
Letourneau et al. Journal of Cheminformatics (2023) 15:7
https://doi.org/10.1186/s13321-023-00680-5

RESEARCH

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Open Access

Journal of Cheminformatics

New algorithms demonstrate untargeted
detection of chemically meaningful changing
units and formula assignment for HRMS data
of polymeric mixtures in the open‑source
constellation web application
Dane R. Letourneau, Dennis D. August and Dietrich A. Volmer* 

Abstract 

The field of high-resolution mass spectrometry (HRMS) and ancillary hyphenated techniques comprise a rapidly
expanding and evolving area. As popularity of HRMS instruments grows, there is a concurrent need for tools and
solutions to simplify and automate the processing of the large and complex datasets that result from these analyses.
Constellation is one such of these tools, developed by our group over the last two years to perform unsupervised
trend detection for repeating, polymeric units in HRMS data of complex mixtures such as natural organic matter, oil, or
lignin. In this work, we develop two new unsupervised algorithms for finding chemically-meaningful changing units
in HRMS data, and incorporate a molecular-formula-finding algorithm from the open-source CoreMS software pack-
age, both demonstrated here in the Constellation software environment. These algorithms are evaluated on a col-
lection of open-source HRMS datasets containing polymeric analytes (PEG 400 and NIST standard reference material
1950, both metabolites in human plasma, as well as a swab extract containing polymers), and are able to successfully
identify all known changing units in the data, including assigning the correct formulas. Through these new develop-
ments, we are excited to add to a growing body of open-source software specialized in extracting useful information
from complex datasets without the high costs, technical knowledge, and processor-demand typically associated with
such tools.

Keywords  Mass spectrometry, High resolution, Untargeted analysis, Software tool, Mass defect, Polymers

Introduction
The last decade has seen the development of a plethora
of creative and innovative open-source software tools
for the analysis of mass spectrometry (MS) data [1, 2]
Many of these tools serve to replace and/or augment data

processing functions from proprietary instrument-man-
ufacturer software packages, while others offer entirely
new algorithms and automation techniques for tasks
such as peak detection and calibration [3] assignment of
molecular formulae [4, 5] unsupervised peak learning in
mass spectrometry imaging data [6] comparison of tan-
dem mass spectra [7] detection of repeating mass spec-
tral features [8] statistical and multivariate analyses [9]
in addition to a wide range of visualization, graphic and
plotting tools [10, 12] Many of these algorithms and tools
have been released as open-source software on platforms

*Correspondence:
Dietrich A. Volmer
Dietrich.Volmer@hu-berlin.de
Department of Chemistry, Humboldt University Berlin, 12489 Berlin,
Germany

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13321-023-00680-5&domain=pdf

Page 2 of 13Letourneau et al. Journal of Cheminformatics (2023) 15:7

such as GitHub, bypassing both the high costs and limita-
tions of proprietary, commercial software packages, such
as those bundled with many mass spectrometers. In addi-
tion, users are free to modify, expand upon, and improve
these tools, leading to potentially very exciting work in
collaborative and interdisciplinary spaces.

High-resolution mass spectrometry (HRMS), in par-
ticular, allows for the probing of many features and
parameters in a single experiment, while also generat-
ing increasingly complex and detailed datasets which
can often require great time and effort by the researcher
to extract the desired information [13, 14] With this in
mind, algorithms for unsupervised mining of HRMS data
have become increasingly important to obtain impor-
tant information in reasonable timeframes, especially
as HRMS continues to become a more affordable and
accessible technique to researchers in a diversity of fields.
Unsupervised MS data-mining techniques have been
especially important in metabolomics fields [15–17] but
have also been used to uncover hidden structures in mass
spectrometry imaging (MSI) data [6] predict the struc-
tural similarity between two chemical structures based
on their MS/MS fragmentation spectra [7] and investi-
gate the authenticity of olive oil in combination with che-
mometric techniques [18] Machine learning algorithms
have also been very useful in these types of analyses,
assisting in the interpretation of complicated TOF–SIMS
data of human hair [19] the creation of a risk warning
system of chemical hazards in drinking water [20], and
the detection of chemically adulterated urine. [21]

When performing high-resolution mass spectrometry
on complex, heterogeneous samples such as those con-
taining large, polymeric species (e.g, natural organic mat-
ter, oil samples, lignin), there are often patterns within
the resulting spectra corresponding to the gain or loss
of the repeating polymer unit. These patterns can be
made more obvious visually by transforming the spectra
into the mass defect space [22] In brief, although it has
been covered extensively in many other publications [14,
23–26] the Kendrick mass defect is a data transforma-
tion where accurate m/z values are rescaled according to
a known repeating “unit” in the dataset, and then plot-
ted against the fractional mass (accurate subtracted from
nominal mass) to produce a characteristic mass defect
plot. In this “mass defect space”, compounds with identi-
cal mass defect can form horizontal series, representing
the loss or gain of the repeating “unit” of transformation.
In complex spectra containing multiple polymeric ana-
lytes, the patterns which can result from this transforma-
tion and re-plotting can be very complex, and the plot
generated from transformation by just one “base” unit
can contain horizontal trends based on many different
changing units.

Needless to say, the manual labor involved in tracing
these mass defect patterns and extracting the desired
information can be difficult, especially in a spectrum
containing thousands to hundreds of thousands of
peaks. Several automated detection techniques have
been proposed. Loos and Singer developed a non-tar-
geted algorithm to perform homologue series extrac-
tion from LC-HRMS data [27] The algorithm was
evaluated on ten effluent samples from Swiss sewage
treatment plants, and was able to identify series of
known homologues, as well as numerous nontargeted
peak series. Verkh et al. developed custom scripts, writ-
ten in R, to observe DBE-O, mass and intensity shifts
in LC-HRMS spectral features [28] This included the
identification of CH2 and C2H2O series in KMD-trans-
formed data. Bugsel and Zwiener created a MatLab
script to automatically detect poly- and perfluoroalkyl
substances in LC-HRMS spectra of contaminated soil
samples, successfully identifying CF2, CF2O, and C2F4O
repeating units [29] Along similar lines, our group has
developed Constellation, an open-source web appli-
cation which can perform unsupervised detection of
linked series in mass-defect transformed HRMS data
[30] The initial version of the software offered a vari-
ety of innovative tools for manipulating HRMS data in
the mass defect space, as well as an unsupervised trend
finding algorithm which was able find linked series in
the mass defect space.

Constellation has been in continual development
since its initial publication and release, with a particular
focus on incorporating more options to directly assign
chemical meaning (i.e., molecular formula information)
to both raw MS signals and polymeric changing units.
Initially, the software did not offer any built-in molec-
ular formula finding capabilities; here, an algorithm
incorporated from the open-source CoreMS software
package [11] allows users to assign formula information
for ions in the HRMS dataset. Following from this, two
newly designed “unit/base finding” algorithms assign
formula information for any changing units discovered
in the dataset. These algorithms are then successfully
evaluated on a collection of open-source HRMS data-
sets containing polymeric analytes (PEG 400 and NIST
standard reference material 1950, both metabolites
in human plasma, as well as a swab extract contain-
ing polymers) [8] and are able to successfully identify
all known changing units in the data, including assign-
ing the correct molecular formulas. All algorithms are
demonstrated and evaluated within the open-source
Constellation software environment, accessible easily
via any web browser [31] Fig. 1 displays a screenshot
of the current Constellation interface as of the time of
publication.

Page 3 of 13Letourneau et al. Journal of Cheminformatics (2023) 15:7 	

Implementation
Constellation program structure
Constellation consists of two parts: A web interface,
based on the open-source Dash architecture (Plotly Inc.)
[32] enables users to upload a raw HRMS data file, manip-
ulate their data within the mass defect space using the
built-in graph, and send requests to our back-end server
for data processing tasks such as unit/base finding, unsu-
pervised trend detection or formula finding routines. The

back-end server cluster, located at Humboldt University
Berlin, receives these requests via the Celery distributed
task queue [33] performs the computationally-intensive
processing (so the end user’s computer is not responsi-
ble for the workload), and sends the results back to the
web interface. To enable these functionalities, Constella-
tion has a large number of dependencies, viewable in sev-
eral requirements files stored in the Constellation GitLab
repository [34].

Fig. 1  Constellation web-application interface (as of the time of publication). Shown is the plasma-spiked PEG dataset from da Silva et al. [8] loaded
into the application, displayed in mass-defect mode in the Graph area

Page 4 of 13Letourneau et al. Journal of Cheminformatics (2023) 15:7

Both the front- and back-end components of the soft-
ware are designed to be run as system services on dedi-
cated servers and require the simultaneous operation of
two instances of Celery and one instance of Redis, also
running as system services. The first instance of Celery,
here called “frontcelery”, runs on the web server hosting
the front-end web interface, and functions to store infor-
mation via Redis when making requests to tasks run-
ning on the back-end server via a second Celery instance
called “backcelery”. This is necessary, as Dash applica-
tions are structured around several “callbacks” which
take in information from the web application interface,
process it, and return some sort of output [32] Callbacks
are based on HTTP requests and will therefore likely
timeout if a callback takes too long to complete. As we
have several callbacks making requests to the back-end
task architecture (which, depending on the task, can take
minutes to even hours to complete), we used a newer
Dash feature called “Long Callbacks” [35] which relies
on Celery and Redis to enable longer timeouts in certain
situations. This is the primary function of “frontcelery”, in
addition to some small maintenance tasks performed by
a scheduled queue called “celerybeatfront”.

“backcelery”, on the other hand, is an instance of Cel-
ery functioning to manage the computationally demand-
ing tasks we have written in “serverapp.py”, which runs
on a dedicated server at Humboldt University Berlin.
Requests are received via HTTP from the front-end web
application via the built-in routing features in Flask [36].
The routing functions on the back-end server then col-
lect the incoming data (in JSON format) and call the rel-
evant Celery task asynchronously, before sending back a
task ID to the front-end so the user can receive progress
and task update information. It should be noted that we
have designed two types of tasks here: “grouped” and
“individual”. Individual tasks contain all the code needed
to process incoming information within one Celery task,
and send back updates via the self.update_state () func-
tion. Grouped tasks, on the other hand, attempt to dis-
tribute processor load for certain functions by splitting
up the data and sending pieces to potentially hundreds
to thousands of individual sub-tasks. These are slightly
more complicated to monitor, and instead of receiv-
ing text-based updates from each sub-task, we simply
count how many of these sub-tasks have been marked
as completed and report this number to the front-end.
In addition, upon completion, the code in the front-end
callback has to re-assemble the information coming back
from all grouped sub-tasks and evaluate if all informa-
tion is present before proceeding to the next step. Finally,
like “frontcelery”, “backcelery” also performs some
small scheduled maintenance tasks via a queue called
“celerybeatback”.

A note on data security: Constellation ensures sensitive
user data is never compromised by implementing secure
HTTP connections (HTTPS) to both the web interface
and the remote data processing server. Data uploaded
to (or generated by) Constellation is stored temporarily
on our server until the user is finished their session, after
which the data are deleted. An anonymous ID, randomly
generated for each user (or each browser tab or win-
dow that a user opens), is the only information retained
by Constellation, and only as a way of tracking software
usage.

Increasing file‑size limitations when uploading
and generating data
The original version of Constellation [30] limited raw MS
file uploads to a maximum of 5000 data points (~ 200 kb
of information). This was due to the use of data structures
(in particular, the Dash core component “Store” [37])
which relied on the end user’s web browser to store both
uploaded MS data and data generated by the software
itself (i.e., returning series information from trend find-
ing). Given that typical HRMS datasets are quite large,
this was a high priority area for further development and
improvement. Since the software was published, the file
upload components in the front-end “webapp” have been
upgraded to the open-source Dash Uploader [38] and the
back-end “serverapp” has been migrated to a dedicated
rack server run by our group and located in the Institute
of Chemistry at Humboldt University Berlin (funded by
the Berlin University Alliance BUA 501_LinkLab grant).
This finally allowed for the increase of file-size limita-
tions to 10 mb for both raw MS file uploads and for the
storage of larger datasets resulting from trend-finding
and formula-finding activities, via secure temporary files
saved directly to our servers. This represents a significant
improvement in the abilities of the Constellation web
application so far, with even less demand placed on the
end user’s computer or Internet browser.

Integration of molecular formula finding algorithm
from corems
The molecular formula finding function from CoreMS
[11] was integrated according to the package’s documen-
tation. This required setting up a Docker container run-
ning as a system service to give the function access to an
SQL database of potential molecular formulas. A Celery
task called “formulafinder” was created in the back-end
“serverapp” which first sets CoreMS molecular search
settings according to user input parameters (or a set of
defaults if they have not been modified), creates a “mass
spectrum object”, and then calls the SearchMolecular-
Formulas class to perform the database search. A simple
interface was built and added to Constellation, allowing

Page 5 of 13Letourneau et al. Journal of Cheminformatics (2023) 15:7 	

users to adjust settings and to monitor the formula-find-
ing calculations, as well as save the results as a.csv file to
their computer.

Development and integration of new unit/base finding
algorithms
All algorithms developed for Constellation in this work
are scripts written in Python and utilize several common
Python packages such as Pandas [39] and Numpy [40] for
data structuring and comparison. Scripts were debugged
first by running through the Python interpreter (ver-
sion 3.6) locally, and then migrated to our test (“beta”)
high-powered data processing server via a development
branch in our Git repository for debugging within our
task management framework, controlled by the open-
source Celery distributed task queue [33] Celery allows
us to manage distribution of task workload across our
server’s 112 CPU cores, while also allowing for sepa-
ration of task queues for each user if there are multiple
users operating the software simultaneously. We also use
Flower, a “web based tool for monitoring and adminis-
trating Celery clusters” [41] to check for any exceptions
or errors encountered in Celery tasks. The entirety of the
new unit/base finder algorithms, including loading of
formulas and evaluation of units within the raw HRMS
dataset, takes place in a single Celery task called “unit-
basefinder”. We attempted, at first, to split up the work-
load among multiple tasks in a Celery structure called a
“group”, however it was unsuccessful due to the size of the
data being loaded into each task. With some optimiza-
tion, however, this task-splitting may be possible in the
future and enable significant speed improvements for the
unit/base finding task.

To be considered ready for production, the Celery
task running the algorithms had to run free of errors or
exceptions, deliver updates on calculation progress to the
front-end “webapp” at regular intervals and shut down
cleanly both in the case of an early shut-down event ini-
tiated by the user or in the usual case of the task com-
pleting and returning results. Once the algorithms had
been sufficiently debugged on the testing (“beta”) server,
they were pushed to our production (“alpha”) server
in the master branch of our GitLab repository [34] The
“alpha” and “beta” servers are clones of each other and we
observed a successful deployment to the “alpha” server
after testing on the “beta” server at every stage of devel-
opment. It should be noted that every new feature added
to Constellation in this work (e.g., increasing file-size
limitations, integration of the CoreMS molecular formula
search) and any future developments will follow this
same path from development to production, so that the

Git master branch in the repository will always reflect the
current production version of Constellation.

Results and discussion
Molecular formula finding algorithm
Constellation originally allowed users to upload an out-
put file from the FormulaAssignment script, part of the
Python-based FTMS Visualization software package
[10]. This data layer was matched with a user-uploaded
raw HRMS dataset, so that in Constellation’s graphing
interface, points that were hovered over or selected
would display a molecular formula annotation (if avail-
able). However, there was a desire to incorporate a for-
mula assignment routine directly into the Constellation
interface. Since the publication of FTMS Visualization,
there have been a number of other significant software
packages developed which offer improved formula find-
ing capabilities as well as various other features for pro-
cessing and manipulating HRMS data.4, In view of this,
and wanting to work with a software package in active
development, we chose to use CoreMS, [5], 9, 11, 12,
42a new set of HRMS data tools from Pacific Northwest
National Laboratories in Richland, WA, USA.

CoreMS aims to be a “comprehensive mass spectrom-
etry framework for software development and data
analysis of small molecules analysis,” [11] and offers
an impressive selection of tools for loading raw HRMS
data from proprietary vendor formats, signal process-
ing for FT-MS (apodization, zero-filling, etc.), baseline
subtraction and smoothing, recalibration routines, and
of interest to us, molecular formulae search and assign-
ment routines. These functions are all easily accessible
through the usual methods of installing and importing
Python packages, with the exception that the molecular
formula finding scripts require the user to set up and
run a Docker-based SQL molecular formula database.
In the case of Constellation, this had to be run as a sys-
tem-service on our high-performance server.

CoreMS was installed on our server and implemented in
the Constellation GUI via a small graphical interface to give
users access to these molecular formula-finding routines.
If a valid raw HRMS dataset has been loaded into the pro-
gram, users can simply click “Start” to run the formula find-
ing routine on the remote data-processing server (assuming
the default parameters are sufficient), wait for a result, and
download the resulting.csv output file to their computer. In
the case that they want to adjust any parameters from the
defaults, a “Settings” window is available with all parameters
from the CoreMS script mapped to input fields, enabling
fine-tuning of errors, double-bond equivalents (DBE), iso-
topologue and minimum peaks filters, and elemental limits.

Page 6 of 13Letourneau et al. Journal of Cheminformatics (2023) 15:7

New algorithms for generating mass defect units/
bases
Overview
In our previous publication detailing an earlier version
of Constellation [30] we have described how the unsu-
pervised Trend Finder algorithm at the heart of the
software first generated a list of potential units/bases to
test based on frequently occurring “gaps”, or distances
between m/z values, in the raw HRMS dataset. Until
now, this approach resulted in very large list of floating-
point numbers, with no chemical meaning necessar-
ily reflected in these patterns. As both a way to narrow
this list down (saving a significant amount of time in the
unsupervised trend search), and to offer a starting point
for the interpretation of the trend finding results, we have
developed two new unit/base finding algorithms which
search for only chemically meaningful repetition patterns
in the dataset; that is, only units of change which can be
assigned a reasonable chemical formula.

These algorithms can operate in either “untargeted”
mode (where all settings are either optimized by Constel-
lation based on the input MS dataset or set to “reason-
able” defaults based on the datasets we used in testing
the software), or “targeted” mode (where the user can
fully customize all settings). They function by loading
a pre-generated formula library, from which potential
units/bases are selected according to parameters includ-
ing elemental limits and minimum/maximum size lim-
its. The raw MS dataset is then searched to see if any of
these potential units/bases are present, and if so, at what
frequency they repeat. The resulting list of units/bases is

then either directly sent to the Trend Finder algorithm (in
“untargeted” mode) or displayed in a selection box for the
user to curate as they like before trend finding (in “tar-
geted” mode). Figure 2 displays the workflow when using
Constellation with the new unit/base finding algorithms.

Library generation
The new unit/base finding algorithms require a library of
potential starting formulas, generated by a loop iteration
through the elements C, H, S, O, N, P, F, Cl, Br, Si and
X according to elemental limits. We introduce X to rep-
resent a connecting point from the changing polymeric
unit to the molecular scaffold. All elements in the itera-
tion are labeled with their valence ν, which is needed for
the evaluation of the molecular formula according to the
double-bond equivalent (DBE) [43, 44] The DBE relies
on chemical rules and can be applied as a constraint to
evaluate elemental compositions [43] – as an example,
the Lewis and Senior rules can be used as another chemi-
cal based validation approach [45–47]. If a non-integer or
negative DBE value is obtained, the initial molecular for-
mula for the potential unit/base was incorrect [43]. The
DBE is calculated as

in which Ei is the number of atoms of the element i. [43]
However, Eq. (1) has some drawbacks in our iteration
approach since it would accept unreasonable structures
like NX, which are generated in our systematic itera-
tion. Therefore, we derived Eq. (2) for the validation of

(1)DBE =
1

2

∑

[Ei(νi − 2)] + 1

Fig. 2  Workflow chart for unit/base finding processes in Constellation

Page 7 of 13Letourneau et al. Journal of Cheminformatics (2023) 15:7 	

our formulas, which also relies on fundamental valence
principles and can be seen as a related but restricted
approach for the DBE calculation.

with χ defined as

Some elements such as sulfur and phosphorus can have
different valence states in organic compounds, hence differ-
ent valence combinations must be considered. Therefore,
each valence state of an element is independently included
in the iteration. Our expression for the DBE calculation in
conjunction with the pre-defined valency includes molecu-
lar formulae which comprise multiple elements at higher
valence states as well as mixed combinations of valence
states. These molecular formulae might be excluded if only
normal valences are considered due to negative DBE val-
ues. Table 1 lists the valence states and compositional limits
used for library generation.

Formula selection
The unit/base finding process begins with the selection
of potential formulae from the main library. Our gener-
ated library covers millions of molecular formulae, and it
is therefore ineffective to apply the whole library in our
search algorithm due to high computing time and the pos-
sibility of false assignments. Hence, the potential formulae
are screened according to elemental limits, the maximum
DBE rule [48], elemental ratios [47] (0.3 ≤ H/C ≤ 4.0,
0 ≤ N/C ≤ 1.3, 0 ≤ O/C ≤ 1.2, 0 ≤ P/C ≤ 0.3, 0 ≤ S/C ≤ 0.8,
0 ≤ F/C ≤ 1.5, 0 ≤ Cl/C ≤ 0.8, 0 ≤ Br/C ≤ 0.8, 0 ≤ Si/C ≤ 0.5)
and the mass limits mUnit (14 ≤ m ≤ 200 Da). All of these
parameters and conditions can be changed/disabled by the
user in “targeted” mode or left to their defaults in “untar-
geted” mode. The final evaluated list of formulae is then
saved and sent to the unit/base finding algorithms.

Algorithm selection and data filtering
After selecting potential formulae, we have to choose
which of the two different unit/base finding algorithms
to use, since the calculation time scales differently with
the size of the data and unit/base set for each algorithm.

(2)

1

2

∑

Ei,ν≥2νi −
1

2

∑

Ei,ν=1 − χ(
∑

Ei,ν≥2 + DBE− 1) = 0

(3)χ =

{

1,
∑

Ei,ν≥2 > 1

0,
∑

Ei,ν≥2 = 1

In “untargeted” mode, algorithm II is chosen as a default
based on better performance for large formula libraries and
input MS datasets (described in the “Scaling of algorithms”
section below). However, this is not the only factor to con-
sider when choosing, as each algorithm can have advan-
tages and disadvantages in certain circumstances, as will be
discussed in the following sections. Therefore, in “targeted
mode”, the user can choose which algorithm is employed,
or test both individually. It is important to note that in
some cases and with certain custom settings, this may dra-
matically increase analysis time.

This can be mitigated, if desired, by employing Constella-
tion’s built-in Data Filter, which gives the user two options
to reduce the size of their dataset. The “Target data length”
option filters by selecting the x number of most intense
peaks in the raw MS dataset while excluding the rest. Set-
ting x to a value lower than the length of the uploaded raw
MS dataset therefore removes less intense peaks to leave
the user with a smaller dataset. The “Intensity threshold”
option filters by removing all peaks below a specified mini-
mum intensity threshold i (in %). In this case, the intensities
of all peaks are normalized to the highest-intensity peak
and then normalized intensities smaller than i are removed.
It should be noted that this filtering can end up excluding
information from the raw MS dataset which may be impor-
tant to the user, so it must be used with discretion. It is rec-
ommended to try data filtering when evaluating the unit/
base and trend finding algorithms to shorten the analysis
time, after which parameters can be adjusted accordingly,
and the analysis re-attempted with the full-length dataset
once there is some time to wait for a result.

Algorithm I – local search
The first unit/base finder algorithm (see the flowchart in
Fig. 3) adds the accurate mass of each unit in our formula
list to the m/z value of each data point in the raw HRMS
data set to generate a new dataset, which is then compared
to the original HRMS dataset (± selection error). If any
points between the two datasets match, the successful unit
and the corresponding sum of the accurate mass plus the
unit are saved to our output list. The algorithm then takes
each sum in this output list, adds the unit again to the sum
and searches the initial HRMS data set for matches (± loop
error). The last step is repeated in a loop, where for each
successful iteration, we increase the repetition counter n by
one until it is equal to the number of search steps m. The

Table 1  Valence states and default compositional limits used for library generation

Element C H S O N P F Cl Br Si X

Valence (ν) 4 1 2, 4, 6 2 3 3, 5 1 1 1 4 1

Default limits 0–10 0–20 0–4 0–4 0–2 0–2 0–4 0–2 0–2 0–1 1–2

Page 8 of 13Letourneau et al. Journal of Cheminformatics (2023) 15:7

parameter m can be chosen by the user and has a strong
impact on the computational time and the length of the
unit list, especially if high error ranges are defined. If m is
reached, the unit is saved to be passed on to Trend Finder.

Each loop iteration represents the addition of another
equivalent of the changing unit to a fixed accurate mass
from the dataset. Therefore, the first algorithm identi-
fies repetitions of a changing unit in sequence (“locally”),
which means the unit will have a high probability of yield-
ing a series in Trend Finder. This “local search” approach
generates a small, curated list of units/bases and is best
suited for highly complex datasets, reducing the number
of potential units/bases compared to the “global search”
approach of algorithm II. Therefore, for complicated
datasets, algorithm I can strongly decrease the overall
computing time when running Trend Finder in “untar-
geted” mode.

Algorithm II – global search
The second unit/base finder algorithm (see the flowchart
in Fig. 4) calculates the distances between each data point
in the HRMS dataset to gain a list of differences. This list
is compared to the list of potential units in the formula
library (± selection error). If there is a match, the cor-
responding unit is taken and multiplied by a repetition
counter n, and then this value is compared again to the
list of differences (± loop error). This step is repeated,
and for each successful loop iteration n is increased by
one until it is equal to the selected number of search
steps m. If m is reached, the unit is saved to be passed
on to Trend Finder. This approach compares all values
in the list of differences to each unit in the library, and

does not apply any restrictions on the local environment
of a found pattern (i.e., a changing unit does not have to
repeat in sequence) – therefore, the results correspond to
a “global search” within the raw MS dataset.

The advantage of the second algorithm is a high sen-
sitivity for patterns which correspond to changing units
showing minimal sequential (or “local”) repetition.
Moreover, this approach shows better scaling when
using larger libraries of potential starting formulas or
larger raw MS datasets as compared to the local search
approach in algorithm I (see “Scaling of algorithms”
section below for a detailed breakdown of this scaling).
Therefore, algorithm II is suitable for fast analysis of very
large HRMS data sets. However, it does not consider if
the found repetitions are related to each other (i.e., dis-
covered sequentially in the dataset), which may result in
a lower probability of these units/bases returning series
in Trend Finder. There are also usually more units/bases
returned from this algorithm, potentially resulting in a
longer analysis time when trend finding in “untargeted”
mode.

Algorithm parameters
Both algorithms depend on numerous parameters, as
can be seen in Figs. 3, 4. All parameters can be custom-
ized by the user in “targeted” mode or decided automati-
cally by Constellation in “untargeted” mode, without any
pre-optimization or understanding of the algorithms. In
“untargeted” mode, “reasonable” defaults are assumed for
most parameters, which were optimized in development
for five HRMS datasets containing polymeric species
from various sources. In this mode, Constellation is also

Fig. 3  Flowchart for Unit/Base Finder algorithm I

Page 9 of 13Letourneau et al. Journal of Cheminformatics (2023) 15:7 	

able to make some automated parameter adjustments
based on the input raw HRMS dataset – for example, the
maximum size of a potential changing unit will be set to
the largest m/z value in the dataset divided by the mini-
mum number of desired repetitions.

Evaluation of algorithms
To check that both new unit/base finding algorithms
were functioning according to expectations, we tested
them on multiple HRMS datasets of polymers with
known repeating units. These datasets were obtained
from the MassIVE database, a resource developed by
the Center for Computational Mass Spectrometry at the
University of California, San Diego, USA to “promote the
global, free exchange of mass spectrometry data.” [49]
The datasets correspond to a published study by da Silva
et al., who developed a computational method for remov-
ing repeating mass spectral features [8] In the study, the
authors applied their method to mass spectra of PEG 400
and NIST standard reference material 1950 (metabo-
lites in human plasma) spiked with PEG 400, as well as
a swab extract containing various polymers. Given that
some of the repeating signals here are “knowns”, and the
datasets from the study are publicly available, it offered
an opportunity to evaluate whether our newly developed
algorithms were able to detect these previously identified
changing units. Both algorithms were tested in “untar-
geted” mode (where settings were chosen automatically

by the software or set to “reasonable” defaults) and “tar-
geted” modes (where various settings were customized to
help find the changing units of interest).

To start, we applied both algorithms to search for
repeating units within the “contaminants” category,
defined by da Silva et al. as containing PEG 400 (repeat-
ing unit of C2H4O), perfluorinated molecules (repeating
unit of CF2) and PPG (repeating unit of C3H6O) [8] We
were able to successfully find the PEG repeating unit in
the “plasma sample spiked with a swab” dataset with both
algorithms in “untargeted” mode. The CF2 unit was also
found by both algorithms, but due to a weak local repeti-
tion, only the global search approach (algorithm II) was
successful in “untargeted” mode, while the local search
approach (algorithm I) was able to find the CF2 unit in
“targeted” mode with optimized parameters. It should
also be noted that the PPG unit was found by algorithm
II in “untargeted” mode, despite the referenced study not
finding any repetitions of this unit in the dataset [8] We
also investigated the ability of our algorithms to search
for the CH2, C2H4, C3H6 and C4H8 repeating units from
the “composition” category defined by da Silva et al. [8]
We did not expect a highly defined local repetition pat-
tern for these units, therefore algorithm II was predicted
to yield better results as compared to algorithm I. As
expected, in “untargeted” mode we were able to find all
known repeating units with algorithm II, while algorithm
I only returned a partial list. However, in “targeted” mode

Fig. 4  Flowchart for Unit/Base Finder algorithm II

Page 10 of 13Letourneau et al. Journal of Cheminformatics (2023) 15:7

with some adjustment of parameters, we were able to
find all units with both algorithms.

These evaluation steps showed that our algorithms
were able to detect all previously identified changing
units in these datasets, including an additional unit not
originally identified in the referenced study. Given their
ability to correctly find the expected values, we expect
the algorithms will function in a similar manner to detect
new, unknown changing units in untargeted analyses,
and hopefully provide added value to the analyst when
looking through complex HRMS datasets for repeat-
ing patterns in an automated, unsupervised fashion. In
“untargeted” mode, where parameters are automatically
chosen or set to defaults by Constellation, algorithm II
was consistently able to identify all the expected chang-
ing units in our evaluation, so we chose it as the default
algorithm in this mode. Algorithm II is also the default
in “targeted” mode, although here the user can of course
switch to algorithm I and adjust other parameters if
desired. Figure 5 summarizes these evaluation results vis-
ually, including the comparison of “targeted” and “untar-
geted” modes with both algorithms.

Scaling of algorithms
The impact of the size of both the raw MS dataset and
library of potential starting formulas on the performance
of both algorithms was investigated. We took the pub-
licly available “plasma sample spiked with a swab” data-
set from da Silva et al. [8] and filtered it multiple times
to generate four new datasets containing the top 1000,
2000, 3000, or 4000 peaks from the original dataset based
on signal intensity. Multiple formula libraries were then

generated with a library creation script (the same used
to create the main library for the unit/base finding algo-
rithms, as described earlier). The parameters for for-
mula library generation were changed each time to give
9 libraries varying in size from 127 to 951725 potential
changing-unit formulae.

These libraries were then used in unit/base finding for
each of the filtered datasets, with both algorithms and
default settings for all parameters, while recording com-
puting time and number of found units. The results (dis-
played in Fig. 6) show that the performance for larger unit
libraries and raw MS datasets was better for the global
search approach (algorithm II), but for smaller datasets–
independent of the size of the used library – the local
approach (algorithm I) demonstrated better performance.
Moreover, algorithm I yielded a smaller list of units, as was
expected given that algorithm II does not require units to
repeat “locally” (in sequence). This trend was independ-
ent of the size of the chosen formula library. These results
helped in setting reasonable defaults for unit/base finding
tasks and should also help inform users as to what options
may give the best performance for their dataset when cus-
tomizing parameters to their liking.

Conclusions
In this study, we introduced several new algorithms for
assigning chemical meaning to both raw MS peaks and
potential polymeric changing-units in HRMS datasets of
complex samples, demonstrated here within the open-
source Constellation software environment. Firstly, a
formula assignment interface gives users access to the
molecular formula finding algorithm developed by

Fig. 5  Evaluation results for both algorithms (targeted and untargeted modes) for the “plasma sample spiked with a swab” dataset from da Silva
et al.,[8] filtered to 988 data points using the “Target data length” option in Constellation’s Data Filter. Each changing unit reported in the previous
study (abscissa) is shown along with how many times it was detected in the dataset using the new unit/base finding algorithms developed here
(ordinate)

Page 11 of 13Letourneau et al. Journal of Cheminformatics (2023) 15:7 	

Dr. William Kew and Dr. Yuri Corilo as a part of their
CoreMS package, running live on a server cluster at
Humboldt University Berlin, which distributes the high-
intensity computational processing to a server rather
than the user’s own computer. After running the algo-
rithm, the user can save the results to their computer,
and/or view the formulas as a data layer in Constellation’s
graphing area.

Secondly, two new algorithms for finding chemically
meaningful mass defect units/bases for unsupervised
trend detection in HRMS data were developed. After
a library of potential units/bases with associated for-
mulas is generated (based on certain user-adjustable
limits), it is passed on to one of two unit/base find-
ing algorithms, where each unit/base is evaluated in

comparison with the raw HRMS dataset. Upon meet-
ing certain requirements, units/bases are saved to a
final output list. If “untargeted” mode is selected, this
unit/base list is directly passed to the trend finding part
of the software. If “targeted” mode is chosen, a unit/
base selection box is displayed and populated, show-
ing both the accurate mass and associated formula for
each unit/base, and allowing the user to select which
units/bases they would like to use in the trend search
to follow. Both approaches were evaluated on several
open-source HRMS datasets, and between the two
unit/base finding algorithms, all previously identified
changing units in the data were successfully identified.
Here, “untargeted” mode demonstrated its utility as a
good “starting point” for this evaluation, after which

Fig. 6  Algorithm scaling, a with different data set size, b with increasing length of the potential unit lists; both indicate a better performance for
algorithm II. c Comparison between the number of units found by both algorithms with a constant unit list (127 entries) and increasing data set
size, showing a smaller number of units for algorithm I due to consideration of local repetition, d 3D plot of calculation time in dependency of data
set size and unit list length

Page 12 of 13Letourneau et al. Journal of Cheminformatics (2023) 15:7

some customization in “targeted” mode was necessary
to identify all the changing units in this analysis, due to
the differing capabilities of algorithms I and II.

Finally, in migrating Constellation to our own servers
and upgrading several interface components, we were able
increase all file-size limitations to a maximum of 10 mb for
both uploaded raw MS data and data generated from the
formula finding or trend finding algorithms. This is a sig-
nificant upgrade which will make the Constellation software
environment more useful and accessible to a larger variety of
users, especially given the large size of typical HRMS data-
sets, and enable further opportunities to develop new HRMS
data-processing tools by borrowing from the expanded data
structures, algorithms, and graphical interfaces that we have
developed here. In general, there remain several unexplored
possibilities in the realm of unsupervised data analysis for
high-resolution mass spectrometry. We hope that future
developments in this area, such as integrating additional
tools from the open-source CoreMS software into Constel-
lation (i.e., adding the ability to upload MS data in raw ven-
dor formats), can continue to demonstrate how collaborative
work in the open-source space can lead to multi-faceted
solutions for mass spectrometry data processing, independ-
ent from the use of expensive and proprietary instrument
manufacturer software.

Availability and requirements
The open-source Constellation software described in this
article can be accessed and used freely as a web applica-
tion (no software downloads required) at the following
website: https://​const​ellat​ion.​chemie.​hu-​berlin.​de.

•	 Project name: Constellation
•	 Project home page: https://​scm.​cms.​hu-​berlin.​de/​

letou​rnd/​const​ellat​ion
•	 Operating system(s): Platform independent web

application
•	 Programming language: Python
•	 Other requirements: None
•	 License: GNU General Public License

Acknowledgements
The authors thank Dr. William Kew at Pacific Northwest National Labs in Rich-
land, WA, USA for his assistance in setting up and debugging the molecular
formula finding functions of CoreMS software package, Karl-Heinz Preuß (HU
Berlin Computer Media Service) for his help in setting up the Constellation
web hosting architecture and Yulin Qi (Tiajin University, China) for providing
several HRMS datasets, which were used in initial training of the software
algorithms.

Author contributions
DRL developed and coded the Constellation software, designed the applica-
tion interface, set up the server framework which currently hosts the software,
provided the concept for the new algorithms reported here, and wrote the

main body of the manuscript. DDA wrote the code for the two new algo-
rithms (Algorithm I, “Local Search” and Algorithm II, “Global Search”) and wrote
the sections of text as well as creating the figures which describe these algo-
rithms. DAV provided the concept for the original functions of the Constella-
tion application and supported the research and development phases as well
as editing this manuscript. All authors read and approved the final manuscript.

Funding
Open Access funding enabled and organized by Projekt DEAL. DRL received
a supplementary fellowship and funding for computer hardware from SALSA
(School of Analytical Sciences Adlershof, Berlin). DAV acknowledges financial
support by the German Research Foundation (DVF VO 1355/4-3) and the
Berlin University Alliance (BUA 501_LinkLab).

Availability of data and materials
The “KendrickMassFilter_EvaluationDataset_PUBLIC” dataset used to evaluate
the unit-finding algorithms is provided freely in the MassIVE Datasets database
under the CC0 1.0 Universal license by the Center for Computational Mass
Spectrometry, University of California, San Diego, USA (https://​massi​ve.​ucsd.​
edu/​Prote​oSAFe/​static/​massi​ve.​jsp).

Declarations

Competing interests
The authors declare no competing interests.

Received: 25 September 2022 Accepted: 6 January 2023

References
	1.	 Strimmer, K. Open source tools for mass spectrometry analysis. https://​

strim​merlab.​github.​io/​notes/​mass-​spect​romet​ry.​html. Accessed 15 June
2022

	2.	 List of mass spectrometry software. Wikipedia. https://​en.​wikip​edia.​
org/w/​index.​php?​title=​List_​of_​mass_​spect​romet​ry_​softw​are&​oldid=​
10930​45979. Accessed 15 June 2022

	3.	 Röst HL, Sachsenberg T, Aiche S, Bielow C, Weisser H, Aicheler F, Andreotti
S, Ehrlich H-C, Gutenbrunner P, Kenar E, Liang X, Nahnsen S, Nilse L,
Pfeuffer J, Rosenberger G, Rurik M, Schmitt U, Veit J, Walzer M, Wojnar D,
Wolski WE, Schilling O, Choudhary JS, Malmström L, Aebersold R, Reinert
K, Kohlbacher O (2016) OpenMS: a flexible open-source software plat-
form for mass spectrometry data analysis. Nat Methods 13(9):741–748.
https://​doi.​org/​10.​1038/​nmeth.​3959

	4.	 Fu Q-L, Fujii M, Riedel T (2020) Development and comparison of formula
assignment algorithms for ultrahigh-resolution mass spectra of natural
organic matter. Anal Chim Acta 1125:247–257. https://​doi.​org/​10.​1016/j.​
aca.​2020.​05.​048

	5.	 Leefmann T, Frickenhaus S, Koch BP (2019) ultramassexplorer: a browser-
based application for the evaluation of high-resolution mass spectrometric
data. Rapid Commun Mass Spectrom 33(2):193–202. https://​doi.​org/​10.​
1002/​rcm.​8315

	6.	 Abdelmoula WM, Lopez BG-C, Randall EC, Kapur T, Sarkaria JN, White FM,
Agar JN, Wells WM, Agar NYR (2021) Peak learning of mass spectrometry
imaging data using artificial neural networks. Nat Commun 12(1):5544.
https://​doi.​org/​10.​1038/​s41467-​021-​25744-8

	7.	 Huber F, van der Burg S, van der Hooft JJJ, Ridder L (2021) MS2DeepScore: a
novel deep learning similarity measure to compare tandem mass spectra. J
Cheminform 13(1):84. https://​doi.​org/​10.​1186/​s13321-​021-​00558-4

	8.	 da Silva RR, Vargas F, Ernst M, Nguyen NH, Bolleddu S, del Rosario KK,
Tsunoda SM, Dorrestein PC, Jarmusch AK (2019) Computational removal
of undesired mass spectral features possessing repeat units via a kendrick
mass filter. J Am Soc Mass Spectrom 30(2):268–277. https://​doi.​org/​10.​
1007/​s13361-​018-​2069-9

	9.	 Kitson E, Kew W, Ding W, Bell NGA (2021) PyKrev: a python library for
the analysis of complex mixture FT-MS data. J Am Soc Mass Spectrom
32(5):1263–1267. https://​doi.​org/​10.​1021/​jasms.​1c000​64

https://constellation.chemie.hu-berlin.de
https://scm.cms.hu-berlin.de/letournd/constellation
https://scm.cms.hu-berlin.de/letournd/constellation
https://massive.ucsd.edu/ProteoSAFe/static/massive.jsp
https://massive.ucsd.edu/ProteoSAFe/static/massive.jsp
https://strimmerlab.github.io/notes/mass-spectrometry.html
https://strimmerlab.github.io/notes/mass-spectrometry.html
https://en.wikipedia.org/w/index.php?title=List_of_mass_spectrometry_software&oldid=1093045979
https://en.wikipedia.org/w/index.php?title=List_of_mass_spectrometry_software&oldid=1093045979
https://en.wikipedia.org/w/index.php?title=List_of_mass_spectrometry_software&oldid=1093045979
https://doi.org/10.1038/nmeth.3959
https://doi.org/10.1016/j.aca.2020.05.048
https://doi.org/10.1016/j.aca.2020.05.048
https://doi.org/10.1002/rcm.8315
https://doi.org/10.1002/rcm.8315
https://doi.org/10.1038/s41467-021-25744-8
https://doi.org/10.1186/s13321-021-00558-4
https://doi.org/10.1007/s13361-018-2069-9
https://doi.org/10.1007/s13361-018-2069-9
https://doi.org/10.1021/jasms.1c00064

Page 13 of 13Letourneau et al. Journal of Cheminformatics (2023) 15:7 	

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research ? Choose BMC and benefit from: ? Choose BMC and benefit from:

	10.	 Kew, W. FTMS Visualisation: A suite of tools for visualizing complex mixture
FT-MS data. https://​github.​com/​wkew/​FTMSV​isual​izati​on. Accessed 25 Nov
2022

	11.	 Corilo, Y. E.; Kew, W. R.; McCue, L. A. EMSL-computing/CoreMS: CoreMS 1.0.0,
2021. https://​doi.​org/​10.​5281/​zenodo.​46415​53

	12.	 Bramer LM, White AM, Stratton KG, Thompson AM, Claborne D, Hofmockel
K, McCue LA (2020) Ftmsranalysis: An r package for exploratory data analy-
sis and interactive visualization of FT-MS data. PLoS Comput Biol 16(3):1–12.
https://​doi.​org/​10.​1371/​journ​al.​pcbi.​10076​54

	13.	 Szymańska E (2018) Modern data science for analytical chemical data—a
comprehensive review. Anal Chim Acta 1028:1–10. https://​doi.​org/​10.​
1016/j.​aca.​2018.​05.​038

	14.	 Roach PJ, Laskin J, Laskin A (2011) Higher-order mass defect analysis for
mass spectra of complex organic mixtures. Anal Chem 83(12):4924–4929.
https://​doi.​org/​10.​1021/​ac200​654j

	15.	 Chen L, Zhong F, Zhu J (2020) Bridging targeted and untargeted mass
spectrometry-based metabolomics via hybrid approaches. Metabolites.
https://​doi.​org/​10.​3390/​metab​o1009​0348

	16.	 Caesar LK, Kvalheim OM, Cech NB (2018) Hierarchical cluster analysis of
technical replicates to identify interferents in untargeted mass spectrom-
etry metabolomics. Anal Chim Acta 1021:69–77. https://​doi.​org/​10.​1016/j.​
aca.​2018.​03.​013

	17.	 Rochat B, Mohamed R, Sottas P-E (2018) LC-HRMS metabolomics for
untargeted diagnostic screening in clinical laboratories: a feasibility study.
Metabolites. https://​doi.​org/​10.​3390/​metab​o8020​039

	18.	 Kalogiouri NP, Aalizadeh R, Dasenaki ME, Thomaidis NS (2020) Application
of high resolution mass spectrometric methods coupled with chemomet-
ric techniques in olive oil authenticity studies—a review. Anal Chim Acta
1134:150–173. https://​doi.​org/​10.​1016/j.​aca.​2020.​07.​029

	19.	 Matsuda K, Aoyagi S (2020) Time-of-flight secondary ion mass spectrom-
etry analysis of hair samples using unsupervised artificial neural network.
Biointerphases 15(2):021013. https://​doi.​org/​10.​1116/6.​00000​44

	20.	 Samanipour S, Kaserzon S, Vijayasarathy S, Jiang H, Choi P, Reid MJ, Mueller
JF, Thomas KV (2019) Machine learning combined with non-targeted
Lc-Hrms analysis for a risk warning system of chemical hazards in drinking
water: a proof of concept. Talanta 195:426–432. https://​doi.​org/​10.​1016/j.​
talan​ta.​2018.​11.​039

	21.	 Streun GL, Steuer AE, Ebert LC, Dobay A, Kraemer T (2021) Interpretable
machine learning model to detect chemically adulterated urine samples
analyzed by high resolution mass spectrometry. Clin Chem Lab Med
59(8):1392–1399. https://​doi.​org/​10.​1515/​cclm-​2021-​0010

	22.	 Ishitsuka K, Kakiuchi T, Sato H, Fouquet TNJ (2020) An arsenal of tools based
on kendrick mass defects to process congested electrospray ionization
high-resolution mass spectra of polymers with multiple charging. Rapid
Commun Mass Spectrom. https://​doi.​org/​10.​1002/​rcm.​8584

	23.	 Hughey CA, Hendrickson CL, Rodgers RP, Marshall AG, Qian K (2001)
Kendrick mass defect spectrum: a compact visual analysis for ultrahigh-
resolution broadband mass spectra. Anal Chem 73(19):4676–4681. https://​
doi.​org/​10.​1021/​ac010​560w

	24.	 Fouquet TNJ (2019) The kendrick analysis for polymer mass spectrometry. J
Mass Spectrom 54(12):933–947. https://​doi.​org/​10.​1002/​jms.​4480

	25.	 Sleno L (2012) The use of mass defect in modern mass spectrometry. J
Mass Spectrom 47(2):226–236. https://​doi.​org/​10.​1002/​jms.​2953

	26.	 Kune C, McCann A, Raphaël LR, Arias AA, Tiquet M, Van Kruining D, Martinez
PM, Ongena M, Eppe G, Quinton L, Far J, De Pauw E (2019) Rapid visualiza-
tion of chemically related compounds using kendrick mass defect as a filter
in mass spectrometry imaging. Anal Chem 91(20):13112–13118. https://​
doi.​org/​10.​1021/​acs.​analc​hem.​9b033​33

	27.	 Loos M, Singer H (2017) Nontargeted homologue series extraction from
hyphenated high resolution mass spectrometry data. J Cheminform
9(1):12. https://​doi.​org/​10.​1186/​s13321-​017-​0197-z

	28.	 Verkh Y, Rozman M, Petrovic M (2018) A non-targeted high-resolution mass
spectrometry data analysis of dissolved organic matter in wastewater treat-
ment. Chemosphere 200:397–404. https://​doi.​org/​10.​1016/j.​chemo​sphere.​
2018.​02.​095

	29.	 Bugsel B, Zwiener C (2020) LC-MS screening of poly- and perfluoroalkyl
substances in contaminated soil by kendrick mass analysis. Anal Bioanal
Chem 412(20):4797–4805. https://​doi.​org/​10.​1007/​s00216-​019-​02358-0

	30.	 Letourneau DR, Volmer DA (2022) Constellation: an open-source web
application for unsupervised systematic trend detection in high-resolution

mass spectrometry data. J Am Soc Mass Spectrom. https://​doi.​org/​10.​1021/​
jasms.​1c003​71

	31.	 Letourneau, D. Constellation. https://​const​ellat​ion.​chemie.​hu-​berlin.​de/.
Accessed 30 June 2022

	32.	 Plotly Technologies, Inc Plotly: Collaborative data science. https://​plot.​ly.
Accessed 15 Oct 2022

	33.	 Solem, A. Celery—distributed task queue. https://​docs.​celer​yproj​ect.​org/​
en/​stable/​index.​html. Accessed 22 Oct 2022

	34.	 Dane letourneau/constellation GitLab. https://​scm.​cms.​hu-​berlin.​de/​letou​
rnd/​const​ellat​ion. Accessed 24 june 2022

	35.	 Long Callbacks | Dash for Python Documentation | Plotly. https://​dash.​plotly.​
com/​long-​callb​acks (accessed 2022–06–24).

	36.	 Welcome to Flas —flask documentation (2.1.x). https://​flask.​palle​tspro​jects.​
com/​en/2.​1.​x/.Accessed 24 June 2022

	37.	 Store|Dash for python documentation|Plotly. https://​dash.​plotly.​com/​dash-​
core-​compo​nents/​store. Accessed 28 Oct 2022

	38.	 Pasanen, N. Dash-Uploader, 2022. https://​github.​com/​np-8/​dash-​uploa​der
Accessed 28 Oct 2022

	39.	 Pandas—python data analysis library. https://​pandas.​pydata.​org/. Accessed
28 Oct 2022

	40.	 NumPy. https://​numpy.​org/. Accessed 19 Nov 2022
	41.	 Flower—celery monitoring tool—flower 1.0.1 documentation. https://​

flower.​readt​hedocs.​io/​en/​latest/. Accessed 19 Nov 2022
	42.	 Ludwig M, Nothias L-F, Dührkop K, Koester I, Fleischauer M, Hoffmann MA,

Petras D, Vargas F, Morsy M, Aluwihare L, Dorrestein PC, Böcker S (2019)
Database-independent molecular formula annotation using gibbs sam-
pling reveals unknown small molecules. biorxiv. https://​doi.​org/​10.​1101/​
842740

	43.	 Pellegrin V (1983) Molecular formulas of organic-compounds - the nitrogen
rule and degree of unsaturation. J Chem Edu 60(8):626

	44.	 Soffer MD (1958) The molecular formula generalized in terms of cyclic
elements of structure. Science 127(3303):880–880. https://​doi.​org/​10.​1126/​
scien​ce.​127.​3303.​880

	45.	 Senior JK (1951) Partitions and their representative graphs. Am J Math
73(3):663–689

	46.	 Morikawa T, Newbold B (2003) Analogous odd-even parities in mathemat-
ics and chemistry. Chemistry 12(6):445

	47.	 Kind T, Fiehn O (2007) Seven golden rules for heuristic filtering of molecular
formulas obtained by accurate mass spectrometry. BMC Bioinform 8(1):105.
https://​doi.​org/​10.​1186/​1471-​2105-8-​105

	48.	 Lobodin VV, Marshall AG, Hsu CS (2012) Compositional space boundaries
for organic compounds. Anal Chem 84(7):3410–3416. https://​doi.​org/​10.​
1021/​ac300​244f

	49.	 Welcome to MassIVE. https://​massi​ve.​ucsd.​edu/​Prote​oSAFe/​static/​massi​ve.​
jsp. Accessed 20 June 2022

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://github.com/wkew/FTMSVisualization
https://doi.org/10.5281/zenodo.4641553
https://doi.org/10.1371/journal.pcbi.1007654
https://doi.org/10.1016/j.aca.2018.05.038
https://doi.org/10.1016/j.aca.2018.05.038
https://doi.org/10.1021/ac200654j
https://doi.org/10.3390/metabo10090348
https://doi.org/10.1016/j.aca.2018.03.013
https://doi.org/10.1016/j.aca.2018.03.013
https://doi.org/10.3390/metabo8020039
https://doi.org/10.1016/j.aca.2020.07.029
https://doi.org/10.1116/6.0000044
https://doi.org/10.1016/j.talanta.2018.11.039
https://doi.org/10.1016/j.talanta.2018.11.039
https://doi.org/10.1515/cclm-2021-0010
https://doi.org/10.1002/rcm.8584
https://doi.org/10.1021/ac010560w
https://doi.org/10.1021/ac010560w
https://doi.org/10.1002/jms.4480
https://doi.org/10.1002/jms.2953
https://doi.org/10.1021/acs.analchem.9b03333
https://doi.org/10.1021/acs.analchem.9b03333
https://doi.org/10.1186/s13321-017-0197-z
https://doi.org/10.1016/j.chemosphere.2018.02.095
https://doi.org/10.1016/j.chemosphere.2018.02.095
https://doi.org/10.1007/s00216-019-02358-0
https://doi.org/10.1021/jasms.1c00371
https://doi.org/10.1021/jasms.1c00371
https://constellation.chemie.hu-berlin.de/
https://plot.ly
https://docs.celeryproject.org/en/stable/index.html
https://docs.celeryproject.org/en/stable/index.html
https://scm.cms.hu-berlin.de/letournd/constellation
https://scm.cms.hu-berlin.de/letournd/constellation
https://dash.plotly.com/long-callbacks
https://dash.plotly.com/long-callbacks
https://flask.palletsprojects.com/en/2.1.x/
https://flask.palletsprojects.com/en/2.1.x/
https://dash.plotly.com/dash-core-components/store
https://dash.plotly.com/dash-core-components/store
https://github.com/np-8/dash-uploader
https://pandas.pydata.org/
https://numpy.org/
https://flower.readthedocs.io/en/latest/
https://flower.readthedocs.io/en/latest/
https://doi.org/10.1101/842740
https://doi.org/10.1101/842740
https://doi.org/10.1126/science.127.3303.880
https://doi.org/10.1126/science.127.3303.880
https://doi.org/10.1186/1471-2105-8-105
https://doi.org/10.1021/ac300244f
https://doi.org/10.1021/ac300244f
https://massive.ucsd.edu/ProteoSAFe/static/massive.jsp
https://massive.ucsd.edu/ProteoSAFe/static/massive.jsp

	New algorithms demonstrate untargeted detection of chemically meaningful changing units and formula assignment for HRMS data of polymeric mixtures in the open-source constellation web application
	Abstract
	Introduction
	Implementation
	Constellation program structure
	Increasing file-size limitations when uploading and generating data
	Integration of molecular formula finding algorithm from corems
	Development and integration of new unitbase finding algorithms

	Results and discussion
	Molecular formula finding algorithm

	New algorithms for generating mass defect unitsbases
	Overview
	Library generation
	Formula selection
	Algorithm selection and data filtering
	Algorithm I – local search
	Algorithm II – global search
	Algorithm parameters
	Evaluation of algorithms
	Scaling of algorithms

	Conclusions
	Availability and requirements
	Acknowledgements
	References

