
Letourneau et al. Journal of Cheminformatics            (2023) 15:7  
https://doi.org/10.1186/s13321-023-00680-5

RESEARCH

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Open Access

Journal of Cheminformatics

New algorithms demonstrate untargeted 
detection of chemically meaningful changing 
units and formula assignment for HRMS data 
of polymeric mixtures in the open‑source 
constellation web application
Dane R. Letourneau, Dennis D. August and Dietrich A. Volmer* 

Abstract 

The field of high-resolution mass spectrometry (HRMS) and ancillary hyphenated techniques comprise a rapidly 
expanding and evolving area. As popularity of HRMS instruments grows, there is a concurrent need for tools and 
solutions to simplify and automate the processing of the large and complex datasets that result from these analyses. 
Constellation is one such of these tools, developed by our group over the last two years to perform unsupervised 
trend detection for repeating, polymeric units in HRMS data of complex mixtures such as natural organic matter, oil, or 
lignin. In this work, we develop two new unsupervised algorithms for finding chemically-meaningful changing units 
in HRMS data, and incorporate a molecular-formula-finding algorithm from the open-source CoreMS software pack-
age, both demonstrated here in the Constellation software environment. These algorithms are evaluated on a col-
lection of open-source HRMS datasets containing polymeric analytes (PEG 400 and NIST standard reference material 
1950, both metabolites in human plasma, as well as a swab extract containing polymers), and are able to successfully 
identify all known changing units in the data, including assigning the correct formulas. Through these new develop-
ments, we are excited to add to a growing body of open-source software specialized in extracting useful information 
from complex datasets without the high costs, technical knowledge, and processor-demand typically associated with 
such tools.
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Introduction
The last decade has seen the development of a plethora 
of creative and innovative open-source software tools 
for the analysis of mass spectrometry (MS) data [1, 2] 
Many of these tools serve to replace and/or augment data 

processing functions from proprietary instrument-man-
ufacturer software packages, while others offer entirely 
new algorithms and automation techniques for tasks 
such as peak detection and calibration [3] assignment of 
molecular formulae [4, 5] unsupervised peak learning in 
mass spectrometry imaging data [6] comparison of tan-
dem mass spectra [7] detection of repeating mass spec-
tral features [8] statistical and multivariate analyses [9] 
in addition to a wide range of visualization, graphic and 
plotting tools [10, 12] Many of these algorithms and tools 
have been released as open-source software on platforms 
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such as GitHub, bypassing both the high costs and limita-
tions of proprietary, commercial software packages, such 
as those bundled with many mass spectrometers. In addi-
tion, users are free to modify, expand upon, and improve 
these tools, leading to potentially very exciting work in 
collaborative and interdisciplinary spaces.

High-resolution mass spectrometry (HRMS), in par-
ticular, allows for the probing of many features and 
parameters in a single experiment, while also generat-
ing increasingly complex and detailed datasets which 
can often require great time and effort by the researcher 
to extract the desired information [13, 14] With this in 
mind, algorithms for unsupervised mining of HRMS data 
have become increasingly important to obtain impor-
tant information in reasonable timeframes, especially 
as HRMS continues to become a more affordable and 
accessible technique to researchers in a diversity of fields. 
Unsupervised MS data-mining techniques have been 
especially important in metabolomics fields [15–17] but 
have also been used to uncover hidden structures in mass 
spectrometry imaging (MSI) data [6] predict the struc-
tural similarity between two chemical structures based 
on their MS/MS fragmentation spectra [7] and investi-
gate the authenticity of olive oil in combination with che-
mometric techniques [18] Machine learning algorithms 
have also been very useful in these types of analyses, 
assisting in the interpretation of complicated TOF–SIMS 
data of human hair [19] the creation of a risk warning 
system of chemical hazards in drinking water [20], and 
the detection of chemically adulterated urine. [21]

When performing high-resolution mass spectrometry 
on complex, heterogeneous samples such as those con-
taining large, polymeric species (e.g, natural organic mat-
ter, oil samples, lignin), there are often patterns within 
the resulting spectra corresponding to the gain or loss 
of the repeating polymer unit. These patterns can be 
made more obvious visually by transforming the spectra 
into the mass defect space [22] In brief, although it has 
been covered extensively in many other publications [14, 
23–26] the Kendrick mass defect is a data transforma-
tion where accurate m/z values are rescaled according to 
a known repeating “unit” in the dataset, and then plot-
ted against the fractional mass (accurate subtracted from 
nominal mass) to produce a characteristic mass defect 
plot. In this “mass defect space”, compounds with identi-
cal mass defect can form horizontal series, representing 
the loss or gain of the repeating “unit” of transformation. 
In complex spectra containing multiple polymeric ana-
lytes, the patterns which can result from this transforma-
tion and re-plotting can be very complex, and the plot 
generated from transformation by just one “base” unit 
can contain horizontal trends based on many different 
changing units.

Needless to say, the manual labor involved in tracing 
these mass defect patterns and extracting the desired 
information can be difficult, especially in a spectrum 
containing thousands to hundreds of thousands of 
peaks. Several automated detection techniques have 
been proposed. Loos and Singer developed a non-tar-
geted algorithm to perform homologue series extrac-
tion from LC-HRMS data [27] The algorithm was 
evaluated on ten effluent samples from Swiss sewage 
treatment plants, and was able to identify series of 
known homologues, as well as numerous nontargeted 
peak series. Verkh et al. developed custom scripts, writ-
ten in R, to observe DBE-O, mass and intensity shifts 
in LC-HRMS spectral features [28] This included the 
identification of CH2 and C2H2O series in KMD-trans-
formed data. Bugsel and Zwiener created a MatLab 
script to automatically detect poly- and perfluoroalkyl 
substances in LC-HRMS spectra of contaminated soil 
samples, successfully identifying CF2, CF2O, and C2F4O 
repeating units [29] Along similar lines, our group has 
developed Constellation, an open-source web appli-
cation which can perform unsupervised detection of 
linked series in mass-defect transformed HRMS data 
[30] The initial version of the software offered a vari-
ety of innovative tools for manipulating HRMS data in 
the mass defect space, as well as an unsupervised trend 
finding algorithm which was able find linked series in 
the mass defect space.

Constellation has been in continual development 
since its initial publication and release, with a particular 
focus on incorporating more options to directly assign 
chemical meaning (i.e., molecular formula information) 
to both raw MS signals and polymeric changing units. 
Initially, the software did not offer any built-in molec-
ular formula finding capabilities; here, an algorithm 
incorporated from the open-source CoreMS software 
package [11] allows users to assign formula information 
for ions in the HRMS dataset. Following from this, two 
newly designed “unit/base finding” algorithms assign 
formula information for any changing units discovered 
in the dataset. These algorithms are then successfully 
evaluated on a collection of open-source HRMS data-
sets containing polymeric analytes (PEG 400 and NIST 
standard reference material 1950, both metabolites 
in human plasma, as well as a swab extract contain-
ing polymers) [8] and are able to successfully identify 
all known changing units in the data, including assign-
ing the correct molecular formulas. All algorithms are 
demonstrated and evaluated within the open-source 
Constellation software environment, accessible easily 
via any web browser [31] Fig.  1 displays a screenshot 
of the current Constellation interface as of the time of 
publication.
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Implementation
Constellation program structure
Constellation consists of two parts: A web interface, 
based on the open-source Dash architecture (Plotly Inc.) 
[32] enables users to upload a raw HRMS data file, manip-
ulate their data within the mass defect space using the 
built-in graph, and send requests to our back-end server 
for data processing tasks such as unit/base finding, unsu-
pervised trend detection or formula finding routines. The 

back-end server cluster, located at Humboldt University 
Berlin, receives these requests via the Celery distributed 
task queue [33] performs the computationally-intensive 
processing (so the end user’s computer is not responsi-
ble for the workload), and sends the results back to the 
web interface. To enable these functionalities, Constella-
tion has a large number of dependencies, viewable in sev-
eral requirements files stored in the Constellation GitLab 
repository [34].

Fig. 1  Constellation web-application interface (as of the time of publication). Shown is the plasma-spiked PEG dataset from da Silva et al. [8] loaded 
into the application, displayed in mass-defect mode in the Graph area
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Both the front- and back-end components of the soft-
ware are designed to be run as system services on dedi-
cated servers and require the simultaneous operation of 
two instances of Celery and one instance of Redis, also 
running as system services. The first instance of Celery, 
here called “frontcelery”, runs on the web server hosting 
the front-end web interface, and functions to store infor-
mation via Redis when making requests to tasks run-
ning on the back-end server via a second Celery instance 
called “backcelery”. This is necessary, as Dash applica-
tions are structured around several “callbacks” which 
take in information from the web application interface, 
process it, and return some sort of output [32] Callbacks 
are based on HTTP requests and will therefore likely 
timeout if a callback takes too long to complete. As we 
have several callbacks making requests to the back-end 
task architecture (which, depending on the task, can take 
minutes to even hours to complete), we used a newer 
Dash feature called “Long Callbacks” [35] which relies 
on Celery and Redis to enable longer timeouts in certain 
situations. This is the primary function of “frontcelery”, in 
addition to some small maintenance tasks performed by 
a scheduled queue called “celerybeatfront”.

“backcelery”, on the other hand, is an instance of Cel-
ery functioning to manage the computationally demand-
ing tasks we have written in “serverapp.py”, which runs 
on a dedicated server at Humboldt University Berlin. 
Requests are received via HTTP from the front-end web 
application via the built-in routing features in Flask [36]. 
The routing functions on the back-end server then col-
lect the incoming data (in JSON format) and call the rel-
evant Celery task asynchronously, before sending back a 
task ID to the front-end so the user can receive progress 
and task update information. It should be noted that we 
have designed two types of tasks here: “grouped” and 
“individual”. Individual tasks contain all the code needed 
to process incoming information within one Celery task, 
and send back updates via the self.update_state () func-
tion. Grouped tasks, on the other hand, attempt to dis-
tribute processor load for certain functions by splitting 
up the data and sending pieces to potentially hundreds 
to thousands of individual sub-tasks. These are slightly 
more complicated to monitor, and instead of receiv-
ing text-based updates from each sub-task, we simply 
count how many of these sub-tasks have been marked 
as completed and report this number to the front-end. 
In addition, upon completion, the code in the front-end 
callback has to re-assemble the information coming back 
from all grouped sub-tasks and evaluate if all informa-
tion is present before proceeding to the next step. Finally, 
like “frontcelery”, “backcelery” also performs some 
small scheduled maintenance tasks via a queue called 
“celerybeatback”.

A note on data security: Constellation ensures sensitive 
user data is never compromised by implementing secure 
HTTP connections (HTTPS) to both the web interface 
and the remote data processing server. Data uploaded 
to (or generated by) Constellation is stored temporarily 
on our server until the user is finished their session, after 
which the data are deleted. An anonymous ID, randomly 
generated for each user (or each browser tab or win-
dow that a user opens), is the only information retained 
by Constellation, and only as a way of tracking software 
usage.

Increasing file‑size limitations when uploading 
and generating data
The original version of Constellation [30] limited raw MS 
file uploads to a maximum of 5000 data points (~ 200 kb 
of information). This was due to the use of data structures 
(in particular, the Dash core component “Store” [37]) 
which relied on the end user’s web browser to store both 
uploaded MS data and data generated by the software 
itself (i.e., returning series information from trend find-
ing). Given that typical HRMS datasets are quite large, 
this was a high priority area for further development and 
improvement. Since the software was published, the file 
upload components in the front-end “webapp” have been 
upgraded to the open-source Dash Uploader [38] and the 
back-end “serverapp” has been migrated to a dedicated 
rack server run by our group and located in the Institute 
of Chemistry at Humboldt University Berlin (funded by 
the Berlin University Alliance BUA 501_LinkLab grant). 
This finally allowed for the increase of file-size limita-
tions to 10 mb for both raw MS file uploads and for the 
storage of larger datasets resulting from trend-finding 
and formula-finding activities, via secure temporary files 
saved directly to our servers. This represents a significant 
improvement in the abilities of the Constellation web 
application so far, with even less demand placed on the 
end user’s computer or Internet browser.

Integration of molecular formula finding algorithm 
from corems
The molecular formula finding function from CoreMS 
[11] was integrated according to the package’s documen-
tation. This required setting up a Docker container run-
ning as a system service to give the function access to an 
SQL database of potential molecular formulas. A Celery 
task called “formulafinder” was created in the back-end 
“serverapp” which first sets CoreMS molecular search 
settings according to user input parameters (or a set of 
defaults if they have not been modified), creates a “mass 
spectrum object”, and then calls the SearchMolecular-
Formulas class to perform the database search. A simple 
interface was built and added to Constellation, allowing 
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users to adjust settings and to monitor the formula-find-
ing calculations, as well as save the results as a.csv file to 
their computer.

Development and integration of new unit/base finding 
algorithms
All algorithms developed for Constellation in this work 
are scripts written in Python and utilize several common 
Python packages such as Pandas [39] and Numpy [40] for 
data structuring and comparison. Scripts were debugged 
first by running through the Python interpreter (ver-
sion 3.6) locally, and then migrated to our test (“beta”) 
high-powered data processing server via a development 
branch in our Git repository for debugging within our 
task management framework, controlled by the open-
source Celery distributed task queue [33] Celery allows 
us to manage distribution of task workload across our 
server’s 112 CPU cores, while also allowing for sepa-
ration of task queues for each user if there are multiple 
users operating the software simultaneously. We also use 
Flower, a “web based tool for monitoring and adminis-
trating Celery clusters” [41] to check for any exceptions 
or errors encountered in Celery tasks. The entirety of the 
new unit/base finder algorithms, including loading of 
formulas and evaluation of units within the raw HRMS 
dataset, takes place in a single Celery task called “unit-
basefinder”. We attempted, at first, to split up the work-
load among multiple tasks in a Celery structure called a 
“group”, however it was unsuccessful due to the size of the 
data being loaded into each task. With some optimiza-
tion, however, this task-splitting may be possible in the 
future and enable significant speed improvements for the 
unit/base finding task.

To be considered ready for production, the Celery 
task running the algorithms had to run free of errors or 
exceptions, deliver updates on calculation progress to the 
front-end “webapp” at regular intervals and shut down 
cleanly both in the case of an early shut-down event ini-
tiated by the user or in the usual case of the task com-
pleting and returning results. Once the algorithms had 
been sufficiently debugged on the testing (“beta”) server, 
they were pushed to our production (“alpha”) server 
in the master branch of our GitLab repository [34] The 
“alpha” and “beta” servers are clones of each other and we 
observed a successful deployment to the “alpha” server 
after testing on the “beta” server at every stage of devel-
opment. It should be noted that every new feature added 
to Constellation in this work (e.g., increasing file-size 
limitations, integration of the CoreMS molecular formula 
search) and any future developments will follow this 
same path from development to production, so that the 

Git master branch in the repository will always reflect the 
current production version of Constellation.

Results and discussion
Molecular formula finding algorithm
Constellation originally allowed users to upload an out-
put file from the FormulaAssignment script, part of the 
Python-based FTMS Visualization software package 
[10]. This data layer was matched with a user-uploaded 
raw HRMS dataset, so that in Constellation’s graphing 
interface, points that were hovered over or selected 
would display a molecular formula annotation (if avail-
able). However, there was a desire to incorporate a for-
mula assignment routine directly into the Constellation 
interface. Since the publication of FTMS Visualization, 
there have been a number of other significant software 
packages developed which offer improved formula find-
ing capabilities as well as various other features for pro-
cessing and manipulating HRMS data.4, In view of this, 
and wanting to work with a software package in active 
development, we chose to use CoreMS, [5], 9, 11, 12, 
42a new set of HRMS data tools from Pacific Northwest 
National Laboratories in Richland, WA, USA.

CoreMS aims to be a “comprehensive mass spectrom-
etry framework for software development and data 
analysis of small molecules analysis,” [11] and offers 
an impressive selection of tools for loading raw HRMS 
data from proprietary vendor formats, signal process-
ing for FT-MS (apodization, zero-filling, etc.), baseline 
subtraction and smoothing, recalibration routines, and 
of interest to us, molecular formulae search and assign-
ment routines. These functions are all easily accessible 
through the usual methods of installing and importing 
Python packages, with the exception that the molecular 
formula finding scripts require the user to set up and 
run a Docker-based SQL molecular formula database. 
In the case of Constellation, this had to be run as a sys-
tem-service on our high-performance server.

CoreMS was installed on our server and implemented in 
the Constellation GUI via a small graphical interface to give 
users access to these molecular formula-finding routines. 
If a valid raw HRMS dataset has been loaded into the pro-
gram, users can simply click “Start” to run the formula find-
ing routine on the remote data-processing server (assuming 
the default parameters are sufficient), wait for a result, and 
download the resulting.csv output file to their computer. In 
the case that they want to adjust any parameters from the 
defaults, a “Settings” window is available with all parameters 
from the CoreMS script mapped to input fields, enabling 
fine-tuning of errors, double-bond equivalents (DBE), iso-
topologue and minimum peaks filters, and elemental limits.



Page 6 of 13Letourneau et al. Journal of Cheminformatics            (2023) 15:7 

New algorithms for generating mass defect units/
bases
Overview
In our previous publication detailing an earlier version 
of Constellation [30] we have described how the unsu-
pervised Trend Finder algorithm at the heart of the 
software first generated a list of potential units/bases to 
test based on frequently occurring “gaps”, or distances 
between m/z values, in the raw HRMS dataset. Until 
now, this approach resulted in very large list of floating-
point numbers, with no chemical meaning necessar-
ily reflected in these patterns. As both a way to narrow 
this list down (saving a significant amount of time in the 
unsupervised trend search), and to offer a starting point 
for the interpretation of the trend finding results, we have 
developed two new unit/base finding algorithms which 
search for only chemically meaningful repetition patterns 
in the dataset; that is, only units of change which can be 
assigned a reasonable chemical formula.

These algorithms can operate in either “untargeted” 
mode (where all settings are either optimized by Constel-
lation based on the input MS dataset or set to “reason-
able” defaults based on the datasets we used in testing 
the software), or “targeted” mode (where the user can 
fully customize all settings). They function by loading 
a pre-generated formula library, from which potential 
units/bases are selected according to parameters includ-
ing elemental limits and minimum/maximum size lim-
its. The raw MS dataset is then searched to see if any of 
these potential units/bases are present, and if so, at what 
frequency they repeat. The resulting list of units/bases is 

then either directly sent to the Trend Finder algorithm (in 
“untargeted” mode) or displayed in a selection box for the 
user to curate as they like before trend finding (in “tar-
geted” mode). Figure 2 displays the workflow when using 
Constellation with the new unit/base finding algorithms.

Library generation
The new unit/base finding algorithms require a library of 
potential starting formulas, generated by a loop iteration 
through the elements C, H, S, O, N, P, F, Cl, Br, Si and 
X according to elemental limits. We introduce X to rep-
resent a connecting point from the changing polymeric 
unit to the molecular scaffold. All elements in the itera-
tion are labeled with their valence ν, which is needed for 
the evaluation of the molecular formula according to the 
double-bond equivalent (DBE) [43, 44] The DBE relies 
on chemical rules and can be applied as a constraint to 
evaluate elemental compositions [43] – as an example, 
the Lewis and Senior rules can be used as another chemi-
cal based validation approach [45–47]. If a non-integer or 
negative DBE value is obtained, the initial molecular for-
mula for the potential unit/base was incorrect [43]. The 
DBE is calculated as

in which Ei is the number of atoms of the element i. [43] 
However, Eq.  (1) has some drawbacks in our iteration 
approach since it would accept unreasonable structures 
like NX, which are generated in our systematic itera-
tion. Therefore, we derived Eq.  (2) for the validation of 

(1)DBE =
1

2

∑

[Ei(νi − 2)] + 1

Fig. 2  Workflow chart for unit/base finding processes in Constellation
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our formulas, which also relies on fundamental valence 
principles and can be seen as a related but restricted 
approach for the DBE calculation.

with χ defined as

Some elements such as sulfur and phosphorus can have 
different valence states in organic compounds, hence differ-
ent valence combinations must be considered. Therefore, 
each valence state of an element is independently included 
in the iteration. Our expression for the DBE calculation in 
conjunction with the pre-defined valency includes molecu-
lar formulae which comprise multiple elements at higher 
valence states as well as mixed combinations of valence 
states. These molecular formulae might be excluded if only 
normal valences are considered due to negative DBE val-
ues. Table 1 lists the valence states and compositional limits 
used for library generation.

Formula selection
The unit/base finding process begins with the selection 
of potential formulae from the main library. Our gener-
ated library covers millions of molecular formulae, and it 
is therefore ineffective to apply the whole library in our 
search algorithm due to high computing time and the pos-
sibility of false assignments. Hence, the potential formulae 
are screened according to elemental limits, the maximum 
DBE rule [48], elemental ratios [47] (0.3 ≤ H/C ≤ 4.0, 
0 ≤ N/C ≤ 1.3, 0 ≤ O/C ≤ 1.2, 0 ≤ P/C ≤ 0.3, 0 ≤ S/C ≤ 0.8, 
0 ≤ F/C ≤ 1.5, 0 ≤ Cl/C ≤ 0.8, 0 ≤ Br/C ≤ 0.8, 0 ≤ Si/C ≤ 0.5) 
and the mass limits mUnit (14 ≤ m ≤ 200  Da). All of these 
parameters and conditions can be changed/disabled by the 
user in “targeted” mode or left to their defaults in “untar-
geted” mode. The final evaluated list of formulae is then 
saved and sent to the unit/base finding algorithms.

Algorithm selection and data filtering
After selecting potential formulae, we have to choose 
which of the two different unit/base finding algorithms 
to use, since the calculation time scales differently with 
the size of the data and unit/base set for each algorithm. 

(2)

1

2

∑

Ei,ν≥2νi −
1

2

∑

Ei,ν=1 − χ(
∑

Ei,ν≥2 + DBE− 1) = 0

(3)χ =

{

1,
∑

Ei,ν≥2 > 1

0,
∑

Ei,ν≥2 = 1

In “untargeted” mode, algorithm II is chosen as a default 
based on better performance for large formula libraries and 
input MS datasets (described in the “Scaling of algorithms” 
section below). However, this is not the only factor to con-
sider when choosing, as each algorithm can have advan-
tages and disadvantages in certain circumstances, as will be 
discussed in the following sections. Therefore, in “targeted 
mode”, the user can choose which algorithm is employed, 
or test both individually. It is important to note that in 
some cases and with certain custom settings, this may dra-
matically increase analysis time.

This can be mitigated, if desired, by employing Constella-
tion’s built-in Data Filter, which gives the user two options 
to reduce the size of their dataset. The “Target data length” 
option filters by selecting the x number of most intense 
peaks in the raw MS dataset while excluding the rest. Set-
ting x to a value lower than the length of the uploaded raw 
MS dataset therefore removes less intense peaks to leave 
the user with a smaller dataset. The “Intensity threshold” 
option filters by removing all peaks below a specified mini-
mum intensity threshold i (in %). In this case, the intensities 
of all peaks are normalized to the highest-intensity peak 
and then normalized intensities smaller than i are removed. 
It should be noted that this filtering can end up excluding 
information from the raw MS dataset which may be impor-
tant to the user, so it must be used with discretion. It is rec-
ommended to try data filtering when evaluating the unit/
base and trend finding algorithms to shorten the analysis 
time, after which parameters can be adjusted accordingly, 
and the analysis re-attempted with the full-length dataset 
once there is some time to wait for a result.

Algorithm I – local search
The first unit/base finder algorithm (see the flowchart in 
Fig. 3) adds the accurate mass of each unit in our formula 
list to the m/z value of each data point in the raw HRMS 
data set to generate a new dataset, which is then compared 
to the original HRMS dataset (± selection error). If any 
points between the two datasets match, the successful unit 
and the corresponding sum of the accurate mass plus the 
unit are saved to our output list. The algorithm then takes 
each sum in this output list, adds the unit again to the sum 
and searches the initial HRMS data set for matches (± loop 
error). The last step is repeated in a loop, where for each 
successful iteration, we increase the repetition counter n by 
one until it is equal to the number of search steps m. The 

Table 1  Valence states and default compositional limits used for library generation

Element C H S O N P F Cl Br Si X

Valence (ν) 4 1 2, 4, 6 2 3 3, 5 1 1 1 4 1

Default limits 0–10 0–20 0–4 0–4 0–2 0–2 0–4 0–2 0–2 0–1 1–2
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parameter m can be chosen by the user and has a strong 
impact on the computational time and the length of the 
unit list, especially if high error ranges are defined. If m is 
reached, the unit is saved to be passed on to Trend Finder.

Each loop iteration represents the addition of another 
equivalent of the changing unit to a fixed accurate mass 
from the dataset. Therefore, the first algorithm identi-
fies repetitions of a changing unit in sequence (“locally”), 
which means the unit will have a high probability of yield-
ing a series in Trend Finder. This “local search” approach 
generates a small, curated list of units/bases and is best 
suited for highly complex datasets, reducing the number 
of potential units/bases compared to the “global search” 
approach of algorithm II. Therefore, for complicated 
datasets, algorithm I can strongly decrease the overall 
computing time when running Trend Finder in “untar-
geted” mode.

Algorithm II – global search
The second unit/base finder algorithm (see the flowchart 
in Fig. 4) calculates the distances between each data point 
in the HRMS dataset to gain a list of differences. This list 
is compared to the list of potential units in the formula 
library (± selection error). If there is a match, the cor-
responding unit is taken and multiplied by a repetition 
counter n, and then this value is compared again to the 
list of differences (± loop error). This step is repeated, 
and for each successful loop iteration n is increased by 
one until it is equal to the selected number of search 
steps m. If m is reached, the unit is saved to be passed 
on to Trend Finder. This approach compares all values 
in the list of differences to each unit in the library, and 

does not apply any restrictions on the local environment 
of a found pattern (i.e., a changing unit does not have to 
repeat in sequence) – therefore, the results correspond to 
a “global search” within the raw MS dataset.

The advantage of the second algorithm is a high sen-
sitivity for patterns which correspond to changing units 
showing minimal sequential (or “local”) repetition. 
Moreover, this approach shows better scaling when 
using larger libraries of potential starting formulas or 
larger raw MS datasets as compared to the local search 
approach in algorithm I (see “Scaling of algorithms” 
section below for a detailed breakdown of this scaling). 
Therefore, algorithm II is suitable for fast analysis of very 
large HRMS data sets. However, it does not consider if 
the found repetitions are related to each other (i.e., dis-
covered sequentially in the dataset), which may result in 
a lower probability of these units/bases returning series 
in Trend Finder. There are also usually more units/bases 
returned from this algorithm, potentially resulting in a 
longer analysis time when trend finding in “untargeted” 
mode.

Algorithm parameters
Both algorithms depend on numerous parameters, as 
can be seen in Figs. 3, 4. All parameters can be custom-
ized by the user in “targeted” mode or decided automati-
cally by Constellation in “untargeted” mode, without any 
pre-optimization or understanding of the algorithms. In 
“untargeted” mode, “reasonable” defaults are assumed for 
most parameters, which were optimized in development 
for five HRMS datasets containing polymeric species 
from various sources. In this mode, Constellation is also 

Fig. 3  Flowchart for Unit/Base Finder algorithm I
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able to make some automated parameter adjustments 
based on the input raw HRMS dataset – for example, the 
maximum size of a potential changing unit will be set to 
the largest m/z value in the dataset divided by the mini-
mum number of desired repetitions.

Evaluation of algorithms
To check that both new unit/base finding algorithms 
were functioning according to expectations, we tested 
them on multiple HRMS datasets of polymers with 
known repeating units. These datasets were obtained 
from the MassIVE database, a resource developed by 
the Center for Computational Mass Spectrometry at the 
University of California, San Diego, USA to “promote the 
global, free exchange of mass spectrometry data.” [49] 
The datasets correspond to a published study by da Silva 
et al., who developed a computational method for remov-
ing repeating mass spectral features [8] In the study, the 
authors applied their method to mass spectra of PEG 400 
and NIST standard reference material 1950 (metabo-
lites in human plasma) spiked with PEG 400, as well as 
a swab extract containing various polymers. Given that 
some of the repeating signals here are “knowns”, and the 
datasets from the study are publicly available, it offered 
an opportunity to evaluate whether our newly developed 
algorithms were able to detect these previously identified 
changing units. Both algorithms were tested in “untar-
geted” mode (where settings were chosen automatically 

by the software or set to “reasonable” defaults) and “tar-
geted” modes (where various settings were customized to 
help find the changing units of interest).

To start, we applied both algorithms to search for 
repeating units within the “contaminants” category, 
defined by da Silva et al. as containing PEG 400 (repeat-
ing unit of C2H4O), perfluorinated molecules (repeating 
unit of CF2) and PPG (repeating unit of C3H6O) [8] We 
were able to successfully find the PEG repeating unit in 
the “plasma sample spiked with a swab” dataset with both 
algorithms in “untargeted” mode. The CF2 unit was also 
found by both algorithms, but due to a weak local repeti-
tion, only the global search approach (algorithm II) was 
successful in “untargeted” mode, while the local search 
approach (algorithm I) was able to find the CF2 unit in 
“targeted” mode with optimized parameters. It should 
also be noted that the PPG unit was found by algorithm 
II in “untargeted” mode, despite the referenced study not 
finding any repetitions of this unit in the dataset [8] We 
also investigated the ability of our algorithms to search 
for the CH2, C2H4, C3H6 and C4H8 repeating units from 
the “composition” category defined by da Silva et  al. [8] 
We did not expect a highly defined local repetition pat-
tern for these units, therefore algorithm II was predicted 
to yield better results as compared to algorithm I. As 
expected, in “untargeted” mode we were able to find all 
known repeating units with algorithm II, while algorithm 
I only returned a partial list. However, in “targeted” mode 

Fig. 4  Flowchart for Unit/Base Finder algorithm II
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with some adjustment of parameters, we were able to 
find all units with both algorithms.

These evaluation steps showed that our algorithms 
were able to detect all previously identified changing 
units in these datasets, including an additional unit not 
originally identified in the referenced study. Given their 
ability to correctly find the expected values, we expect 
the algorithms will function in a similar manner to detect 
new, unknown changing units in untargeted analyses, 
and hopefully provide added value to the analyst when 
looking through complex HRMS datasets for repeat-
ing patterns in an automated, unsupervised fashion. In 
“untargeted” mode, where parameters are automatically 
chosen or set to defaults by Constellation, algorithm II 
was consistently able to identify all the expected chang-
ing units in our evaluation, so we chose it as the default 
algorithm in this mode. Algorithm II is also the default 
in “targeted” mode, although here the user can of course 
switch to algorithm I and adjust other parameters if 
desired. Figure 5 summarizes these evaluation results vis-
ually, including the comparison of “targeted” and “untar-
geted” modes with both algorithms.

Scaling of algorithms
The impact of the size of both the raw MS dataset and 
library of potential starting formulas on the performance 
of both algorithms was investigated. We took the pub-
licly available “plasma sample spiked with a swab” data-
set from da Silva et  al. [8] and filtered it multiple times 
to generate four new datasets containing the top 1000, 
2000, 3000, or 4000 peaks from the original dataset based 
on signal intensity. Multiple formula libraries were then 

generated with a library creation script (the same used 
to create the main library for the unit/base finding algo-
rithms, as described earlier). The parameters for for-
mula library generation were changed each time to give 
9 libraries varying in size from 127 to 951725 potential 
changing-unit formulae.

These libraries were then used in unit/base finding for 
each of the filtered datasets, with both algorithms and 
default settings for all parameters, while recording com-
puting time and number of found units. The results (dis-
played in Fig. 6) show that the performance for larger unit 
libraries and raw MS datasets was better for the global 
search approach (algorithm II), but for smaller datasets–
independent of the size of the used library – the local 
approach (algorithm I) demonstrated better performance. 
Moreover, algorithm I yielded a smaller list of units, as was 
expected given that algorithm II does not require units to 
repeat “locally” (in sequence). This trend was independ-
ent of the size of the chosen formula library. These results 
helped in setting reasonable defaults for unit/base finding 
tasks and should also help inform users as to what options 
may give the best performance for their dataset when cus-
tomizing parameters to their liking.

Conclusions
In this study, we introduced several new algorithms for 
assigning chemical meaning to both raw MS peaks and 
potential polymeric changing-units in HRMS datasets of 
complex samples, demonstrated here within the open-
source Constellation software environment. Firstly, a 
formula assignment interface gives users access to the 
molecular formula finding algorithm developed by 

Fig. 5  Evaluation results for both algorithms (targeted and untargeted modes) for the “plasma sample spiked with a swab” dataset from da Silva 
et al.,[8] filtered to 988 data points using the “Target data length” option in Constellation’s Data Filter. Each changing unit reported in the previous 
study (abscissa) is shown along with how many times it was detected in the dataset using the new unit/base finding algorithms developed here 
(ordinate)
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Dr. William Kew and Dr. Yuri Corilo as a part of their 
CoreMS package, running live on a server cluster at 
Humboldt University Berlin, which distributes the high-
intensity computational processing to a server rather 
than the user’s own computer. After running the algo-
rithm, the user can save the results to their computer, 
and/or view the formulas as a data layer in Constellation’s 
graphing area.

Secondly, two new algorithms for finding chemically 
meaningful mass defect units/bases for unsupervised 
trend detection in HRMS data were developed. After 
a library of potential units/bases with associated for-
mulas is generated (based on certain user-adjustable 
limits), it is passed on to one of two unit/base find-
ing algorithms, where each unit/base is evaluated in 

comparison with the raw HRMS dataset. Upon meet-
ing certain requirements, units/bases are saved to a 
final output list. If “untargeted” mode is selected, this 
unit/base list is directly passed to the trend finding part 
of the software. If “targeted” mode is chosen, a unit/
base selection box is displayed and populated, show-
ing both the accurate mass and associated formula for 
each unit/base, and allowing the user to select which 
units/bases they would like to use in the trend search 
to follow. Both approaches were evaluated on several 
open-source HRMS datasets, and between the two 
unit/base finding algorithms, all previously identified 
changing units in the data were successfully identified. 
Here, “untargeted” mode demonstrated its utility as a 
good “starting point” for this evaluation, after which 

Fig. 6  Algorithm scaling, a with different data set size, b with increasing length of the potential unit lists; both indicate a better performance for 
algorithm II. c Comparison between the number of units found by both algorithms with a constant unit list (127 entries) and increasing data set 
size, showing a smaller number of units for algorithm I due to consideration of local repetition, d 3D plot of calculation time in dependency of data 
set size and unit list length
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some customization in “targeted” mode was necessary 
to identify all the changing units in this analysis, due to 
the differing capabilities of algorithms I and II.

Finally, in migrating Constellation to our own servers 
and upgrading several interface components, we were able 
increase all file-size limitations to a maximum of 10 mb for 
both uploaded raw MS data and data generated from the 
formula finding or trend finding algorithms. This is a sig-
nificant upgrade which will make the Constellation software 
environment more useful and accessible to a larger variety of 
users, especially given the large size of typical HRMS data-
sets, and enable further opportunities to develop new HRMS 
data-processing tools by borrowing from the expanded data 
structures, algorithms, and graphical interfaces that we have 
developed here. In general, there remain several unexplored 
possibilities in the realm of unsupervised data analysis for 
high-resolution mass spectrometry. We hope that future 
developments in this area, such as integrating additional 
tools from the open-source CoreMS software into Constel-
lation (i.e., adding the ability to upload MS data in raw ven-
dor formats), can continue to demonstrate how collaborative 
work in the open-source space can lead to multi-faceted 
solutions for mass spectrometry data processing, independ-
ent from the use of expensive and proprietary instrument 
manufacturer software.

Availability and requirements
The open-source Constellation software described in this 
article can be accessed and used freely as a web applica-
tion (no software downloads required) at the following 
website: https://​const​ellat​ion.​chemie.​hu-​berlin.​de.

•	 Project name: Constellation
•	 Project home page: https://​scm.​cms.​hu-​berlin.​de/​

letou​rnd/​const​ellat​ion
•	 Operating system(s): Platform independent web 

application
•	 Programming language: Python
•	 Other requirements: None
•	 License: GNU General Public License
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