)(C)C in a ring

CC(C)(C)C and three atoms of 
CC(C)(C)C in a ring

Only 3 molecules, and these 
3 samples are labeled by ODs 
such as ‘camphor’ and ‘earthy’

CC(C)(C)C and three atoms of 
CC(C)(C)C in a ring

Fatty 78 0.475 Carbon chain, C=O, -OH ’C∼C∼C∼C∼ C ∼C∼C∼C’, 
with each C having only two 
heavy neighbors

Tends to mark C(=O)O 
vaguely

Long carbon chain

Rose 53 0.503 CC=C(C)C CC=C(C)C’, c1ccccc1CCCC​ C=O at the end CC=C(C)C without C=O at 
the end

Sulfurous 43 0.709 S S S=O S but not S=O

Minty 32 0.466 CC(=C)C1CCCCC1 CC(=C)C1CCCCC1 Only 2 molecules, and they 
are labeled by ODs such as 
‘fresh’ and ‘herb’

CC(=C)C1CCCCC1

Roasted 36 0.470 ’[n,s,o]’ ’[n,s,o]’ Sometimes marks other 
atoms instead of ’[n]’

Substructures related ’[n,s,o]’

Meaty 36 0.591 ’[SH]’, S ’[SH]’, SS Tends to mark atoms on both 
sides of SS instead of SS

’[SH]’, SS and some neighbor-
ing substructures

Pineapple 28 0.467 C(=O)O C(=O)O and no atoms of 
C(=O)O in a ring

Does not mark C(=O)O May be a substructure con-
taining C(=O)O

Aldehydic 22 0.462 C=O, C=C C=O Mainly C(=O)O C(=O) but not C(=O)O

Phenolic 24 0.484 c1ccccc1O c1ccccc1O Tends to mark atoms whose 
neighbor is an aromatic 
carbon

c1ccccc1O

Honey 26 0.453 c1ccccc1 and C(=O)O c1ccccc1 and C(=O)O Marks c1ccccc1O vaguely Both c1ccccc1 and C(=O)O 
exist in molecule

Orange 29 0.513 Carbon chain with C=O at 
the end

’C∼C∼C∼C∼ C ∼C=O’, and 
none of the atoms are in a 
ring or have more than 3 
heavy neighbors

Most samples are labeled as 
‘fruity’ or ‘citrus’

Carbon chain with C=O at 
the end

Musk 11 0.493 Ring with more than 10 
atoms

Ring with more than 10 
atoms

Too few samples to sum-
marize

Ring with more than 10 atoms.

Coconut 18 0.481 C(=O), with C in a ring C(=O), with C in a ring Tends to mark the end atoms 
that connected to a carbon 
in a ring

C(=O), with C in a ring and O 
at the end

Terpene 9 0.533 Too few samples None Too few samples Too few samples
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In this experiment, we also visualized TN samples; in 
particular, we visualized only TN samples containing 
the feature substructures observed in the TP samples. 
The feature substructures used to screen TN samples 
are shown in the 5th column of Table 5, and several vis-
ualization results are shown in Fig.  11 (the correspond-
ing OD labels of the molecule are also displayed). The 
features of the TN samples are summarized in the 6th 
column of Table  5. The TN sample visualizations show 
some interesting results. For example, ‘woody’ has only 
three TN samples under the corresponding substructure 
constraints; however, the OD labels of these three sam-
ples are ODs such as ‘camphor’ and ‘earthy’ somewhat 
similar to ‘woody’. Moreover, for ‘pineapple’, the TP sam-
ple visualization results show that C(=O)O is frequently 
annotated. However, for TN samples, the attention 
mechanism does not identify C(=O)O and instead anno-
tates the neighbor of the C(=O)O substructure; there-
fore, we speculate that the region surrounding C(=O)O 
is also related to ‘pineapple’. Finally, according to the fea-
tures of the TP and TN samples, we drew some conclu-
sions about the feature substructures of the 19 ODs, as 
shown in the last column of Table 5.

Regarding the OD dataset, the amount of data is rel-
atively small when using a neural network to predict 
ODs, and the consistency among the OD labels may 
also be an issue. For example, ‘fruity’ is a comprehen-
sive odor, and molecules that are labeled ‘berry’, ‘apple’, 
etc., can be seen as ‘fruity’. However, in the collected 
data, some molecules that were labeled with fruit-like 
odors, such as ‘berry’, had OD labels that did not con-
tain ‘fruity’. When we identified molecules containing 
fruit-like ODs (‘fruity’, ‘citrus’, ‘berry’, ‘apple’, ‘pineap-
ple’, ‘orange’, ‘pear’, ‘melon’, ‘banana’, ‘lemon’, ‘coconut’, 
‘peach’, ‘apricot’, ‘cherry’, ‘grape’, ‘grapefruit’, ‘plum’, 
‘bergamot’, ‘hawthorn’, ‘jam’, ‘mandarin’, and ‘currant’) 
with the label ‘fruity’, the number of positive sam-
ples increased from 1334 to 1853, and the F1 value 
increased from 0.636 to 0.744. In addition, Chacko 
et  al. [15] inferred the two ODs ‘sweet’ and ‘musky’ 
with the dataset in [35], which contains 480 samples, 
and achieved an F1 value of 0.81 for ‘sweet.’ We also 
trained and predicted ‘sweet’ odors with the dataset 
described in [35]. However, the small sample size led 
to unstable results, with the F1 value ranging from 
0.71 to 0.91. Furthermore, we attempted to train the 
model with the dataset of 4462 samples used in this 
study and employed the dataset in [35] as the test set. 
The resulting F1 value was 0.69, which is higher than 
that in Table  5. We believe that this result is caused 
by the quality of the datasets. The dataset in [35] was 
constructed by 55 people scoring the odor for each 

odorant, and we took the average score assigned by 
these 55 individuals as the odorant label. The dataset 
used in this study was labeled by different people, and 
the labeling standards may vary from person to per-
son. The F1 score of ‘sweet’ was approximately 0.50 
with our datasets. This result may be influenced by the 
small number of samples and the lack of consistency 
in the labels across the large amount of collected data.

Conclusion
In this study, we used a machine learning approach to 
investigate the relationship between molecular structure 
and odor. We first built a Transformer model to predict 
the molecular properties and interpret the prediction 
results. We modified the attention calculation in the 
encoder based on the MAT model and used a decoder-
like module to interpret related substructures associated 
with ODs. We applied the proposed model to predict 
substructures in molecules and investigated the role 
of the attention mechanisms in the decoder layers. The 
results show that when we have a sufficient amount of 
samples, the attention mechanisms can identify some, 
but not all, of the atoms in the target substructures. 
This result demonstrates that the prediction results can 
be interpreted by visualizing the attention mechanism. 
Finally, we predicted 98 ODs with the proposed model 
and summarized the substructures associated with the 
19 ODs by visualizing the attention mechanism. With 
additional odor labeling data, we expect to obtain bet-
ter F1 results and clearer attention visualization results, 
thereby enabling a better understanding of the relation-
ship between molecular structure and odor.
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