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Abstract 

Background  Explainable artificial intelligence (XAI) methods have shown increasing applicability in chemistry. In 
this context, visualization techniques can highlight regions of a molecule to reveal their influence over a predicted 
property. For this purpose, some XAI techniques calculate attribution scores associated with tokens of SMILES strings 
or with atoms of a molecule. While an association of a score with an atom can be directly visually represented on a 
molecule diagram, scores computed for SMILES non-atom tokens cannot. For instance, a substring [N+] contains 3 
non-atom tokens, i.e., [, + , and ], and their attributions, depending on the model, are not necessarily revealing an influ-
ence of the nitrogen atom over the predicted property; for that reason, it is not possible to represent the scores on 
a molecule diagram. Moreover, SMILES’s notation is complex, foregrounding the need for techniques to facilitate the 
analysis of explanations associated with their tokens.

Results  We propose XSMILES, an interactive visualization technique, to explore explainable artificial intelligence 
attributions scores and support the interpretation of SMILES. Users can input any type of score attributed to atom and 
non-atom tokens and visualize them on top of a 2D molecule diagram coordinated with a bar chart that represents a 
SMILES string. We demonstrate how attributions calculated for SMILES strings can be evaluated and better interpreted 
through interactivity with two use cases.

Conclusions  Data scientists can use XSMILES to understand their models’ behavior and compare multiple modeling 
approaches. The tool provides a set of parameters to adapt the visualization to users’ needs and it can be integrated 
into different platforms. We believe XSMILES can support data scientists to develop, improve, and communicate their 
models by making it easier to identify patterns and compare attributions through interactive exploratory visualization.

Keywords  SMILES, Molecule, Explainable artificial intelligence, Visualization, Artificial intelligence, Contribution, 
Attribution

Introduction
Artificial Intelligence (AI) models have varied appli-
cations in chemistry, such as molecular property pre-
diction  [1, 2]. Chemists can use models to predict 
characteristics of small molecules in silico experiments, 
for instance, to identify compounds expected to be 

soluble or to have a certain bioactivity. Not only the 
analyses performed with predictions help scientists to 
identify potential candidates for further experiments, it 
can accelerate the discovery of new products and reduce 
costs with data-driven prioritization of candidate targets 
for further experimentation—e.g., in-vivo studies.

In typical silico screening processes, computational 
chemists and data scientists analyze substructures 
and identify patterns that may be influencing the pre-
dicted properties—e.g., bioactivity, solubility, or reactiv-
ity. Explainable artificial intelligence (XAI) techniques 
have been used to understand the behavior of models 
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by calculating scores of influence of substructures over 
the predicted property  [3–5]—here defined as attribu-
tion scores or simply attributions, also found in the lit-
erature as attention, heatmap, coloring, and sensitivity 
scores  [6–9], depending on the methods and context. 
Visualization techniques can make the attribution scores 
more understandable, for instance, by coloring atoms of a 
2-dimensional molecule diagram (i.e., structural formula 
diagram).

Although visualization is essential to interpret XAI 
attributions, few tools are available to help data scientists, 
computational chemists, and chemists to screen sets of 
molecules while analyzing their XAI attributions  [10]. 
RDKit allows to highlight regions of a molecule diagram 
quantitatively and qualitatively, for example, by express-
ing different values of atom-attributions and by high-
lighting regions only expressing whether or not they are 
important, respectively. Both approaches are useful in 
numerous situations, for example, quantitative analysis 
may be preferred by some AI and XAI developers because 
of the detailed information, a qualitative approach may 
be an attractive option for some users, e.g., chemists and 
regulatory agents, who are more interested in overview 
and highlight of the crucial parts of a molecule.

A few authors have adapted or combined graphics to 
represent atom and non-atom attributions in a static 
approach—e.g., from non-atom tokens of a SMILES 
string, a machine-readable single-line string  [11] that 
encodes a molecular structure. SMILES tokens are 
mostly characters representing atoms like C and N, and 
non-atom characters that describe the SMILES structure, 
like branches that are represented by parenthesis; addi-
tionally, some tokens can be formed by two characters, 
like Cl and Br. Karpov et al. used a bar chart in their Fig-
ure 8 [5] to represent atom contributions aligned with a 
SMILES representation, side-by-side with a molecule 
diagram. They used colors in both cases to indicate if the 
atoms stand for mutagenic alerts or against it. Lambard 
and Gracheva used a bar chart, heatmaps and a molecule 
diagram side-by-side in their Figure  6  [12] to represent 
the importance of substructures concerning atom and 
non-atom tokens from a SMILES string. The authors of 
both mentioned articles had to create the visualizations 
separately and join them into the mentioned figures. 
While the task of analyzing non-atom attributions can 
be achieved by a combination of graphics, this approach 
is time-demanding and is usually not coordinated nor 
interactive. The process becomes impractical and difficult 
for a larger set of molecules.

Another example of limitation of such a static 
approach is that, due to the complexity of SMILES’ syn-
tax, strings are generally difficult to interpret and to iden-
tify which part of the molecular structure a set of chars is 

representing. Figure 1 illustrates how atoms that are close 
in a molecule (dotted circle) can be distant in a SMILES 
representation (dotted rectangles). Although the ring’s 
tokens are far in the string, they received similar attribu-
tions. If the supposed predictive model was trained at the 
SMILES token level, the visualization raises the hypoth-
esis that the model may have learned patterns from the 
actual molecular structure.

To support the analysis of atom and non-atom attribu-
tions, we propose XSMILES (eXplainable SMILES), an 
interactive visualization technique to explore and com-
pare atom and non-atom scores and support the inter-
pretation of SMILES. XSMILES represents attributions 
on a 2D molecule diagram and a coordinated bar chart 
that represents a SMILES string. Its flexibility allows 
broad application, such as for representing magnitude 
or for highlighting parts of a molecule, and its interactiv-
ity makes SMILES strings easier to interpret. We imple-
mented the technique in JavaScript and made it available 
as a plugin for JupyterLab, as a web-tool, a JavaScript 
package, and as a KNIME  [13] component, making 
XSMILES an option in multiple frameworks. Moreover, it 
improves the analysis of multiple molecules, since it can 
replace the mentioned combination of static bar charts 
and molecule diagrams with interactive visualizations.

In the following sections, we explain how we designed 
the visualization and identified the main requirements 
that guided our project. Following those statements, we 
demonstrate the use of XSMILES to analyze output from 
a variety of XAI methods through two use cases.

The XSMILES technique
While developing AI models and XAI techniques that 
have a SMILES string as an input, we identified a gap: 
there is no interactive visualization technique to support 
tasks involving interpreting SMILES-based attributions. 
Moreover, analyzing only atom attributions—i.e., ignor-
ing non-atom tokens—using heatmaps on molecule dia-
grams were not enough to interpret the behavior of the 
SMILES-based models that we have been studying—this 
is exemplified in Use case 1. Based on this experience, 
we identified a list of main requirements (R) to develop a 
visualization technique that can help data scientists and 
computational chemists to analyze such types of models:

•	 R SMILES: Representation of atom and non-atom 
attributions. Why XAI methods and models based 
on SMILES strings require analyses that explore 
information associated with all tokens from sets of 
SMILES strings. What XAI methods output attribu-
tions mapped to a sequence of tokens. How Atom 
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and non-atom attributions are visualized through bar 
charts.

•	 R Molecule: Representation of the molecular struc-
ture. Why Molecule diagrams are much easier to 
understand than SMILES strings. The goal of the 
analysis is not only to understand attributions based 
on a sequence of tokens alone, but also to identify 
patterns between sub-strings of the sequence and 
the chemical structure. What SMILES tokens trans-
late to atoms or substructures of a molecule. How An 
interactive molecule diagram is coordinated with the 
bar chart, revealing what each token represents when 
users interact with them.

•	 R Flexibility: Interactivity and customization of the 
visualizations. Why AI models and XAI techniques 
output attributions of different nature. When devel-
oping them, the magnitude, the sign, and the sets 
of attributions that meet certain criteria need to be 
interpreted under different perspectives, requiring a 
flexible visualization tool. What Attribution scores 
need to be mapped to different visual representa-
tions to enable the analysis. How A set of parameters 
can be adjusted by users, e.g., color palettes and how 
the colors on the bar chart and molecule diagram are 
mapped to attributions.

The requirements defined above summarize why and 
how we designed the XSMILES technique. In the follow-
ing paragraphs, we explain each visualization component 
(see Fig. 2), color-related features, and interactivity.

Fig. 1  Visualization of a molecular structure and respective SMILES string. The dotted circle highlights the ring from the molecule, and the dotted 
rectangles highlight the tokens that represent the ring, exemplifying the complexity of the SMILES notation. The heatmap and bar chart represent 
attribution scores. The image was adapted from an XSMILES visualization

Fig. 2  XSMILES has three main components. A A molecule diagram 
is displayed over a heatmap that represents atom attributions. B A 
bar chart represents a SMILES string and its associated attributions. C 
Attributes can be defined by the user in a tabular format
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Attributes Because each molecule is associated with cer-
tain properties and predictions, and can have its attribu-
tions represented by different color scales, we defined a 
table that is displayed under the Bar chart. The table can 
indicate information set by the user and is optional, i.e., 
can also be hidden.

Bar chart We designed a bar chart combined with colors 
to represent attributions from each SMILES token due 
to the improved interpretation of magnitude in contrast 
to using colors only in a heatmap. A diverging palette 
and the negative sign (−) or its absence under the bars 
inform the user if the attribution contradicts or supports 
the predicted property, respectively. The size of bars rep-
resents the magnitude of the attribution. If magnitude is 
not relevant, users can change the colormap domain to 
set all bars to the same height (see paragraph Colormap 
domain). The input for the XSMILES can be a set of attri-
butions for all tokens or a smaller set with attributions 
only for atom-tokens. In the latter case, we attribute 0.0 
to non-atom tokens. By default, two horizontal lines rep-
resent where the min and max values stand in the height 
direction of the bar chart.

Molecule diagram We chose RDKit to draw the mol-
ecules based on its increasing popularity. We used heat-
maps placed on top of the molecule diagram to represent 
the attributions. Colors of the heatmaps are aligned with 
colors of the bar chart. Users can choose if atoms and 
bonds from the molecule diagram will be colored accord-
ing to the atom-colors defined by RDKit, or if atoms are 
colored in black.

Color palettes and sign direction XSMILES has a pre-
defined set of diverging color palettes that are intended 
to be colorblind friendly . Additionally, users can define 
custom diverging palettes. We created the default pal-
ettes based on Color Brewer [14] color schemes, aiming 
for colors that could differentiate the sign direction of 
attributions. All palettes go through an interpolation and 
lightness correction process. Signs represented by atom 
labels on the molecule diagram (as seen at the top-left of 
Fig.  4) and under the bar chart, as well as interactivity, 
help users to identify the sign direction of a certain attri-
bution when color difference is not perceptible by the 
user. Throughout the article, we used different palettes in 
the figures to exemplify them.

Colormap domain Users can define the colormap domain 
(attributions’ domain) and the range (color range) so that 
any value smaller than the minimum or greater than the 
maximum attribution is considered as minimum or max-
imum, respectively. This is a flexible feature that allows 

users to highlight regions with attributions above or 
below a certain value with the strongest colors, as dem-
onstrated in Fig. 3.

Threshold highlight and labels Because comparing mag-
nitude through an overview heatmap can be difficult, 
we implemented the possibility to set thresholds: val-
ues between 0 and 1 that are used to highlight atoms on 
the molecule diagram and create horizontal lines on the 
bar chart. It highlights attributions that have an abso-
lute value above a percentage of the colormap domain’s 
maximum value. For example, with a [−0.5, 0, 0.5] color 
domain, a threshold of 0.5 would highlight atoms with 
attributions greater or equal to 0.25 and lower or equal 
to −0.25 . Figure 4 illustrates the visual effect of not using 
threshold ([]) and of using [0.5], [0.75], and [0.5, 0.75] as 
highlight thresholds. The color of the heatmap becomes 
stronger, and atoms that match the criteria are circled 
by an optional white stroke. The greater the circle, the 
farther the attribution from the threshold. Horizon-
tal lines are drawn according to the defined thresholds. 
If no threshold is defined, it is drawn at values 0.5 and 
1.0. Atom attributions can also be displayed as labels on 
the molecule diagram, close to each atom, as shown in 
the diagram with no thresholds ([]) in Fig. 4. The motiva-
tion behind the threshold highlighting was our interest in 
identifying medium and large attributions; defining what 
is large will depend on the XAI method and model.

Fig. 3  The color domain is manually set to range from − 0.33 to 0.33 
instead of − 0.6 and 0.6 as shown in Fig. 2, which uses the maximum 
absolute value among all attributions of this molecule (0.6) to define 
the color domain. Here, values above or equal to 0.33, or below or 
equal to − 0.33, are represented by bars with maximum size and 
strongest colors, and by the strongest colors and largest areas in the 
heatmap. In comparison with Fig. 2, this visualization emphasizes 
more the attributions that are closer to zero
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Interactivity Users can hover atoms on the diagram to 
highlight the respective SMILES token, and hover the 
tokens to highlight substructures on the diagram. The 
highlighted tokens become bolder and the atoms on the 
molecule are circled with two colors: (1) the signal color 
that represents the positive or the negative ranges of 
attributions and (2) the highlight color, defined to con-
trast with the two signal directions’ colors. Users can 
highlight the following substructures on the diagram:

•	 atom: hover an atom token to highlight the atom 
(Fig. 5A);

•	 ring: hover a number (definition of ring openings and 
closings) to highlight the ring (Fig. 5B);

•	 group: hover the square brackets or any token between 
them to highlight the group (Fig. 5C);

•	 branch: hover a parenthesis to highlight a SMILES 
branch (Fig. 5D).

Implementation
XSMILES is available as a JavaScript library and inte-
grated into other extensions. Users can use it in Jupyter-
Lab notebooks and in KNIME [13] pipelines, or through 

the demonstration website, where they upload a JSON 
file with molecules and attributions. Web developers can 
integrate XSMILES into other web-based systems using 
the JavaScript package.

Its version 0.5.7 uses RDKit MinimalLib 2022.03.1 [15, 
16] to draw molecules and Heatmap.js 2.0.5 [17] to draw 
the heatmaps. Both heatmaps and molecule diagrams 
are independent web canvas layers and can be replaced 
with new variants by web developers. Two heatmaps are 
generated per molecule diagram, one for positive and one 
for negative attributions. Highlights under the molecule 
are built using canvas elements, and bar charts are cre-
ated with SVG elements. We used React [18] as the main 
framework to connect everything into the interactive vis-
ualization technique. Other required libraries and instal-
lation details are described in XSMILES’ source-code 
repository.

Input format XSMILES can be used to represent a mol-
ecule with or without atom or token scores. The order 
of tokens in the SMILES string defines the order of the 
scores vector. We use the same order used by RDKit, 
i.e., the first atom in the SMILES string will be the first 
node of the graph that RDKit uses to draw the structure. 

Fig. 4  Thresholds help identifying atoms and tokens that have the absolute value of their attributions above certain values. Here we see four 
examples: the top-left one has no thresholds ([]) and indicate attributions with labels on the molecule diagram, and the three others have 
thresholds lists equal to [0.5], [0.75], and [0.5, 0.75]
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The scores vectors can be of two sizes: number of atoms 
and number of SMILES tokens, as exemplified in Use 
Case 2. In the first case, the score vector represent only 
atom-scores while in the latter, special tokens, like (, ], 
and +, also receive scores. The heatmap only considers 
atom-scores and does not take into account interactivity 
between atoms or functional groups. We define the input 
format in the GitHub repository with examples. The tool 
was tested with RDKit canonical SMILES.

Atoms’ coordinates The current version uses RDKit 
MinimalLib to generate two equal diagrams for each 
molecule: one in SVG format and one as a canvas ele-
ment. XSMILES parses multiple SVG elements to derive 

the coordinates (x, y) of each atom in the diagram. We 
use this information to draw the heatmap and track the 
mouse pointer to identify when it is over an atom.

Response time The website version demonstrated to have 
instant response time in terms of interactivity when dis-
playing over 100 XSMILES diagrams with molecule dia-
gram, bar chart, and attribute table in our tests. However, 
loading time, i.e., processing JSON and initial rendering 
time, was not instant when loading over 100 molecules; 
a delay happens as well if parameters of the visualiza-
tion are changed due to re-rendering time. Loading time 
with 42 diagrams (e.g., 14 molecules and 3 XAI meth-
ods), was close to instant in our test (macOS 11, Chrome 

Fig. 5  Four types of hover interaction. A The respective token is highlighted when you mouse over an atom, and vice-versa. B A branch is 
highlighted on the molecule and on the string when you mouse over a parenthesis character. C A group defined by square brackets is highlighted 
when you mouse over its tokens or its atom. D It highlights the ring on the molecule and on the string when you mouse over the numbers that 
encode that ring. When highlighted, the tool modifies the molecule representation to express the signal direction of the attribution clearer by 
drawing a circle around the atom with the signal direction’s color and another with the highlight color
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103 browser, Intel Core i7-9750H 2.6 GHz processor, 32 
GB RAM, AMD Radeon Pro 5300M 4 GB graphic card). 
Given that most common computers don’t have a power-
ful configuration, we would recommend using around 20 
molecules. Loading time for JupyterLab is different, since 
in that case, we may explore smaller sets of molecules 
loaded in different times.

Availability The tool is open-source and available at 
https://​github.​com/​Bayer-​Group/​xsmil​es. The plugin 
for JupyterLab, for KNIME, demonstration website and 
datasets availability is described in details in section 
Availability of data and materials.

Use cases
Use case 1—analyzing attributions and developing 
a bioconcentration factor model
The Bioconcentration Factor (BCF) quantifies a chemi-
cal’s potential to accumulate in living organisms, most 
frequently fish. As such, it is an important characteristic 
in the environmental risk assessment of chemicals. Zhao 
et  al.  [9], including authors of the XSMILES, created a 
model called xBCF that can predict BCF and provides 
attributions for SMILES strings.

In summary, xBCF is a deep learning model based on 
CDDD  [19] molecular representations that use SMILES 
strings as input. The XAI method first substitutes the 

token of interest to any token in the vocabulary set of the 
CDDD model. Then the difference between the predic-
tion from the original SMILES and the average prediction 
from all substituted SMILES is regarded as the attribu-
tion of the token of interest: the sensitivity score. A posi-
tive attribution indicates that the predicted BCF value is 
expected to drop when that token was substituted with 
any other token in the vocabulary.

The xBCF model was trained on public BCF data and 
internal logD data so that it can predict both logBCF 
and logD simultaneously. LogD represents the distribu-
tion coefficient of a chemical between octanol and water, 
where octanol is often seen as a proxy for organic tissue. 
This multitasking nature of xBCF was driven by the high 
correlation between logBCF and logD. Therefore, when 
the XAI method is applied on the xBCF model, one can 
obtain explanations for both logBCF and logD predic-
tions which enable chemists to gain insights into the pre-
dictions and the model.

During the xBCF development, patterns of SMILES 
non-atom and atom tokens were analyzed for many mol-
ecules. Due to its dependency on the CDDD molecular 
representations encoded from SMILES strings, non-atom 
tokens played a key role in the translational autoencoder 
and the downstream predictive models for BCF and logD.

XSMILES was developed iteratively with the devel-
opment of xBCF and was of great importance for the 

Fig. 6  A All bromine atoms in hexabromobenzene were assigned similarly high logD sensitivity scores. B In triallylamine the three 
symmetry-equivalent allyl groups show similar low logBCF sensitivity scores while the central nitrogen has a large negative score

https://github.com/Bayer-Group/xsmiles
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authors to analyze results during and after the develop-
ment process. The model is now deployed in house, and 
XSMILES is used to display results to end users through 
interactive visualization. The XAI Substitution method 
is open-source and publicly available (see section Avail-
ability of data and materials). Detailed explanations about 
both model and XAI method are found in the original 
article [9].

Zhao et  al.  [9] extensively used XSMILES to analyze 
how their model and XAI methods work. In Fig.  6 we 
reproduced examples illustrating xBCF model is able to 
recognize symmetry-equivalent functional groups and 
attributes similar sensitivity scores to equivalent atoms. 
Despite almost perfect symmetric attributions, it’s 
important to note that this was not always the case and 
regardless of results, XSMILES played a key role in the 
process of quickly screening molecules, identifying pat-
terns and creating hypotheses.

Another activity described by the authors is the com-
parison of logD and logBCF. In Fig.  7 we illustrate one 
of their examples with high logD (5.5) and low logBCF 
(0.66) predicted values: spirodiclofen, a molecule known 
to be readily metabolized. We see that the sensitivity 
scores for important parts of the molecule have different 
signs, which means that logD cannot explain the low BCF 
value.

Another aspect that helped the development of the 
xBCF was the fact that the authors could output a JSON 

file and quickly share with colleagues, and visualize 

results, without setting up any coding environment. The 
file with the molecules of this use case is available at our 
git repository and can be visualized with the XSMILES 
demonstration website.

Having the possibility of using XSMILES from within 
JupyterLab notebooks also helped them to quickly test 
and re-render visualizations based on new parameters 
defined to train the models, to develop the Substitution 
method or to adapt the visualization to better highlight 
patterns from the attributions.

In this use case, we described how XSMILES assisted 
the development of the xBCF model and is being used by 
end-users. The importance of the XSMILES was high-
lighted through examples of analysis that helped the 
xBCF’s authors to develop the model and the Substitu-
tion XAI method —both based on SMILES strings.

Use case 2—analyzing logP attributions against Crippen 
logP atomic contributions
Rasmussen et al. [8] studied the original and transformed 
logP Crippen contributions as a potential ground truth 
to attributions calculated with the “atom attribution 
from fingerprints”-method developed by Riniker and 
Landrum  [20] (in this text referenced as R &L). They 
compared the overlap of heatmaps between this attribu-
tion method and the original (atom-based) and adapted 
(fragment-based) logP atomic contributions. Throughout 
their analysis, they visually compared contributions with 

Fig. 7  Spirodiclofen is a molecule with low logBCF (0.66) and high logD (5.5) predicted values. The sensitivity scores attributed to the SMILES tokens 
based on both logBCF and logD are similar, but have mostly the opposite sign direction—positive and negative, respectively. Both color-domains in 
this figure range from − 1 to 1
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attributions, highlighting molecules with high and low 
heatmap overlap.

Here, we explore this idea of using logP contributions 
and comparing them with attributions, but with three 
different XAI methods. We visually compare the origi-
nal logP atomic contributions calculated with RDKit 
against the R &L attributions and attributions from two 
additional approaches: one based on the SMILES strings 
token-substitution method [9] described in Use case 1 and 
one based on Morgan fingerprints [21] and SHAP [10, 22, 
23] values. A JupyterLab notebook with all methods is 
available (see section Availability of data and materials).

To calculate attributions, we combined the three attri-
bution methods to two different CatBoost [24] (catboost 
1.0.5, iterations=10000, depth=6) regressors, with a total 
of three different setups:

•	 CDDD-Substitution) a model trained with 
CDDD  [19] molecular representations with attribu-
tions calculated using the Substitution method [9],

•	 Morgan-SHAP) a model trained with Morgan fin-
gerprint bits (radius 1) with attributions calculated 
through the SHAP method [22], and

•	 Morgan-R &L) the same fingerprint-based model as 
the latter, but with attributions calculated using Rini-
ker and Landrum’s method [20].

Overall, the predictions from the two Catboost regres-
sion models resulted in good coefficient of determination 
(above 0.9) and root mean squared error (below 0.19). 
More details about the models that we tested and perfor-
mance are described in Additional file 1.

We analyzed the attributions from the CDDD-Substi-
tution, Morgan-SHAP, and Morgan-R &L methods. Note 
that there are significant differences among the compared 
methods regarding XAI techniques (R &L, SHAP, Substi-
tution), molecular representation (Morgan, CDDD), and 
predictive performance. This use case shows how we can 
explore their calculated attributions with XSMILES to 
create hypothesis and inspire thoughts.

Fig. 8  A The Crippen contributions to logP. B Attributions from CDDD-Substitution are similar to the ones found in A regarding their sign, but 
the most influential oxygen is not highlighted as much as in A. Attributions from Morgan-SHAP (C) and Morgan-R &L (D) are almost identical to A 
(relative to their own maximum absolute value)



Page 10 of 12Heberle et al. Journal of Cheminformatics            (2023) 15:2 

To visualize dozens of molecules, we generated JSON 
files describing their calculated attributions. These data-
sets were then visualized using the demonstration web-
site available at the project’s main repository. The website 
provides the user the capability of quickly visualizing 
sets of molecules and their attributions, and of chang-
ing XSMILES’ parameters, such as color palette, color 
domain, and thresholds. Here we focus on one molecule 
that we found to be quantitatively and qualitatively very 
interesting.

Figure  8 shows diagrams where the color domain was 
defined for each molecule based on their maximum 
absolute score. With a threshold of 0.75, the diagram 
highlights with white circles and darker colors the most 
influential atoms, and displays a horizontal line to help to 
identify tokens that overpass the threshold. The logP con-
tribution (A) of the bromine (last token from the SMILES 
string) is highly positive. While CDDD-Substitution (B) 
and Morgan-SHAP (C) identified the same bromine as 
the most influential atom, Morgan-R &L (D) attributed 

the highest values to carbons. An explanation for this 
difference could be the molecular representation, which 
is not atom-based but fragment-based, as made clear by 
Rasmussen et  al.  [8]. However, Morgan-SHAP uses the 
same molecular representation and spotlighted the bro-
mine similarly to the contributions.

Although the CDDD-Substitution (B) highlighted the 
bromine atom in Fig. 8, it attributed higher values to the 
carbons than the ones we find in the contributions vector 
(A). Moreover, it considers the prediction to be as sen-
sitive to a substitution of non-atom tokens as to a sub-
stitution of carbons, in general. This highlights that the 
CDDD model utilizes the non-atom tokens to correctly 
represent the molecular structure, as opposed to reading 
only a linear chain of atoms.

Although quantitatively the same bromine was high-
lighted by the contributions (A), CDDD-Substitution (B) 
and Morgan-SHAP (C) in Fig. 8, the story changes if we 
analyze them qualitatively through the direction of attri-
butions’ sings. In Fig. 9 we see that the contributions for 

Fig. 9  Crippen Contributions (logP) and attributions extracted from different models are visualized with a table indicating the method, ground 
truth (logp), and prediction (pred). A small value was used to define the color domain so that the visualization express only the sign of the scores. A 
The Crippen contributions to logP. B Attributions from Substitution-CDDD. C Attributions from Morgan-SHAP. D Attributions from Morgan-R &L
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the two oxygen atoms are different: positive for the first 
oxygen token in the string, and negative for the second. 
All the three methods (B, C, D) attributed the opposite 
direction to both oxygen atoms. As of additional infor-
mation, all atoms have positive contribution in the FPA 
contributions, which also disagrees with the three meth-
ods. To ignore the magnitude in this example, we set the 
color domain to be equal to a tiny value, i.e., between 
−  0.00001 and 0.00001. With this approach, all attribu-
tions are represented equally in terms of absolute values.

In this use case, we demonstrated how XSMILES can 
be used to compare attributions from different methods. 
We used methods based on atom-attributions only and 
one method based on SMILES-attributions. Although 
the models and molecule representations differ drasti-
cally, we found many cases in which attributions cre-
ated by each method are relatively similar to the logP 
contributions. In other cases, attributions would agree 
among themselves and disagree with the contributions. 
The analysis gets complex and XSMILES has helped in 
the task of identifying patterns and facts that agree and 
disagree with our beliefs about the methods, models, and 
molecular representations.

Final considerations
Data scientists can use XSMILES to understand their 
models’ behavior and compare multiple approaches. 
With our use cases, we demonstrated how attributions 
calculated for SMILES strings can be evaluated and bet-
ter interpreted through interactivity. Furthermore, we 
exemplified how a side-by-side approach may be used to 
compare different models and explanations, and how a 
website where users can quickly analyze molecules with-
out a coding environment is useful.

XSMILES can be used to visualize not only XAI attri-
butions, but any set of scores associated with atom or 
non-atom tokens of a SMILES string—e.g., attributions 
derived from models that are based on a graph rep-
resentation instead of a SMILES one. It is also a good 
technique to learn the SMILES notation and interpret 
SMILES strings. Moreover, it uses RDKit’s drawing 
standard, works within JupyterLab, and can be integrated 
into other web-based architectures.

Among the ideas for improvements and new applica-
tions of such technique are the interactive visualization 
of SELFIES [25] and InChI [26], and the implementation 
of better ways to represent the attributions. For exam-
ple, we coded XSMILES in a way that the drawing of the 
molecular structures could be done by other drawers like 
SmilesDrawer  [27]. A set of different types of heatmaps 
algorithms and highlights could also be implemented and 

offered to users. Finally, XSMILES is open-source, and 
we believe it is a great contribution for the community.
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