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Abstract 

The identification of drug/compound–target interactions (DTIs) constitutes the basis of drug discovery, for which 
computational predictive approaches have been developed. As a relatively new data-driven paradigm, proteoch-
emometric (PCM) modeling utilizes both protein and compound properties as a pair at the input level and processes 
them via statistical/machine learning. The representation of input samples (i.e., proteins and their ligands) in the form 
of quantitative feature vectors is crucial for the extraction of interaction-related properties during the artificial learning 
and subsequent prediction of DTIs. Lately, the representation learning approach, in which input samples are automat-
ically featurized via training and applying a machine/deep learning model, has been utilized in biomedical sciences. 
In this study, we performed a comprehensive investigation of different computational approaches/techniques for 
protein featurization (including both conventional approaches and the novel learned embeddings), data preparation 
and exploration, machine learning-based modeling, and performance evaluation with the aim of achieving better 
data representations and more successful learning in DTI prediction. For this, we first constructed realistic and chal-
lenging benchmark datasets on small, medium, and large scales to be used as reliable gold standards for specific DTI 
modeling tasks. We developed and applied a network analysis-based splitting strategy to divide datasets into struc-
turally different training and test folds. Using these datasets together with various featurization methods, we trained 
and tested DTI prediction models and evaluated their performance from different angles. Our main findings can 
be summarized under 3 items: (i) random splitting of datasets into train and test folds leads to near-complete data 
memorization and produce highly over-optimistic results, as a result, should be avoided, (ii) learned protein sequence 
embeddings work well in DTI prediction and offer high potential, despite interaction-related properties (e.g., struc-
tures) of proteins are unused during their self-supervised model training, and (iii) during the learning process, PCM 
models tend to rely heavily on compound features while partially ignoring protein features, primarily due to the inher-
ent bias in DTI data, indicating the requirement for new and unbiased datasets. We hope this study will aid researchers 
in designing robust and high-performing data-driven DTI prediction systems that have real-world translational value 
in drug discovery.
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Introduction
Drug discovery is a long-term and costly process that 
involves the identification of bioactive compounds as 
drug candidates via screening experiments. Although 
the advancements in high-throughput screening tech-
nology allow the scanning of thousands of compounds 
simultaneously, it is still not possible to fully analyze a 
certain portion of the target and compound spaces due 
to the excessive number of possible protein-compound 
combinations. This situation led to the emergence of 
computational approaches, such as the virtual screening 
(VS), for the in silico prediction of unknown drug–tar-
get interactions (DTIs) to aid screening experiments [1]. 
Conventional ligand-based (e.g., QSAR modelling) and 
structure-based (e.g., molecular docking) VS approaches 
aim to predict interactions between a set of com-
pounds and a predefined target protein. Ligand-based 
approaches mainly achieve this by utilizing molecular 
property-based compound similarities [2], while struc-
ture-based approaches employ 3-D structures of targets 
and compounds [3].

Until recently, most machine learning-based computa-
tional drug discovery studies approached the subject of 
predicting physical interactions between drug candidate 
compounds and target proteins from a (ligand-based) 
chemo-centric point of view, only utilizing compound 
attributes/properties. These studies ignore protein fea-
tures by treating target proteins just as labels for input 
compounds. As a rather novel approach in this area, 
proteochemometric (PCM) modelling aims to pre-
dict bioactivities by incorporating both compound and 
target features, usually via readily available molecular 
notation (e.g., SMILES) and amino acid sequence data, 
without requiring hard to obtain 3-D structures and 
dynamic information [4]. PCM can predict bioactivity 
relationships between large sets of compounds and tar-
gets under a single system using statistical/data-driven 
modeling techniques such as machine learning. This 
characteristic of PCM also allows the identification of 
off-target effects—a significant limitation of conventional 
VS approaches [4, 5], which is especially important for 
drug repurposing and side-effect identification. To con-
struct a machine learning-based PCM model, first, input 
compounds and target proteins are converted into quan-
titative feature vectors, so called “representations”, based 
on their molecular properties (i.e., descriptors). These 
vectors are then processed together with the magnitude 
of the bioactivity/interaction between these compounds 
and targets (i.e., labels), via machine learning algorithms, 
during the process of supervised model training [6]. For 
the automated artificial learning of DTIs to be successful, 
input feature vectors should comprise information about 
the interaction-related properties of compounds and 

targets. The better the input data is represented, the bet-
ter the model can learn and generalize the shared prop-
erties among the dataset. Therefore, featurization of the 
input samples is crucial to construct models with high 
predictive performance.

Various types of featurization approaches have been 
used for representing compounds and proteins. Due to 
the abundance of ligand-based DTI prediction methods, 
compound representations are extensively studied in the 
literature [7–9]. Therefore, this study focuses on protein 
representation techniques, which is a rapidly develop-
ing area lately. Sequence-based protein representations, 
which utilize amino acid sequences as input, are widely 
preferred in protein associated predictive tasks since 3-D 
structural information is not available for many proteins 
and/or proteoforms. Additionally, computational inten-
sity of protein structured-based models is usually high. 
Considering algorithmic approaches, sequence-based 
protein representations can be grouped as conventional/
classical descriptors (or descriptor sets) and learned 
embeddings. Conventional descriptors are mostly model-
driven, meaning that they are generated by applying pre-
defined rules and/or statistical calculations on sequences 
considering various molecular properties that include 
physicochemical [10–12], geometrical [13, 14] and top-
ological [12] characteristics of amino acids, as well as 
sequence composition [11, 15], semantic similarities [16], 
functional characteristics/properties [17–20], and evolu-
tionary relationships [13, 21] of proteins. Learned protein 
embeddings (a.k.a. representations) are constructed via 
data-driven approaches that project protein sequences 
into high-dimensional vector spaces in the form of con-
tinuous feature representations using machine/deep 
learning algorithms. These protein representation learn-
ing (PRL) methods usually borrow their data modeling 
concepts from the field of natural language processing 
(NLP), where amino acids in a sequence are treated like 
words in a sentence/document. Due to this reason, many 
PRL methods are also called “protein language models”. 
These models usually process raw protein sequences 
within unsupervised learning, without any prior knowl-
edge about their physical, chemical, or biological attrib-
utes [22]. Even though they are trained solely on the 
information about the arrangement of amino acids in the 
sequence, these models are still found to be successful 
in automatically extracting physicochemical properties 
[23] and functional characteristics of proteins [24]. PRL 
methods have a wide range of applications including the 
prediction of secondary structure [24–27], ligand–tar-
get protein interaction [28–30], splice junction predic-
tion [31], family classification [23], protein function [32], 
remote homology detection [27, 33], and protein engi-
neering/design [24, 27].
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For evaluating the effectiveness of different types 
of protein featurization in different areas of protein 
informatics, carefully designed benchmark studies are 
required. In contrary to studies that investigate com-
pound featurization, only a few works are available for 
benchmarking protein representations. These studies 
mostly focus on tasks such as protein family prediction 
[11], bioactivity modelling [34, 35], and predicting bio-
logical properties for protein (re)design [36]. Also, these 
studies mainly evaluate conventional descriptors rather 
than novel featurization approaches. As a result, there 
is an immediate requirement to evaluate cutting-edge 
protein language models, and comparing them against 
well-known conventional descriptors in the context of 
drug–target interactions for drug discovery/repurposing.

PCM modelling has shown promising results when 
compared to conventional approaches of DTI prediction 
[34, 35]; however, it is still far away from conquering this 
problem. One of the reasons behind this (apart from the 
topic of featurization) is that the mechanism of learn-
ing is not well-understood in PCM, unlike ligand-based 
modeling. In ligand-based methods, the model predicts 
new interactors for a target protein based on molecular 
similarities to its known ligands. In PCM, there are two 
factors, i.e., the compound features and the protein fea-
tures, and it is not clear to what degree similarities in-
between protein samples and in-between compound 
samples contribute to the artificial learning of their 
interactions, and whether there is bias in this process. 
Another problem associated with data-driven DTI pre-
diction is the reporting of overoptimistic performance 
results due to; (i) low coverage on compound and/or tar-
get spaces in training datasets, in terms of molecular and 
biological properties (i.e., limited variance), which pre-
vents models from gaining the ability to generalize, and 
(ii) poorly planned and applied train/test dataset prepara-
tion (e.g., splitting data randomly) and model evaluation 
strategies. Most of the self-proclaimed high performing 
DTI prediction models in the literature are not trans-
lated well into real-world cases due to these non-realistic 
assessments. Recently, there have been efforts in terms 
of applying different dataset splitting strategies including 
temporal splitting [37], non-overlapped sampling [9, 38], 
cluster-cross-validation [39], and scaffold-based splitting 
[40] to build robust models. Temporal splitting strategy 
only considers a time-dependent data point separation. 
In non-overlapped sampling strategy, three different set-
tings are applied: warm start (common drugs and tar-
gets are present in both the training and test sets), cold 
start for drugs (drugs in the training set are unseen in 
the test set while common proteins are shared in these 
sets), cold start for proteins (proteins in the training set 
are not involved in the test set, but common drugs are 

allowed to be present in both sets) [41]. This strategy 
only differentiates samples in terms of identity, and does 
not take similarities between compound and/or proteins 
into account. Although cluster-cross-validation and scaf-
fold-based splitting methods prevent the involvement 
of similar compounds in train and test sets, they do not 
take target protein similarities into consideration. These 
strategies are not sufficient for evaluating PCM-based 
DTI prediction models, in which there are three types of 
relationships to account for; (i) compound–target protein 
interactions, (ii) compound–compound similarities, and 
(iii) protein–protein similarities.

New computational approaches, evaluation strategies 
and datasets are required in order to address the afore-
mentioned issues in data-centric evaluation and predic-
tion of DTIs. With the aim of contributing to the field of 
data-driven bioactivity modelling for drug discovery and 
repurposing, here, we performed a rigorous benchmark-
ing study. One of the goals in this study is to identify fea-
ture types with better representation capabilities to be 
used in the automated prediction of DTIs. To achieve 
this, we built prediction models for various sequence-
based protein representations. We employed widely used 
conventional protein descriptors by selecting those that 
reflect different molecular aspects of proteins. We also 
utilized the state-of-the-art protein representation learn-
ing methods (i.e., protein language models). Another goal 
of this study is the preparation of new challenging bench-
mark datasets with high coverage on both compound and 
protein spaces, which can also be utilized in future stud-
ies. We carefully prepared small-, medium- and large-
scale datasets by applying extensive filtering operations 
and a network-based splitting strategy to acquire realistic 
and well-balanced datasets. To our knowledge, this data 
splitting strategy which considers 3 types of relationships 
(i.e., drug–target interactions, protein–protein similari-
ties, and compound-compound similarities), is proposed 
here for the first time. We used these datasets in our 
protein representation benchmarks. In this study, we 
also evaluated different forms of; (i) DTI modeling tech-
niques, (ii) preliminary and explanatory data exploration 
approaches, and (iii) model performance evaluation and 
comparison strategies.

The study is summarized in a schematic workflow 
in Fig. 1. Firstly, we prepared benchmark DTI predic-
tion datasets by applying filters specific to each data 
scale and explored them via different data visualiza-
tion techniques. We then split these datasets into train 
and test folds using different strategies to reflect the 
real-world data-centric challenges in drug discovery. 
For the construction of machine learning models, we 
implemented target feature-based and PCM model-
ling approaches, and trained/tested our models under 
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various conditions. All details regarding the construc-
tion of datasets, representations and DTI prediction 
models are provided in the “Methods” section. In the 
“Results and discussion” section, we evaluated the 
effectiveness of each protein featurization technique 
on different benchmarks and modeling approaches, 
and discussed their strengths and weaknesses in com-
parison to each other. We shared our datasets, results 
and source code in a re-usable form under the “Prot-
BENCH” platform at https://​github.​com/​HUBio​DataL​
ab/​ProtB​ENCH.

As the first comprehensive benchmark study includ-
ing both conventional and novel protein representa-
tion methods in the context of drug discovery and 
repurposing, we hope this work will aid researchers in 
choosing suitable approaches and techniques accord-
ing to their specific modeling tasks. Furthermore, our 
newly constructed challenging benchmark datasets 
can be used as reliable, reference/gold-standard data-
sets in further studies to design robust DTI prediction 
models with real-world translational value.

Results and discussion
In this section, we evaluate and discuss the results of our 
benchmark experiments. For this, we first carried out a 
data exploration analysis. Next, we trained DTI predic-
tion models under different settings and measured their 
performance. At each subsection, we discussed our find-
ings from various aspects to address shortcomings in bio-
activity modelling studies.

Here, we employed random forest (RF) as our main 
machine learning algorithm (along with support vec-
tor machine—SVM, in some of the cases) for predict-
ing DTIs. The reasons behind using a classical machine 
learning algorithm in this benchmark study rather than 
more complex deep learning-based architectures is that: 
(i) RF has been used in this field for a long while and 
shown to work well on numerous occasions, (ii) deep 
learning-based complex architectures have already been 
used in the training stage of learned representations (i.e., 
protein embeddings); thus, the use of additional complex 
architecture in the supervised DTI prediction stage could 
have prevented the observation of the ability of learned 

Fig. 1  The schematic overview of the study

https://github.com/HUBioDataLab/ProtBENCH
https://github.com/HUBioDataLab/ProtBENCH
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representations in extracting ligand interaction-related 
properties of proteins, and also, hinder the evaluation 
of model-driven (i.e., conventional descriptor sets) and 
data-driven (i.e., learned representations) approaches on 
common ground, and (iii) hyperparameter value selec-
tion have a significant effect on the performance of deep 
learning models. If we had used deep learning models in 
this benchmark study, the model performances would 
have been heavily influenced by the specific hyperparam-
eter settings used, and any differences in performances 
could not be attributed solely to the representation capa-
bilities of the featurization approaches. In this study, the 
main aim is to fairly compare and evaluate different rep-
resentation approaches rather than constructing a single 
DTI prediction model with maximized performance. As 
a result, we used classical machine learning algorithms, 
which do not require the same level of hyperparameter 
tuning as their deep learning-based counterparts.

Exploration of data characteristics
In this subsection, we first visualized members of protein 
family-specific datasets on 2-D via t-distributed stochas-
tic neighbor embedding (t-SNE) projection. Then, we 
analyzed split-based characteristics of our datasets by 
plotting pairwise similarity distributions of proteins and 
compounds, bioactivity distributions of train-test folds, 
together with their respective t-SNE embeddings.

t‑SNE projection of protein families
For each protein representation, two independent t-SNE 
projections (one for the enzyme, and another one for the 
non-enzyme protein families) were carried out (Fig.  2a, 
b). Projections for 8 protein featurization methods are 
shown in Fig. 2, and the remaining ones (9 of them) are 
available in Additional file  1: Fig. S1. As displayed in 
these t-SNE plots, generally, protein families are well 
clustered in both enzyme and non-enzyme projections, 
with slightly less apparent clusters in enzymes, probably 
due to the sharing of enzyme-specific properties between 
proteins. Also, members of the other-enzymes class are 
scattered among other clusters as its members do not 
have distinctive characteristics. Although the major-
ity of protein representations are successful at separat-
ing at least some of the families, projections of learned 
embeddings have clearer clusters in general, which indi-
cates their ability of extracting family-specific features. 
Considering conventional descriptor sets, homology 
(i.e., k-sep_pssm) and domain profiles (i.e., pfam) are 
observed to have more distinctive abilities for the clas-
sification of protein families, compared to physicochem-
istry (e.g., apaac, ctdd, ctriad, geary, qso) and sequence 
composition (i.e., dde). The t-SNE projection of spmap, 
being a sequence composition-based descriptor set based 

on protein subsequence (5-mer) clusters, is similar to the 
projection of random200 descriptor set. This result indi-
cates that 5-residue subsequences of proteins cannot cap-
ture family-specific patterns. Highly distinct from other 
representations, taap has a projection in the form of an 
S-shaped curve. Feature vectors of proteins with similar 
residue content and sequence length are similar to each 
other (independent from the actual order of amino acids 
on the sequence) according to the taap descriptor set, 
since taap uses the total sum of the amino acid-based 
property values to represent a protein. Due to the fact 
that t-SNE aims to preserve local neighborhoods, pro-
teins form a continuous curve similar to time-series data 
when represented by taap.

Split‑based characteristics of protein family‑specific datasets
Pairwise similarity distributions  To explore protein and 
compound diversity in our datasets, we evaluated pro-
tein–protein and compound-compound pairwise simi-
larities of the members of a selected representative pro-
tein family (i.e., transferases), in terms of “train vs. train”, 
“test vs. test”, and “train vs. test” comparisons for each 
split strategy (i.e., random-split, dissimilar-compound-
split, and fully-dissimilar-split). For this, we aligned pro-
tein sequences using EMBOSS Needle global pairwise 
sequence alignment tool [42] and plotted histograms 
based on identity values of unique protein pairs in the cor-
responding datasets. We extracted pairwise compound 
similarities by calculating Tanimoto coefficient between 
fingerprint representations using the simsearch function 
of the Chemfp python package [43]. Since it was highly 
infeasible to calculate pairwise similarities for billions of 
compound pairs, we randomly sampled 10% of all com-
pounds in the transferases dataset and set the minimum 
similarity detection threshold as 0.1.

Figure  3 displays similarity distributions of pairs of 
proteins and compounds involved in the transferases 
dataset, in which the values may be greater than one 
since the plot is normalized to equalize the total area 
to one (i.e., the density plot). Having a similarity value 
in the range of 0–0.5 for the majority of protein and 
compound pairs in all plots demonstrates the high 
diversity of samples which is a desirable characteristic 
for computational bioactivity modelling. As displayed 
in Fig.  3, similarity distributions only slightly change 
between different split methods, considering “train vs. 
train” and “test vs. test” sample similarities, whereas 
there are significant differences between the samples 
of “train vs. test”, for both compounds and proteins, 
in terms of different splits. The absence of similarity 
values greater than 0.5 for compound “train vs. test” 
pairs in the dissimilar-compound-split dataset, and 
both protein and compound “train vs. test” pairs in 
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Fig. 2  t-SNE based visualization of conventional (apaac, k-sep_pssm, pfam, taap) and learned (protvec, seqvec, transformer-avg, unirep1900) 
protein representations on; (a) enzymes including hydrolases, oxidoreductases, proteases, transferases, and other-enzymes groups, and (b) 
non-enzyme protein families including epigenetic regulators, ion channels, membrane receptors, transcription factors, and transporters, in different 
colors
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Fig. 3  Pairwise similarity distributions of (a) proteins and (b) compounds for “train vs. train”, “test vs. test”, and “train vs. test” samples in random-split, 
dissimilar-compound-split, and fully-dissimilar-split of the transferases dataset (shown in the logarithmic scale)
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the fully-dissimilar-split dataset validates the similar-
ity-centric characteristics of our datasets. Exceptional 
pairs of proteins with high similarity values in the fully-
dissimilar-split dataset stem from the discrepancies 
between UniRef50 clusters and our pairwise alignment 
results, and their number is found to be insignificant 
(please note that the frequencies are given on logarith-
mic scale in Fig. 3). These results validate the capability 
of our methodology in terms of producing challenging 
(and presumably realistic) train-test datasets, so that 
the bioactivity prediction models trained and tested on 
these datasets hopefully reflect the real-world perfor-
mances while discovering novel drug candidates and/or 
new targets.

The assessment of the IID assumption  Most of the tradi-
tional machine learning algorithms such as RF and SVM 
operate on the independent and identically distributed 
data (IID) assumption for the samples in training and test 
splits. In other words, the values of the variables in a data-
set are assumed to be independent of each other and have 
the same probability distribution. This assumption may be 
violated if there is a shift in the distribution of the input 
or output variables between train/test splits, which may 
affect the performance of the model [44]. Therefore, it is 
important to evaluate the IID assumption while develop-
ing a machine learning model.

To explore the IID assumption in terms of output vari-
ables (i.e., bioactivity values as target labels), we plotted 

Fig. 4  Histogram plots displaying bioactivity distributions of transferase, ion channel, and membrane receptor families based on train (green bars) 
and test (orange bars) samples of; (a) random-split, (b) dissimilar-compound-split, and (c) fully-dissimilar-split datasets, along with their median 
values shown as vertical dashed lines
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bioactivity distributions of protein family-specific data-
sets based on train-test samples of each split. Figure  4 
displays pChEMBL value-based histograms for trans-
ferases, ion channels, and membrane receptors (plots for 
the remaining families are available in Additional file  1: 
Fig. S2). Median bioactivities vary between 5.7 and 7.1 
for different protein families. When comparing bioactivi-
ties of train and test sets of each family, it is observed that 
distributions have similar shapes, regardless of the data-
set split strategy. In addition, they generally have very 
similar mean and median values, although the differ-
ence is slightly higher in the fully-dissimilar-split datasets 
of some families. Having bioactivity distributions that 
are consistent with each other in training and test folds 
implies good coverage of bioactivity data and supports 
the suitability of our large-scale datasets for bioactivity 
modelling. These results also indicate that a stratified-
split strategy is not required for our datasets.

In cases of the presence of a shift in output variables, 
models require extrapolating beyond the minimum and 
maximum target values in the training datasets. This may 
be a limiting factor for regression-based algorithms that 
can only generate predictions within the boundaries of 
training output values [45]. Therefore, we recommend 
checking this issue before constructing DTI prediction 
models.

We also compared the distributions of protein repre-
sentations and ecfp4 compound fingerprints in-between 
training and test splits to check the IID assumption for 
input variables. For protein representations with con-
tinuous values, we applied Kolmogorov–Smirnov (KS) 
test and calculated KS distance scores for each feature 
(i.e., each dimension in a representation) of train and test 
samples along with corresponding p-values. Additional 
file 1: Fig. S3 displays the distributions of these scores for 
apaac and transformer-avg representations (i.e., feature 
dimension sizes are 80 and 768, respectively) on three 
different train/test splits of the transferases family data-
set. Although maximum KS distance scores are generally 
lower for conventional descriptors (i.e., around 0.2) than 
learned embeddings (i.e., around 0.5), they have similar 
distributions overall, where the variance is much lower 
in the random-split dataset compared to dissimilar-com-
pound and fully-dissimilar split sets. There was a signifi-
cant (p-value < 0.01) shift between the KS distance value 
distributions of train and test samples for 19 (for fully-
dissimilar-split) and 7 (for dissimilar-compound-split) 
features out of the total 80 features in apaac, and 558 (for 
fully-dissimilar-split) and 189 (for dissimilar-compound-
split) features out of the total 768 transformer-avg fea-
tures; whereas, none of the variables were significantly 
shifted in the random-split dataset, considering both 
representations.

For compound fingerprints, we applied the chi-square 
test, since they are composed of binary variables rather 
than continuous ones. We didn’t plot the score distri-
butions of the chi-square test since it doesn’t provide a 
direct distance measure. Instead, we evaluated these 
shifts based on their p-values. Therefore, 743 and 689 
of a total of 1024 compound fingerprints were signifi-
cantly shifted on the fully-dissimilar and dissimilar-
compound splits, respectively, whereas this number was 
47 for the random split. For significance, we accepted a 
p-value < 0.001 since the chi-square test is sensitive to 
sample size, which has the risk of falsely defining signifi-
cant relationships in the presence of a large sample size, 
as in our case.

The observation of a shift between the KS distance 
score distributions of models trained on fully-dissimilar 
and dissimilar-compound splits was not surprising since 
this is a common issue in real-world drug discovery 
applications, where the general aim is to seek completely 
novel small molecules that are bioactive against the tar-
gets of interest. It is also one of the reasons why most of 
the models, well-performing on “easy” datasets (i.e., ran-
dom split), start to fail in realistic scenarios. It is possible 
to mitigate the shifting problem by applying preprocess-
ing techniques such as feature dropping or importance 
weighting [46], especially where the goal is to develop a 
model using simple descriptors and algorithms based on 
linear operations.

t‑SNE projection of train‑test datasets for three splits  In 
this analysis, we visualized the distribution of bioactiv-
ity data points (i.e., compound-protein pairs) on 2-D via 
t-SNE projections to observe how train and test fold sam-
ples are separated from each other under different split-
ting settings. For each protein family-based dataset, 1500 
data points were randomly selected (from both train and 
test folds), since the number of training samples domi-
nates test samples in the original datasets. Each bioactiv-
ity data point was represented by the concatenation of its 
protein and compound feature vectors, and used as input 
to the t-SNE algorithm.

In Fig. 5, t-SNE plots of transferases and ion channels 
(i.e., the representative families, as these are two widely 
utilized target families in drug discovery) are given for 
k-sep_pssm and unirep1900 representations. Panel a, 
b, and c correspond to the random-split, dissimilar-
compound-split, and the fully-dissimilar-split datasets, 
respectively. For the random-split dataset, 2-D embed-
dings of the train and test samples largely overlap, since 
they share similar proteins and compounds. These over-
laps significantly decrease in dissimilar-compound-split 
dataset and almost disappear in the fully-dissimilar-split 
dataset, as expected. This analysis can be considered as a 
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Fig. 5  t-SNE projections of train-test samples (i.e., compound-protein pairs) of transferase and ion channel families for k-sep_pssm and unirep1900 
representations on; (a) the random-split, (b) dissimilar-compound-split, and (c) the fully-dissimilar-split dataset
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visual validation of the implemented splitting strategies, 
and it provides clues about the difficulty levels of our pre-
diction tasks.

Small‑scale analysis (target feature‑based modelling)
There are numerous conventional descriptor sets for 
proteins in the literature, most of which can be utilized 
for DTI prediction. Evaluating all descriptor sets on our 
large-scale datasets would not be feasible considering the 
computational cost; as a result, we decided to carry out a 
small-scale analysis to pre-select the descriptor sets that 
are successful in DTI prediction, and use the selected 
descriptors in both the medium-scale and large-scale 
analysis later. Additionally, it was required to determine 
the supervised learning algorithm to be used for DTI pre-
diction in this study, and due to, again, the computational 
complexity related issues, we decided to make a per-
formance comparison (between SVM and RF) on these 
small-scale datasets.

In this analysis, we assessed the success of SVM- and 
RF-based DTI prediction models, each utilizing one of 
the 42 conventional protein descriptor sets and a baseline 
(i.e., the random200 descriptor). The full list of descrip-
tor sets is provided in Additional file  1: Table  S1, and 
details can be obtained from [47] and [48]. The models 
are trained and tested on 9 independent compound-
centric datasets (i.e., the clusters of Curcumin, Tamox-
ifen, Quercetin, Genistein, Econazole, Levoketoconazole, 
Amiodarone, Miconazole, and Clotrimazole) via nested 
cross-validation. In this approach, the system only 
employs protein features as input, so it eliminates the 
effect of compound representations on the model predic-
tion performance, which is expected to provide a suitable 
setting for an initial comparison of protein representa-
tions. Here, the task of each model is the binary classifi-
cation of input proteins, as active or inactive, against the 
corresponding compound cluster.

Figure  6 displays mean F1-score and Matthews Cor-
relation Coefficient (MCC) values of 9 datasets for each 
representation model, in which orange and blue colors 
correspond to SVM and RF models, respectively (all 
results including accuracy, precision, recall, F1-score, and 
MCC metrics are given in Additional file  1: Table  S1). 
The ranking of protein descriptor sets on the horizontal 
axis was done according to decreasing RF model scores. 
Figure 6 clearly displays that RF models outperform SVM 
models with a few exceptions such as the pfam model 
in terms of the MCC score. When model performances 
are compared in terms of protein representations, pssm-
based descriptors perform better than other descriptors 
in general. These results indicate that evolutionary rela-
tionships of proteins carry important knowledge regard-
ing bioactivity/interaction mechanisms. Some of the 

sequence composition-based descriptors such as dde, 
tpc, and spmap, and physicochemistry-based descriptors 
such as apaac and paac, also performed well. Moreover, 
obtaining scores that are significantly higher than the 
baseline (i.e., random200), even for the models with the 
lowest performance, implies that protein representations 
carry signals/patterns relevant to bioactivity modelling. 
However, these results cannot be generalized as they 
cover only a small portion of the bioactivity space; thus, 
it is important to observe how these models behave when 
the data scale is changed.

At the end of this analysis, we decided to continue with 
RF, to be used throughout the study. Also, we selected 
10 conventional descriptor sets with both high and low 
performances, and distinct properties regarding the pro-
tein features they incorporated and used them in the fol-
lowing benchmarks (i.e., apaac, ctdd, ctriad, dde, geary, 
k-sep_pssm, pfam, qso, spmap and taap). Here, instead 
of simply selecting the best-performing descriptors, we 
sought a diverse set of descriptors that are constructed 
using different types of information (i.e., physicochem-
istry, sequence homology, etc.). Another criterion was 
that the selected descriptors should not have similar 
performance scores (especially when they are based on 
the same type of information). Therefore, rather than 
comparing similar approaches with a high probability 
of yielding similar results on medium- and large-scale 
analyses, we attempted to acquire a representative set 
of descriptors, each of which has the potential to reveal 
a different characteristic presented in target protein 
sequences.

Medium‑scale analysis (PCM modelling)
PCM modelling approach can handle high numbers of 
training instances, belonging to different compounds and 
proteins, within a single predictive model, in contrast to 
ligand- and target feature-based modelling which requires 
the generation of separate models for each protein or com-
pound (or compound cluster), respectively. Thus, PCM 
modeling brings the advantage of learning from larger 
datasets, which is a critical requirement in machine learn-
ing, in general. Another advantage of PCM modeling is the 
joint utilization of compound and protein features to bet-
ter model their interaction-related properties, without the 
requirement of scarce and difficult to analyze 3-D struc-
tural information, unlike target-based structure modelling 
approaches. In the following benchmarks, we aimed to 
evaluate protein representations in terms of PCM mode-
ling, over the problem of regression-based DTI prediction. 
Here, we constructed PCM models for 10 selected conven-
tional protein descriptor sets, 6 learned protein embed-
dings and 2 baseline models (i.e., random representations, 
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Fig. 6  Mean (a) MCC and (b) F1-score test results of RF- and SVM-based DTI prediction models constructed via target feature-based modelling 
approach (the small-scale analysis)
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please see “Methods” section) using RF regression algo-
rithm on the mDavis kinase dataset.

Model performance results based on Root Mean Square 
Error (RMSE), Spearman rank correlation, MCC and 
F1-score (all computed on the hold-out test set of the mDa-
vis dataset) are given in Fig. 7 (also available in Additional 
file  1: Table  S2). The results indicate that the rankings of 
models are mostly consistent among both classification 
and regression metrics with slight differences, exclud-
ing pfam. As a domain profile-based descriptor set, pfam 
is the best performing model in terms of F1-score (0.538) 
and has a moderately high MCC score (0.41); however, it is 
also one of the worst performers in terms of RMSE (0.854) 
and Spearman (0.497) scores. It can be inferred from these 
results that domain profiles of proteins might not contain 
sufficient information to make precise bioactivity value 
predictions, but it can be useful if the aim is just to clas-
sify protein-compound pairs as active or inactive (i.e., 
binary prediction). The results also indicate that the seqvec 
model displays the best performance for almost all metrics 
(RMSE: 0.794, Spearman: 0.571, MCC: 0.445, F1-score: 
0.53). Apart from seqvec, other learned embeddings also 
have higher performance scores compared to conventional 
descriptors in general. Mean Spearman rank correlation 
and MCC scores of learned representations are 0.530 and 
0.417, respectively, whereas the same scores are 0.511 and 
0.388 for conventional descriptor sets. Learned embed-
dings do not utilize any molecular or biological knowl-
edge during their self-supervised training, but still, they 
are capable of representing proteins that yield high per-
formance DTI prediction. Well performing descriptors in 
the previous small-scale analysis, k-sep_pssm (homology) 
and apaac (physicochemistry), also have competitive per-
formance results here (Spearman: 0.545 and 0.532, respec-
tively). On the other hand, dde (Spearman: 0.508) and 
spmap (Spearman: 0.491) could not yield their high ranks 
here in the medium-scale analysis (i.e., dde and spmap 
had the ranks of 1 and 8 on the small-scale, whereas, they 
ranked 9 and 16 on the medium-scale, respectively). It is 
possible to state that while homology- and physicochem-
istry-based descriptors gained from increased dataset size 
(i.e., for apaac and k-sep_pssm, small-scale analysis mean 
MCCs are 0.361 and 0.374, respectively, whereas their 
medium-scale analysis MCCs are 0.418 and 0.434), 
sequence composition could not improve its performance 
when trained on larger datasets.

Also, there is an overall increase in MCC scores of con-
ventional descriptor sets (excluding dde and spmap) when 
we compare the results of small- and medium-scale analy-
ses. In addition to the contribution of the increased sample 
size, this situation can be associated with the involvement 
of compound features in PCM-based models, which prob-
ably led to a better learning over the joint protein–com-
pound interaction space. On the other hand, PCM models 
here had lower F1 scores than the target feature-based 
models in the small-scale analysis. In order to calculate 
MCC and F1-scores for PCM models, we converted real-
valued predictions into binary format at the cut-off value 
pKd = 7, which is also used in other studies as a bioactiv-
ity threshold for kinase inhibitors [49]. However, only 
27% of the test samples became active at this threshold, 
causing a class imbalance in the mDavis kinase dataset. 
Therefore, the decrease in F1-scores on the medium-scale 
analysis might be related to this issue, since F1-score is 
sensitive to imbalanced datasets (see “Performance evalua-
tion” section in “Methods”). To further explore the conflict 
between MCC scores and F1-scores for the small-scale vs. 
medium-scale comparison, we calculated mean perfor-
mances of conventional descriptors on the medium-scale 
(F1-score: 0.493, MCC: 0.388), and compared them to the 
results of the same set of descriptors on the small-scale 
(F1-score: 0.672, MCC: 0.337). Then, we recalculated MCC 
and F1-scores of the medium-scale models based on the 
median pKd value of the test set to evaluate the results in 
such a scenario as if we had a balanced number of positive 
(i.e., active) and negative (i.e., inactive) samples in the test 
set. We obtained the mean scores of F1-score: 0.705 and 
MCC: 0.355 based on the cut-off pKd = 6.21 (the median 
value). The increase in F1-score, which is even higher than 
the mean F1-score in the small-scale analysis, together with 
the fact that there is no significant change in MCC, sup-
ports the idea that MCC is the more appropriate option in 
the presence of the class imbalance problem. It also high-
lights the importance of selecting suitable evaluation met-
rics depending on the case at hand.

Finally, the baseline models displayed the lowest perfor-
mances in this analysis, similar to the results of the target 
feature-based modelling experiment.

Large‑scale analysis (PCM modelling)
The main goal of this analysis is evaluating protein rep-
resentations over a highly realistic scenario, especially in 

(See figure on next page.)
Fig. 7  Test performance results of medium-scale PCM models (on the mDavis dataset) based on RMSE (the scores are reported as 1-RMSE, so 
higher values represent better performance), Spearman’ s rank correlation, MCC and F1-score; (a) each color corresponds to an evaluation metric, 
and (b) scores are displayed only for the selected representative models (marked with asterisk in the legend). The ranking in the legend is based on 
the models’ performance from best to worst according to their RMSE scores. Shades of red and blue represent conventional descriptors and learned 
representations, respectively
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Fig. 7  (See legend on previous page.)
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terms of discovering new drugs and/or targets, using our 
carefully prepared large-scale datasets, and to compare 
their overall performance in machine learning-based DTI 
prediction. Secondly, we aimed to display how model per-
formances can change dramatically when the same samples 
are distributed to train and test sets differently, to point out 
the importance of train-test data split. Furthermore, we 
evaluated the suitability of various performance metrics 
under different modeling approaches.

In this analysis, we constructed protein family-specific 
bioactivity datasets including enzyme (i.e., transferases, 
hydrolases, oxidoreductases, proteases, and other 
enzymes) and non-enzyme groups (i.e., membrane recep-
tors, ion channels, transporters, transcription factors, 
and epigenetic regulators). For each family, three versions 
of train-test splits were constructed by considering pair-
wise similarities of proteins and/or compounds (please 
see “Methods” section for details). An independent PCM 
model was trained on each of these splits. Overall, 600 
DTI prediction models were built, trained, and tested.

We evaluated model performances from several per-
spectives using multiple scoring metrics. Median cor-
rected RMSE and Spearman correlation scores are 
displayed as line plots in Fig. 8, in which the light colored 
(transparent) circles indicate individual model perfor-
mances on each protein family, and the dark colored dia-
monds represent mean scores averaged over all families. 
The models are ranked according to descending perfor-
mance on the fully-dissimilar-split dataset (for both met-
rics). In Fig. 9, model performances are provided as box 
plots over three different forms of the MCC metric. The 
models are ranked according to descending mean values 
of median corrected MCC scores for the fully-dissim-
ilar-split and dissimilar-compound-split datasets, and 
according to multiclass MCC scores for the random-split 
dataset. Protein family-specific performances are avail-
able at Additional file 1: Table S3.

Investigation of performance metrics
The intra-family rankings of models are generally con-
sistent with each other among five different metrics 
(Additional file  1: Table  S3). However, there are some 
discrepancies between the scores depending on the data 
split. Considering regression metrics, some of the models 
trained/tested on the fully-dissimilar-split and dissimi-
lar-compound-split datasets show high performance in 
terms of RMSE (i.e., low RMSE values), whereas at the 
same time, they displayed low Spearman correlations, 
which indicates inconsistency. RMSE is a measure of the 
difference between predicted and actual values, and is 
utilized when the goal is to predict continuous values and 
measure the overall error in predictions. On the other 
hand, Spearman’s rank correlation is a measure of the 

strength and direction of the relationship between two 
ranked variables. Spearman’s correlation is commonly 
used when the goal is to determine the degree to which 
two variables are related. In challenging scenarios (e.g., 
on the fully-dissimilar-split and dissimilar-compound-
split datasets), continuous value-based prediction of bio-
activities (via regression) is unstable and unreliable due 
to the difficulty of the task, e.g., a single extremely high 
error value could dominate the overall set and signifi-
cantly change the average, since the error values are not 
bounded. Thus, it would be a better choice to evaluate 
the success of the models in terms of the correlation and 
consistency between actual and predicted values using 
correlation scores (e.g., Spearman’s). On the random-split 
dataset, the prediction task is not considered to be dif-
ficult (relative to the other two splits), as a result, the pre-
dicted values are expected to be more stable and reliable. 
Using RMSE metric in this scenario allows us to directly 
measure the accuracy of the predictions and differenti-
ate the model performances in a more precise manner. 
As a result, both types of scores can be considered for 
easy cases (i.e., the random-split dataset). In classifica-
tion-based assessment, the single class MCC metric is 
not as restrictive as the regression or multiclass evalua-
tion metrics since it is less sensitive to deviations in pre-
diction values. However, it may suffer from the shifted 
mean problem when applied to regression-based PCM 
models by binarizing bioactivity values (see “Methods”—
"Performance evaluation” section). Obtaining MCC 
values close to 0 (Fig. 9) despite moderate Spearman cor-
relation scores (Fig.  8) on challenging datasets is a sign 
of a systematic shift on model prediction outputs, which 
we handled by conducting median correction on the real-
valued prediction results, as explained in “Methods” sec-
tion. In Fig. 9, it can be observed that median correction 
provided a significant increase in single class MCC scores 
of the fully-dissimilar-split and dissimilar-compound-
split datasets. Also, median corrected MCC scores are 
highly consistent with the Spearman correlation scores 
(Additional file  1: Table  S3). Considering the multiclass 
MCC metric, prediction scores are around zero for most 
of the models on challenging split sets. Since this met-
ric expects prediction values to fit narrow intervals, it 
is more restrictive than the single class-based metrics. 
However, this seems to be an advantage for evaluating 
models on the random-split set. As seen in Fig.  9a, on 
the random-split dataset, the variance of the mean mul-
ticlass MCC score distribution is greater than the single 
class MCC scores (i.e., models are better separated from 
each other). Furthermore, its ranking is highly consist-
ent with the results of the medium-scale experiments, 
in which the top performers were learned representa-
tions, together with k-sep_pssm and apaac conventional 
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Fig. 8  Regression-based test performance results of protein family-specific PCM models (each using a different representation type as an input 
feature vector) for random-split, dissimilar-compound-split, and fully-dissimilar-split datasets based on (a) median corrected RMSE, and (b) 
Spearman correlation scores. The models are ranked according to decreasing performance on the fully-dissimilar-split dataset (i.e., the large-scale 
analysis)
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Fig. 9  Classification-based test performance results of protein family-specific PCM models (each using a different representation type as an input 
feature vector) in terms of MCC scores for (a) random-split, (b) dissimilar-compound-split, and (c) fully-dissimilar-split datasets. The models are 
ranked according to decreasing performance on the fully-dissimilar-split dataset (i.e., the large-scale analysis)
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descriptor sets. Thus, it can be inferred that the multi-
class MCC metric discerns models better than binary 
class MCC in the random data split setting, and it partly 
handles the overfitting problem which frequently occurs 
on randomly split large-scale datasets.

Evaluation of protein representations
Performance results in Figs. 8 and 9 clearly indicate that 
the representation capability of different protein descrip-
tor sets depend on the protein family and the difficulty 
level of the split used for training and testing. Also, there 
is no significant difference between the mean perfor-
mances of different protein representations for a par-
ticular dataset split, with a few exceptions. Considering 
family-based performance averages, pfam is one of the 
best representations on the fully-dissimilar-split and 
dissimilar-compound-split datasets, while it is the lowest 
performer on the random-split dataset (Figs. 8, 9). Con-
trary to pfam, k-sep_pssm is one of the best performers 
on the random-split and dissimilar-compound-split data-
sets but the worst one on the fully-dissimilar-split data-
set (Figs.  8, 9), though the performance results on the 
random-split dataset are very close to each other. As a 
homology-based descriptor set, k-sep_pssm is expected 
to capture hidden similarities between evolutionarily 
related sequences, especially by taking advantage of the 
presence of highly similar proteins between the train and 
test splits. On the other hand, the utilization of protein 
domain profiles seems to make pfam more suitable for 
acquiring bioactivity related information from evolution-
arily distant sequences, probably due to highly sensitive 
HMM-based domain/family profile search procedures 
implemented in Pfam and similar databases. Interest-
ingly, taap, which is a simple descriptor set, is involved 
in the top-performing PCM models for all dataset splits. 
However, taap was one of the lowest performers in the 
small- (among the selected 10 conventional descrip-
tor sets) and medium-scale analyses. Its simplicity is 
observed to become an advantage with the increase in 
bioactivity dataset size and complexity. Apart from these, 
physicochemistry-based descriptors including apaac (in 
all splits), ctriad (on the fully-dissimilar-split dataset) 
and qso (on both the fully-dissimilar-split and dissimilar-
compound-split datasets), and learned representations 
perform well in the large-scale analyses. In particular, the 
top performance results of unirep5700 and transformer-
avg on the fully-dissimilar-split dataset demonstrate the 
potential of protein representation learning methods in 
the data-driven DTI prediction.

We also conducted protein family-specific evalua-
tions to understand whether different protein represen-
tations display similar results across families. In Fig. 10, 
we plotted the performance of the models of protease 

and the ion channel families, in the form of a conven-
tional descriptor set vs. learned representation compari-
son, using the Spearman and median corrected MCC 
scores, for all three dataset splits. For a fair comparison, 
we selected four well-performing conventional descrip-
tors instead of including all of them, since we have only 
four different types of learned representations. For this, 
we involved apaac, k-sep_pssm, pfam, and taap as con-
ventional descriptor sets and protvec, seqvec, trans-
former-avg, and unirep5700 as learned representations. 
Figure 10 shows that learned representations outperform 
conventional descriptors in the challenging splits of pro-
teases, considering both metrics. However, the results 
are the opposite for the ion channel family, on which the 
conventional descriptor sets performed better. On the 
random-split dataset, there is no observable difference 
between conventional descriptor sets and the learned 
representations, probably due to the non-discriminative 
characteristic of this data splitting strategy, which poses 
non-challenging cases for all models.

Results presented in Fig.  10 are also correlated with 
the scores on other protein families (Additional file  1: 
Table  S3). For non-enzyme families, the average Spear-
man’s correlation values (based on the representations in 
Fig. 10) are 0.29 (cd: conventional descriptors) and 0.26 
(le: learned embeddings) in the fully-dissimilar-split, 0.40 
(cd) and 0.34 (le) in the dissimilar-compound-split, and 
0.84 (cd) and 0.87 (le) in the random-split datasets. For 
enzyme families, these values are 0.23 (cd) and 0.26 (le) 
in the fully-dissimilar-split, 0.51 (cd) and 0.52 (le) in the 
dissimilar-compound-split, and 0.84 (cd) and 0.86 (le) in 
the random-split datasets. The results show that, in chal-
lenging datasets, conventional descriptors perform better 
on non-enzyme families, while learned embeddings per-
form better on enzyme families. It suggests that the type 
of protein representation used can have an impact on the 
model performance depending on the type/family of pro-
tein being studied, possibly due to the intrinsic properties 
of these protein families. This observation can be useful 
for developing new strategies to improve model perfor-
mances. All of the learned representations in our study 
were obtained from unsupervised deep learning models 
that are trained on large datasets including all protein 
families. Limiting the training datasets of these methods 
to specific families (or fine-tuning the pre-trained mod-
els on these families) would increase their representation 
power towards that family.

When taking all these findings into account, we can 
clearly state that the representation capabilities of differ-
ent featurization approaches considerably vary among 
protein families and splitting strategies, even though some 
common inferences can be made. We believe that, while 
choosing a featurization approach in DTI prediction, 
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protein family-specific findings should be taken into 
account, rather than considering the overall (i.e., average) 
results. Regarding learned representations, re-training 
(or fine tuning) the models using a distinct dataset with 
desired characteristics (e.g., members of a certain family) 
may be a good choice to better learn the features specifi-
cally associated with that group of proteins.

Comparison of data splitting strategies
To compare models across three dataset splits, we 
plotted performance scores by pooling 200 models 
of each split (including the baseline models) without 
any grouping by families or representation methods. 
The results are displayed in Fig.  11 via violin plots. 
This figure shows that there is a significant decrease 
in overall performances with the increasing difficulty 
levels of splits, which is not a surprising outcome. 
Nevertheless, it highlights the importance of splitting 
datasets into train/test folds for performance evalua-
tion, with the aim of preventing the reporting of over-
optimistic results and yielding the fair assessment of 
model successes. Figure 11 also displays that the model 

performances are distributed more evenly over the 
whole range of scores in the fully-dissimilar-split and 
dissimilar-compound-split datasets, compared to the 
random-split dataset, in which most of the models pro-
duced very similar scores, creating a dense region on 
the plot. This observation indicates random splitting 
has less power in terms of distinguishing different mod-
els from each other.

Fig. 10  Performance comparison of well performing conventional descriptor sets and learned representations for three different splits of 
ion-channel and protease family datasets in terms of; (a) Spearman rank correlation, and (b) median corrected MCC scores

Fig. 11  Split-based test performance scores of family-specific PCM 
models in terms of RMSE, Spearman rank correlation, and median 
corrected MCC metrics
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In the fully-dissimilar split, neither similar proteins 
nor similar compounds are shared between train and 
test folds. As a result, this dataset is suitable to evalu-
ate the performance of DTI prediction models in terms 
of predicting novel ligands to understudied targets (or 
completely new target candidates). Whereas in the dis-
similar-compound split, similar proteins are presented 
in between train and test sets. Nevertheless, it is useful 
for discovering novel ligands against well-studied target 
proteins, or proteins for which structurally highly similar 
and well-studied targets exist.

Examination of baseline models
Table  1 contains family-based average Spearman scores 
of the best-performing models and the baseline models, 
along with short definitions, for each dataset split. The 
construction details of the baseline models are explained 
in “Methods” section under “Modelling approaches” 
subsection and random vectors under “Types of featuri-
zation for proteins and compounds” subsections. The 
models based on randomly generated protein and/or 
compound representations (i.e., random200, random200-
random-ecfp4, and only-random-ecfp4) have lower per-
formance scores on the fully-dissimilar-split dataset, 
which is mainly due to the absence of identical proteins 
and compounds (or ones with high similarity) in between 
train and test samples. One of the baseline models 
included in this analysis uses only compound representa-
tions (i.e., only-ecfp4 model). This model does not utilize 
a protein vector. As a result, the model learns activities 
over the compound features only, without any informa-
tion regarding which protein this compound interacts 
with. This is different from a conventional ligand-based 
DTI prediction model, in which target proteins would be 
used as labels of the input compounds (i.e., as “a target 
of protein X” or “not a target of protein X”). Here, since 
the information about proteins is not utilized at all, the 
model tries to learn interactions blindly, and make pre-
dictions without knowing which target it is giving predic-
tions for.

The average Spearman correlation score of the best 
performing model on the fully-dissimilar-split dataset is 
around 0.3, which is quite close to the only-ecfp4 model. 
This indicates that the success obtained by even the best 
model has mostly originated from the characteristics 
of compounds (i.e., a certain compound being active 
no matter which target it has been screened against, or 
another compound being inactive in most of the experi-
ments). Thus, these results reveal the requirement for; 
(i) unbiased model training datasets, and (ii) novel/
improved featurization techniques, to construct robust 
DTI prediction models that can be utilized in the phar-
maceutical industry, especially under these challenging 
scenarios.

Model performances are higher on the dissimilar-com-
pound-split dataset compared to the fully-dissimilar-split 
dataset, due to the inclusion of similar (and identical) 
proteins between training and test. Also, models based 
on completely random vectors (on both the compound 
and protein sides, i.e., random200-random-ecfp4) have 
lower performances, expectedly. On both of the challeng-
ing datasets, the best model is well differentiated from 
the random vector-based baseline models. Although 
the overall mean difference between the best model and 
random200 model is considerably low on the dissimilar-
compound-split, the differences are distinct when mak-
ing protein family-specific comparisons rather than 
taking the average of all families (e.g., for ion channels; 
the average Spearman score of the top performing mod-
els including k-sep_pssm, pfam, taap, and protvec is 0.52, 
and the Spearman score of random200 model is 0.37). 
On the dissimilar-compound-split dataset, random200 
model outperformed the only-ecfp4 model by learn-
ing the relationship between the bioactivity data points 
of the same proteins which are shared between training 
and test. As experimental bioactivity measurements are 
mainly obtained from target-based assays, the number of 
bioactivity data points per protein is considerably high, 
compared to the number of bioactivity data points per 
compound (Additional file 1: Table S5, S6). Also, in many 

Table 1  Protein family-based average Spearman scores of the best models and baseline models in each dataset split

Please refer to “Methods” for details about baseline models

Name of the descriptor set/representation (explanation) Fully-dissimilar-split Dissimilar-compound-
split

Random-
split

Best performing protein representation (compound: ECFP4) 0.363 0.518 0.868

random200 (protein: random continuous vectors, compound: ECFP4) 0.193 0.436 0.861

only-ecfp4 (no protein vector, compound: ECFP4) 0.302 0.379 0.709

random200-random-ecfp4 (protein: random continuous vectors, compound: random 
binary vectors)

0.056 0.272 0.504

only-random-ecfp4 (no protein vector, compound: random binary vectors) 0.002 − 0.002 0.315



Page 21 of 36Atas Guvenilir and Doğan ﻿Journal of Cheminformatics           (2023) 15:16 	

assays, different derivatives of the same compound are 
tested, which result in similar bioactivity values. Due to 
this bias in experimental assays, memorization over pro-
tein identity yields falsely successful results, as reflected 
in the performance of the random200 model on the 
dissimilar-compound-split dataset (average Spearman 
score = 0.436).

On the random-split dataset, the best model displays 
a high success rate (Spearman score: 0.868). However, 
high performance scores of the baseline models, includ-
ing those based on randomly generated vectors (e.g., ran-
dom200), clearly indicate the over-optimistic evaluation, 
and emphasize the importance of train-test data splitting, 
once again. These results also demonstrate the impor-
tance of baseline model-based investigation in the field of 
DTI prediction, for a fair and realistic performance eval-
uation. It is possible to state that, the results reported in 
previous DTI prediction studies in which (i) the models 
are only evaluated based on random splitting (including 
both hold-out testing and fold-based cross-validation), 
and (ii) there is no proper baseline model comparisons, 
may be invalid.

Exploration of the prediction similarities 
between family‑specific PCM models
In this experiment, we plotted heatmaps based on pair-
wise similarities between the protein family-specific 
PCM model predictions via calculating their intersec-
tions, using a categorization composed of six classes 
(i.e., pChEMBL value bins of < 5, 5.0 to 5.5, 5.5 to 6.0, 6.0 
to 6.5, 6.5 to 7.0, and 7.0 > =). To calculate the similar-
ity between a pair of models, for each bioactivity data 
point, we count a similar prediction if both models pre-
dict pChEMBL values in the same bin (no matter they are 
correct or not), otherwise we count a non-similar predic-
tion. We then calculate percent similarity values based 
on all counts. To emphasize prediction similarity values 
between model pairs, color scales were arranged so that 
the darkest color corresponds to the maximum value, 
and the lightest color was set to 85%, 65%, and 20% simi-
larity for the random-split, dissimilar-compound-split, 
and the fully-dissimilar-split datasets, respectively.

In Fig.  12, heatmaps of transferase and ion channel 
families are given for all three dataset splits (heatmaps for 
the remaining families are available at Additional file  1: 
Fig. S4). As observed from Fig. 12, the overall consensus 
between models decreases with increasing difficulty lev-
els (i.e., the average similarity is over 80% for most of the 
models in the random-split dataset, while this value drops 
to 30–60% in the fully-dissimilar-split dataset). Although 
clusters vary across different splits and protein families, 
generally the learned embeddings and physicochemis-
try-based conventional descriptors are clustered among 

themselves. Considering the fully-dissimilar-split dataset 
of transferases; the average prediction similarity between 
the models that utilize learned representations (except 
protvec) is 60.8%, and among the models that use physic-
ochemistry-based conventional descriptor sets (i.e., qso, 
apaac, geary, ctriad) is 68.2%, whereas the average pre-
diction similarity between the physicochemistry-based 
conventional vs. learned representations (considering the 
same models) is 46.5%. These findings are also parallel 
to the t-SNE projection results provided in Fig.  2. Con-
sidering the type of utilized information, all learned rep-
resentations exploit the arrangement of amino acids on 
the protein sequence. On the other hand, physicochem-
istry-based descriptors aggregate pre-calculated amino 
acid-based features to construct protein feature vectors. 
This difference is also reflected in their prediction simi-
larities. Spmap and random200 representations are often 
clustered together and have similar t-SNE projections, as 
well. Finally, models that utilize pfam and taap descriptor 
sets are quite differentiated from the rest on the random-
split and dissimilar-compound-split datasets, which is 
expected based on their distinct featurization strategies.

The results of this analysis can be used to obtain 
rational combinations of featurization approaches to bet-
ter represent proteins in DTI prediction models (e.g., 
concatenating feature vectors that have a low prediction 
overlap). This may yield a more successful learning of 
interaction-relevant properties of proteins, and signifi-
cantly improve the overall model performances.

Applicability domain (AD) analysis of family‑specific PCM 
models
The concept of AD is used to define the boundaries of a 
model within which is expected to provide accurate and 
reliable predictions, and to assess its usability. It has been 
included as an essential requirement for QSAR models by 
the Organization of Economic Co-operation and Devel-
opment (OECD). In the scope of QSAR modelling, AD 
is defined as the chemical structure space in which the 
model produces reliable predictions [50]. It is significant 
because the reliable predictions of a QSAR model are 
typically restricted to query compounds that share high 
structural similarities with the training compounds [51]. 
In contrast to QSAR models, PCM modelling approach 
takes both protein and compound space into account 
and has the potential of revealing complex relationships 
between them since the model performance is not solely 
based on the similarity of compounds. Although the con-
cept of AD is not directly applicable to PCM modelling, 
there have been some efforts to evaluate the AD of PCM 
models using k-nearest neighbors (k-NN) [34, 52] and 
Gaussian processes (GP) [53].
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Fig. 12  Clustered heatmaps of different protein featurization approaches for transferase and ion channel families on; (a) the random-split, (b) 
dissimilar-compound-split, and (c) the fully-dissimilar-split datasets
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In this study, we employed the k-NN approach to 
assess the AD of our models. For this, we first calculated 
Tanimoto similarities between test and training com-
pounds based on their ecfp4 fingerprints. For each test 
compound, we calculated the average Tanimoto score of 
the most similar five training compounds (i.e., 5 nearest 
neighbors), as described in the study by Subramanian 
et  al. [52]. Then, we applied the same strategy for test 
proteins using sequence similarities mentioned in the 
“Pairwise similarity distributions” sub-section. In Fig. 13, 
we plotted compound and protein similarities vs. predic-
tion errors for each test datapoint in random-split, dis-
similar-compound-split, and fully-dissimilar-split sets of 
the transferases family dataset for transformer-avg based 
models.

The figure displays that most of the data points with 
high similarities of proteins and compounds have low 
prediction errors, but there is no direct correlation 
between similarity and error values as usually observed 
in QSAR models. At each similarity percentage interval, 
there are data points with both low and high predic-
tion errors at varying frequencies, even at extremely low 
similarities. This confirms the extrapolation ability of the 
PCM modelling approach. However, the number of data 
points with higher error increases in challenging data-
sets, which narrows the applicability domain of the mod-
els on these datasets. The average prediction error (e) and 
similarity values of proteins (p) and compounds (c) based 
on Fig. 13 are 0.48 (e), 66% (p), 77% (c) for random-split, 
0.92 (e), 64% (p), 35% (c) for dissimilar-compound-split, 
and 0.94 (e), 23% (p), 33% (c) for the fully-dissimilar-split, 
respectively. These values also indicate that the changes 
in the similarity of compounds have a higher impact on 
the error, compared to proteins. The results were simi-
lar in our other models, as well. It is possible infer from 
these results that PCM models tend to utilize compound 
features more than protein features, mostly due to the 
natural bias in DTI data.

Overall, these results indicate that models can reliably 
predict a considerable amount of the test dataset (i.e., 
88%, 59%, and 61% of test samples are predicted with 
errors < 1 in random-split, dissimilar-compound-split, 
and fully-dissimilar-split sets, respectively; Additional 
file 1: Table S4). However, it is also possible to state that 
the applicability is limited in challenging datasets. The 
shift between the input feature value distributions can be 
one of the main reasons behind obtaining a lower perfor-
mance and a narrower range of applicability for the mod-
els trained on fully-dissimilar and dissimilar-compound 
splits (Additional file  1: Fig. S3). At the same time, this 
is a natural part of the problems at hand, which are dis-
covering truly novel drugs and/or effectively targeting 
understudied proteins. While it is possible to improve 

performances to some extent by applying preprocess-
ing techniques, classical machine learning methods and 
available representation approaches are only partially suf-
ficient to handle the DTI prediction problem in realistic 
scenarios. Therefore, more advanced approaches such 
as multi-modal deep learning and new comprehensive 
representations, specifically developed for bioactivity 
modelling, are required to effectively unveil non-linear 
relationships between target proteins and drug candidate 
compounds.

Conclusions
In this study, we performed a rigorous benchmark analy-
sis to investigate; (i) bioactivity datasets at different scales 
and their splitting into train-test folds, (ii) preliminary 
and explanatory analysis of data, (iii) different modeling 
and algorithmic approaches, (iv) the representation capa-
bility of various protein featurization techniques, and 
(v) robust and fair performance evaluation strategies, 
for machine learning-based DTI prediction modelling. 
For this, we built target feature-based and PCM-based 
models, and trained/tested them on carefully con-
structed datasets with varying sizes and difficulty levels, 
using numerous protein representations, and evaluated 
them from different perspectives. Datasets, results and 
the source code of the study is fully shared in our “Prot-
BENCH” platform at https://​github.​com/​HUBio​DataL​
ab/​ProtB​ENCH.

Below, we summarized the major contributions of our 
study to the literature:

	(i)	 We proposed challenging benchmark datasets 
with high coverage on both compound and protein 
spaces that can be used as reliable, reference/gold-
standard datasets for DTI modelling tasks. These 
datasets are protein family-specific, and each has 
three versions in terms of train/test splits for differ-
ent prediction tasks (i.e., random split for predict-
ing known inhibitors for known targets, dissimilar-
compound split for predicting novel inhibitors for 
known targets, and fully-dissimilar split for pre-
dicting new inhibitors for new targets). Thus, they 
yield fair evaluation of models at multiple difficulty 
levels and facilitate the prevention of over-optimis-
tic performance results. We evaluated these data-
sets in the framework of PCM modeling, which is 
a highly promising data-driven approach for high 
performance ML-based drug discovery. These 
datasets can be used in future studies to evaluate 
newly proposed modeling and/or algorithmic tech-
niques for DTI prediction.

	(ii)	 We employed a network-based strategy for split-
ting data into train-test folds, by considering both 
protein–protein and compound-compound pair-

https://github.com/HUBioDataLab/ProtBENCH
https://github.com/HUBioDataLab/ProtBENCH
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Fig. 13  Scatter plots of compound similarities and protein similarities against prediction errors of test datapoints in (a) random-split, (b) 
dissimilar-compound-split, and (c) fully-dissimilar-split sets of transferases for transformer-avg models
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wise similarities, which is proposed here for the 
first time, according to our knowledge. This strat-
egy ensures that train and test folds are totally dis-
similar from each other with a minimum loss of 
data points. One of the current limitations in drug 
development is the problems related to discovering 
novel molecules that are structurally different from 
existing drugs and drug candidates. The network-
based splitting strategy we applied here forces pre-
diction models to face this limitation by supplying 
more realistic, hard-to-predict test samples. Hence, 
it can aid researchers in designing more powerful 
and robust DTI prediction models that have a real 
translational value.

	(iii)	 Protein representation learning has a wide range 
of applications with promising results in different 
sub-fields of protein science, despite being a rela-
tively new approach. However, the studies regard-
ing their usage in DTI prediction modelling are 
limited, and there is no comprehensive benchmark 
study to evaluate their performance against well-
known and widely used featurization approaches. 
Due to this reason, we extended the scope of our 
study by involving state-of-the-art learned repre-
sentations and discussed their potential in DTI pre-
diction.

One of the critical observations of this study is the 
dramatic change in performance scores when the sam-
ples are distributed to train and test sets differently, 
(i.e., scores on datasets with challenging splits are sig-
nificantly lower compared to the results on randomly 
split datasets), which highlights the importance of data 
splitting to conduct realistic evaluations for drug and/
or target discovery. This study also emphasizes the 
importance of exploratory analysis of datasets and the 
usage of multiple scoring metrics as well as the inclu-
sion of baseline models for a proper discussion of 
model successes.

Regarding the performance-based comparison of dif-
ferent protein featurization approaches, it is not possible 
to put forward an outstanding representation method, 
as their success largely depends on the dataset and the 
applied splitting strategy. Although both conventional 
descriptor sets and learned embeddings have their own 
strengths and weaknesses depending on the case, com-
petitive results of learned embeddings display their 
potential wide-spread utilization in drug discovery and 
development in the near future. On the other hand, con-
siderably low performance results on challenging data-
sets (e.g., fully-dissimilar-split) in the overall evaluation 
revealed the requirement of unbiased bioactivity datasets 
and further improved protein representation techniques 

to capture hidden and complex features shared between 
highly distant homologs.

As future work, we plan to develop a new computa-
tional DTI modeling approach that utilizes numerous 
types of biological and biomedical entities on top of com-
pounds and target proteins. Drug discovery and develop-
ment is composed of a series of complex problems, and 
there are multiple factors affecting the success of a drug 
candidate. This is mainly due to the extremely dynamic 
and complicated structure of biological systems. As a 
result, it is not possible to computationally handle drug 
discovery solely by simple virtual screening. Considering 
this fact, taking a systems-based approach with the inte-
gration and utilization of direct and indirect relationships 
in molecular and cellular processes including protein–
protein interactions, drug/compound–target protein 
interactions, and signaling/metabolic pathways, together 
with high level concepts such as protein-disease relation-
ships, drug-disease indications, pathway-disease modu-
lations, and phenotypic implications could increase the 
success rate in drug discovery. Thus, we aim to construct 
a new type of systems-level DTI representation and sub-
sequent prediction framework, using CROssBAR [54] 
which is an open-source system that integrates large-
scale biological/biomedical data and represents them in 
the form of heterogeneous and computable knowledge 
graphs. The newly proposed framework will utilize graph 
representation learning algorithms to process these bio-
medical knowledge graphs, and will be trained, validated/
optimized, and tested on our realistic and challenging 
datasets.

We hope that the results of this study, together with the 
data-driven approaches proposed, and the benchmark 
datasets prepared and shared, will aid the ongoing work 
in computational drug discovery and repurposing.

Methods
In this section, we first explain the construction of 
benchmark datasets, with emphasis on the train/test data 
splitting strategies. Next, we explain featurization tech-
niques used for representing of proteins and compounds. 
Then, we summarize modelling approaches and algo-
rithms employed for DTI prediction, along with addi-
tional explorative analyses such as the t-SNE projections. 
Finally, we mention performance evaluation metrics and 
the tools/libraries we employed.

Dataset construction and splitting
In machine learning applications, two significant factors 
that affect the generalization capability of models are the 
dataset content/size and the approach used in splitting 
data points to train/validation/test folds. We constructed 
and used three groups of datasets at different scales (i.e., 
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small, medium, and large), each of which have distinctive 
characteristics.

Small‑scale: compound‑centric datasets
Here, the aim is to construct datasets of target proteins 
to be used in DTI prediction models, in which the only 
input is target feature vectors, and the task is to classify 
them to their correct ligands. Each dataset is composed 
of targets of a specific drug/compound as reported in 
the ChEMBL (v24) database [55] considering experi-
mentally measured bioactivities. Bioactivity data points 
with pChEMBL values, i.e., −  log(IC50/EC50/Ki/Kd/
Potency, …), greater than 5 (equivalent to IC50/EC50/Ki/
Kd/Potency < 10 uM) are placed in the positives (actives) 
dataset, and instances with pChEMBL ≤ 5 are placed in 
the negatives (inactives) set. In most cases, sizes of these 
compound centric training datasets were too small to 
construct robust prediction models. In order to over-
come this problem, we first selected compounds with 
the highest number of active and inactive bioactivity data 
points, which we called “center compounds’’. Afterward, 
we constructed compound clusters around these center 
compounds by calculating pairwise molecular similarities 
between each center compound and all other compounds 
in the ChEMBL database using ECFP4 fingerprints and 
the Tanimoto coefficient. Compounds that are similar 
to a center compound with Tanimoto similarity ≥ 0.3 (as 
also used in previous studies such as [56]) are placed in 
the cluster of the corresponding center compound and 
their bioactivity data (i.e., active and inactive targets) 
are incorporated into the cluster’s bioactivity dataset. 
Therefore, nine independent compound centric, single 
task classification datasets (with center compounds of 
Curcumin, Tamoxifen, Quercetin, Genistein, Econazole, 
Levoketoconazole, Amiodarone, Miconazole, Clotrima-
zole) were constructed, and their dataset sizes (i.e., the 
number of targets) range from 76 to 294. Statistics of 
these datasets, including cluster sizes, active and inactive 
number of targets, are summarized in Additional file  1: 
Table  S7. Initially, the number of inactive targets were 
considerably low in these datasets. In general, random 
sampling strategy is applied in the selection of negative 
samples to handle the dataset imbalance problem. How-
ever, there is a risk of labeling positive samples as nega-
tive with this strategy. To minimize this risk, instead of 
applying random sampling strategy, we selected proteins 
that differ enough from the ones in positive datasets but 
also not very similar to targets in negative datasets. The 
similarity threshold was determined as the level at which 
the number of positive and negative samples in the data-
sets was equalized. Therefore, proteins which are less 
than 50% similar to positive targets and less than 80% 
similar to negative targets already existing in the dataset 

were selected from ChEMBL and added to the negatives 
dataset to balance the number of active and inactive tar-
gets in each dataset. Sequence similarity of proteins was 
calculated using EMBOSS Water pairwise sequence 
alignment tool [42]. Complete and standardized forms of 
protein sequences were retrieved from the UniProt data-
base [57]. Due to the small size of datasets, separating a 
hold-out test fold was not feasible. Therefore, a nested 
cross-validation approach (with tenfold inner loop in 
validation and fivefold outer loop in testing) was applied 
during model evaluation. These datasets are used in the 
small-scale target feature-based analysis.

Medium‑scale: mDavis kinase dataset
We employed the previously proposed Davis kinase 
dataset [58] for performing benchmark analysis on 
medium-scale, which is a commonly used benchmark for 
regression-based DTI prediction. The original train-test 
instances in the Davis dataset are taken from the study 
by Ozturk et al. [59]. This dataset includes ~ 30,000 DTI 
data points (real-valued bioactivities); however, the activ-
ity values of ~ 20,000 of them are recorded as 10 uM (i.e., 
pKd = 5). These are the data points corresponding to 
cases in which activity was not observed when the maxi-
mum dose of 10 uM is applied (so the highest dose is 
incorrectly recorded as the bioactivity value). It is toler-
able if the prediction task is based on the binary classi-
fication of bioactivities as “active” and “inactive” (which 
is still not the ideal case due to the class imbalance prob-
lem). However, it is unacceptable when the task is regres-
sion, since the use of data with uncertain values may 
introduce bias and potentially compromise the validity of 
results. In our case, models may tend to predict pKd as 5 
for the majority of the test samples due to memorization 
without learning from the other samples. The findings 
in the study of Rifaioglu et al. [30] support this expecta-
tion, in which they compared deep learning-based DTI 
prediction models on the original and filtered (based on 
pKd = 5) Davis datasets and observed that some of the 
model performances significantly drop upon the use of 
the filtered dataset. In order to prevent bias, we removed 
these instances from both train and test portions of the 
dataset. For the train portion, three additional filters were 
applied to avoid data memorization. All bioactivities of 
a compound or target are discarded if the compound or 
target:

1.	 only contains active or inactive data points based on 
the threshold pKd = 6.2, which is the median bioac-
tivity value of the dataset,

2.	 has an active-to-inactive ratio > 4 or < 1/4 considering 
its bioactivity data points,
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3.	 has a bioactivity distribution with standard devia-
tion < 0.3, which means bioactivity values vary within 
a narrow range.

A successful machine learning model is expected to 
learn general principles from data rather than memoriz-
ing it. The instances fulfilling the conditions above may 
not contribute to the learning process, as they can be eas-
ily predictable regardless of the algorithm or feature set, 
since they have very similar outcomes. We removed these 
instances from the dataset; otherwise, the model would 
perform well just by memorizing the outcome of these 
cases. After these filtering operations, the finalized set, 
which we call the modified Davis (mDavis) dataset, con-
tains 6,706 train and 1,542 test data points. This dataset is 
used in the medium-scale PCM-based analysis.

Large‑scale: protein family‑specific datasets
With the aim of constructing large-scale gold stand-
ard datasets, we applied rigorous filtering operations on 
the recorded bioactivities of target proteins from differ-
ent protein families including membrane receptors, ion 
channels, transporters, transcription factors, epigenetic 
regulators, and enzymes with five subgroups (i.e., trans-
ferases, proteases, hydrolases, oxidoreductases, and other 
enzymes). Protein family information is taken from the 
ChEMBL [55] target protein classification. We excluded 
classes such as secreted proteins, other categories, and 
unclassified proteins which have inadequate number of 
bioactivity data points. Here, we actually mean protein 
super families; however, these terms are used in dif-
ferent (but related) contexts in various resources, as a 
result, we use the term “family” throughout the article for 
convenience.

For enzymes, subclasses belonging to the same main 
class were merged based on their EC number annota-
tions. The merged enzyme classes and their correspond-
ing EC numbers are given in Additional file 1: Table S8. 
Bioactivity data of these families are retrieved from the 
ChEMBL (v24) database. Bioactivity data points that sat-
isfy the following criteria, target type: “single protein”, 
standard relation: “=”, pChEMBL value: “not null”, and 
assay type: “B” (binding assay) are included in the dataset 
and the rest are discarded. We did not apply a taxonomic 
filter. Dataset statistics of each protein family are pro-
vided in Additional file 1: Table S5.

For each protein family-based dataset, three types 
of train-test folds were extracted based on different 
dataset splitting strategies using molecular similarities 
in-between compounds and proteins. For this, we bina-
rized pairwise similarity measurements as “similar” or 
“non-similar”. UniRef50 clusters [60] were used for gen-
erating protein similarity matrices, where proteins in 

the same cluster were accepted as similar to each other 
(equivalent to a threshold of 50% sequence similar-
ity). Otherwise, proteins were considered dissimilar to 
each other. For compounds, Tanimoto coefficient-based 
pairwise similarities were calculated using compound 
ECFP4 fingerprints and the RDKit library [61]. Com-
pound pairs with a Tanimoto score ≥ 0.5 were accepted 
as similar to each other. Otherwise, compounds were 
considered dissimilar to each other.

Random‑split dataset  This dataset is constructed by 
applying a complete random splitting strategy, so that 
similar compounds and proteins are presented in both 
train and test sets. Random splitting is one of the most 
widely used dataset split strategies in machine learning 
applications; however, it eases the prediction task due 
to the sharing of highly similar instances between train 
and test sets. Thus, models usually display overoptimis-
tic performance results. In our random-split protein 
family-specific datasets, at least 95% of proteins and 
60% of compounds in test sets are found to be similar to 
the ones in their respective train sets.

Dissimilar‑compound‑split dataset  This dataset is 
constructed by applying a strategy that only consid-
ers compound similarities while distributing bioac-
tivity data points into train-test splits. Compounds in 
train and test splits are dissimilar to each other (Tani-
moto score < 0.5). Therefore, similar compounds are 
not allowed to take part in both train and test splits. 
This strategy makes the prediction task more difficult 
and realistic compared to random splitting and partly 
prevents the model from memorizing bioactivities 
over identical or highly similar compound fingerprints 
shared between train and test folds.

Fully‑dissimilar‑split dataset  The aim here is to cre-
ate train test folds in a way that neither compounds nor 
proteins are similar to each other between train and 
test. This dataset is constructed using a network-based 
splitting strategy to separate bioactivity data points (i.e., 
compound-target pairs) into disconnected components. 
Later, each component is either used in training or test 
splits. Actually, this dataset is extremely challenging for 
any DTI prediction method. However, this approach is 
crucial to evaluate a DTI prediction model’s ability to 
accurately predict new targets and/or new ligands that 
are truly novel (i.e., there is no bioactivity information for 
these compounds and target proteins in source databases, 
moreover, there are no compounds and target proteins 
significantly similar to these compounds and targets in 
source bioactivity databases), as this is one of the most 
crucial expectations from the PCM modeling approach. 
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The steps of the network-based splitting process are pro-
vided below:

(1)	 Protein–protein and compound-compound pair-
wise similarity matrices were constructed inde-
pendently for each protein family, based on 
protein family membership information and inter-
acting compounds for those proteins (obtained 
from ChEMBL bioactivity data points). Similarity 
values were binarized according to the procedure 
explained above (i.e., 50% sequence/molecular simi-
larity threshold for both protein and compounds).

(2)	 A heterogeneous network was constructed for 
each protein family by merging similarity matrices 
and bioactivity data using the NetworkX Python 
library [62], where nodes represent proteins and 
compounds, and edges represent protein–protein 
or compound–compound similarities, and com-
pound–protein interaction (bioactivity) relation-
ships. It is ensured that any two components that 
are disconnected from each other in the network 
do not share any similarity at all (either directly or 
indirectly). As a result, all bioactivity data points in 
a particular component can be placed in the train-
ing fold, while the ones in another component can 
be placed in the test fold. As a result, bioactivity 
data points (i.e., compound-target pairs) in train-
ing and test folds are always guaranteed to be fully 
dissimilar from each other. In practice, the problem 
was that nearly all nodes in the network formed a 
giant connected component, which means that it 
was not possible to distribute data points to train-
ing and test folds over disconnected components.

(3)	 In order to overcome this issue, we preferred to 
discard some of the nodes (e.g., compounds) and 
edges (e.g., bioactivity data points) from the data-
set to subdivide the giant connected components 
into smaller pieces. Instead of removing nodes and 
edges randomly, which may cause the loss of a high 
number of data points, we employed the Louvain 
heuristic algorithm [63] to detect communities in 
the giant component. This algorithm computes the 
partition of graph nodes by maximizing the net-
work modularity. By discarding bioactivity edges (or 
in some cases, discarding nodes if the edge of inter-
est is a similarity-based edge between two com-
pounds) between different communities, the num-
ber of disconnected components was increased. 
Finally, bioactivity data points in each component 
were assigned either to training or test sets in a way 
that the ratio of the number of training fold data 
points to the test fold could be held within reason-
able values, which still varied considering different 

protein families (i.e., from the minimum of 8.70% to 
a maximum of 23.97%).

Discarded data points of the fully-dissimilar-split data-
set were also excluded from training-test folds of ran-
dom-split and dissimilar-compound-split datasets for 
keeping instances of three sets exactly the same, to yield 
fully comparable results. The sizes of these datasets (after 
discarding data points) range from 18,164 to 206,175 
depending on the protein family. Detailed split-based sta-
tistics are provided in Additional file  1: Table  S6. These 
datasets are used in the large-scale PCM-based analysis.

Types of featurization for proteins and compounds
We converted proteins and compounds into fixed-length 
numerical feature vectors to be used in our DTI predic-
tion models as input samples. The following sub-sections 
describe different featurization approaches used in this 
study.

Protein representations
On the basis of sequence-based modeling approaches 
utilized, we divided this subsection into two categories 
as conventional protein descriptors and learned pro-
tein embeddings. These methods are explained below in 
terms of their molecular and technical aspects. Names, 
descriptions, and feature vector dimensions of these 
descriptors/representations are given in Table 2.

Conventional descriptor sets  This category comprises 
methods that employ model-driven approaches. This is 
achieved by transforming various molecular properties 
of proteins, such as sequence composition, evolutionary 
relationships, functional characteristics, or physicochem-
ical properties of amino acids, into fixed-length numeri-
cal feature vectors with the implementation of predefined 
rules or statistical calculations. Hence, they convert pro-
tein sequences into a quantitative and machine-processi-
ble format that stores the relevant molecular information. 
Ten conventional protein descriptor sets used in all 3 of 
the benchmark analyses of this study are briefly explained 
below.

–	 apaac (amphiphilic pseudo amino acid composition) 
represents the amino acid composition of protein 
sequences without losing the residue order effect by 
using sequence-order factors. These factors are com-
puted from correlation functions of hydrophobicity 
and hydrophilicity indices of amino acids. Therefore, 
apaac keeps the distribution of amphiphilic amino 
acids along the protein chain. It was proposed by 
Chou in 2005 and used for the prediction of enzyme 
subfamily classes [10].
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–	 ctdd (distribution) provides distribution patterns of 
amino acids in terms of the class they belong to con-
sidering a particular property. It utilizes 7 types of 
physicochemical properties including hydrophobicity 
with 7 different versions, normalized Van der Waals 
Volume, polarity, polarizability, charge, secondary 
structures, and solvent accessibility. Each property 
is divided into 3 classes and 20 amino acids are dis-
tributed into these classes based on their values for 
corresponding property (i.e., helix -EALMQKRH-, 
strand -VIYCWFT-, and coil -GNPSD- classes for 
secondary structure property). The distribution pat-
terns are determined according to five different posi-
tions (residues) for the corresponding class, which 
are the first residue, and the residues exactly at the 
25%, 50%, 75%, and 100% of the sequence. These 
positions are divided by the length of the whole 
protein sequence for the calculation of fractions of 
each class. This descriptor set was first proposed by 
Dubchak for protein fold recognition task [64].

–	 ctriad (conjoint triad) is based on the frequency of 
triple amino acid combinations in a protein sequence, 
where amino acids are first converted into a 7-let-
ter reduced alphabet. These seven groups include 
{A,G,V}, {I,L,F,P}, {Y,M,T,S}, {H,N,Q,W}, {R,K}, {D,E}, 

and {C}. Amino acid groups are determined accord-
ing to dipoles and volumes of the amino acid side 
chains. Ctriad was first used for the prediction of 
protein–protein interactions by Shen et al. [65].

–	 dde (dipeptide deviation from expected mean) is a 
type of sequence composition descriptor set that 
relies on the deviation of dipeptide compositions 
from the expected means. Three parameters, i.e., 
dipeptide composition (Dc), theoretical mean (Tm), 
and theoretical variance (Tv), are computed for the 
construction of the dde descriptor set. Saravanan and 
Gautham proposed it in 2015 for the use of B-cell 
epitope prediction [15].

–	 geary utilizes the distribution of structural and phys-
icochemical properties of amino acids along the 
sequence. It was first developed by Geary in 1954 
[66] as a measure of spatial autocorrelation that uses 
the square-difference of property values. Li et  al. 
served it as a protein descriptor set via the PROFEAT 
web server [67]. Also, Ong et. al. implemented it for 
the prediction of protein functional families [11].

–	 k-sep_pssm (k-separated-bigrams-pssm) is a column 
transformation-based descriptor set that computes 
the bigram transition probabilities between residues 
in terms of their positional distances from each other, 

Table 2  Properties of the selected protein descriptor sets and representations used in our benchmarks

a Amino acids
b Composition
c Size varies depending on the dataset, since pfam vectors only include the domains presented in the given protein dataset

Name Approach Description Dimension

apaac Model-driven (physico-chemistry) Amino acid composition regarding the sequence order correlated factors com-
puted from hydrophobicity and hydrophilicity indices of a.aa

80

ctdd Model-driven (physico-chemistry) Chain length-based distribution of a.a for selected physicochemical properties 195

ctriad Model-driven (physico-chemistry) Triad frequency of residues classified on dipoles and volumes of aa side chains 343

dde Model-driven (sequence comp.b) Dipeptide composition deviation 400

geary Model-driven (physico-chemistry) Autocorrelation regarding the distribution of physicochemical properties of a.a 240

k-sep_pssm Model-driven (sequence homology) Column transformation-based position specific scoring matrix (pssm) profiles 400

pfam Model-driven (functional properties) Protein domain profiles 38–294c

qso Model-driven (physico-chemistry) Sequence order effect based on physicochemical distances between coupled 
residues

100

spmap Model-driven (sequence comp.) Subsequence-based feature map 544

taap Model-driven (physico-chemistry) Summation of corresponding residue values for selected physicochemical prop-
erties

10

random 200 – Randomly generated continuous numbers between 0 and 1 with uniform distri-
bution

200

protvec Data-driven (learned embedding) Sequence embedding utilizing skip-gram modelling approach 100

seqvec Data-driven (learned embedding) Sequence embedding based on bi-directional language model architecture 
“ELMo”

1024

transformer Data-driven (learned embedding) Transformer-architecture based embedding method that utilizes attention 
mechanism

768

unirep Data-driven (learned embedding) Sequence embedding based on mLSTM architecture as a variation of recurrent 
neural networks

1900 and 5700
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which corresponds to the “k” value. The transition 
probabilities are calculated from transformations on 
position-specific scoring matrix (pssm) profiles of 
proteins. Pssm profiles represent evolutionary con-
servation of amino acids in a protein sequence, which 
are derived from multiple sequence alignments of a 
homolog set of protein sequences. This descriptor 
set was first proposed in the study of Saini et al. for 
improving protein fold recognition [21]. Wang et al. 
developed the POSSUM tool to calculate a set of 
PSSM-based descriptors including k-sep_pssm, and 
they utilized these descriptors for the prediction of 
bacterial secretion effector proteins [47].

–	 pfam represents domain profiles of proteins, accord-
ing to protein domain annotations in the Pfam data-
base [68], in the form of binary feature vectors. For 
each protein, it encodes the presence (1) and absence 
(0) of a unique list of domains presented in proteins 
in the corresponding dataset. This descriptor set was 
employed in the studies of Yamanishi et al. [18] and 
Liu et al. [69] with the purpose of predicting drug–
target interactions.

–	 qso (quasi-sequence order) reflects the indirect effect 
of the protein sequence order by calculating coupling 
factors in terms of distances between contiguous res-
idues in the sequence. The distances are determined 
using different amino acid distance matrices such as 
the Schneider–Wrede distance matrix [70], which is 
derived from hydrophobicity, hydrophilicity, polarity, 
and side-chain volume properties of amino acids. It 
was first utilised by Chou for the prediction of pro-
tein subcellular locations [71].

–	 spmap (subsequence profile map) is a feature space 
mapping method that represents sequence compo-
sition by calculating the distribution of fixed-length 
protein subsequence (with a length of 5 residues in 
the default version) clusters in a protein sequence. 
Subsequence clusters are generated using BLO-
SUM62 matrix-based similarities of all possible sub-
sequences in the given protein set, extracted by the 
sliding windows approach. It was proposed by Sarac 
et  al. for functional classification of proteins [72]. 
Later, spmap was used for GO term [73] and EC 
number [74] prediction. In this study, spmap-based 
feature vectors were generated using clusters of 
5-residue subsequences of ChEMBL target proteins.

–	 taap (total amino acid properties) represents the total 
sum of corresponding residue values in a protein 
sequence for the selected properties from the AAIn-
dex database [75]. It was first employed by Gromiha 
and Suwa for better discrimination of outer mem-
brane proteins [76]. The properties used in our study 
are normalized average hydrophobicity scale, aver-

age flexibility indices, polarizability parameter, free 
energy of solution in water, residue accessible surface 
area in tripeptide, residue volume, steric parameter, 
relative mutability, hydrophilicity value and the side 
chain volume.

iFeature stand-alone tool [48] was employed for the 
calculation of apaac, ctdd, ctriad, dde, geary and qso fea-
ture vectors. Protein domain annotations were retrieved 
from the Pfam database [68] for the construction of pfam 
feature vectors. Spmap feature vectors were calculated 
using our in-house algorithm explained above [72]. For 
the construction of k-sep_pssm and taap vectors, POS-
SUM [47] and PROFEAT [77] web servers were used, 
respectively. Sequence information of proteins to con-
struct these descriptors were retrieved from UniProt 
database [57].

Learned embeddings  This category comprises protein 
representations that utilize solely data-driven approaches 
for the extraction of molecular information from pro-
tein sequences. Learned representations are constructed 
via the process of artificial learning, in which a model is 
trained on specific unsupervised/self-supervised tasks 
such as the prediction of the next amino acid in the 
sequence. For generating such protein representation 
models, deep neural network-based architectures and 
design choices that are frequently used in NLP field are 
preferred. During the training process, the model takes 
protein sequences as input, projects them into a high-
dimensional vector space, and generates output in the 
form of fixed-length numerical feature vectors called 
“embeddings”. These numerical feature vectors can later 
be used for representing proteins in other predictive tasks 
(mostly supervised) such as DTI prediction.

Four protein representation learning methods (making 
6 models in total, as 2 of these methods have 2 versions 
each) used in this study are briefly explained below.

–	 unirep is one of the best-known learned protein rep-
resentations, which was developed in 2019 by Alley 
et al. using a variation of recurrent neural networks 
(RNN) called the multiplicative long-/short-term-
memory (mLSTM) architecture [24]. Alley et  al. 
trained the model on approximately 24 million pro-
tein amino acid sequences in the UniRef50 clusters 
of UniProt, with the objective of predicting the next 
amino acid in these sequences. They evaluated the 
representation capability of unirep on various tasks 
including the prediction of protein stability, seman-
tic similarity, secondary structure, evolutionary and 
functional information. In our study, we constructed 
both 1900- and 5700-dimensional unirep protein 
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embeddings (obtained by averaging and summing 
the output embedding of size 1900 × 3, respectively) 
for sequences in our datasets and evaluated them 
as independent representation methods. The unirep 
model is available at https://​github.​com/​churc​hlab/​
UniRep.

–	 transformer is a deep architecture that utilizes the 
attention mechanism in a way to allow the extraction 
of context without depending on the sequential order 
information in the input samples [78], and it is the 
current state-of-the-art in the representation learn-
ing and generative modelling of natural languages. 
As part of the “Tasks Assessing Protein Embeddings 
(TAPE)” study, Rao et  al. developed a transformer-
based protein representation learning model using 
the Bidirectional Encoder Representations from 
Transformers (BERT) algorithm [27]. This model was 
trained on approximately 32 million protein sequence 
fragments taken from the Pfam domain annotation 
database [68], via masked-token prediction. It was 
also tested on tasks such as secondary structure pre-
diction, contact prediction, remote homology detec-
tion, fluorescence landscape prediction, and stability 
landscape prediction. For each sequence, the model 
returns two different versions of representation vec-
tors: (i) averaged, and (ii) pooled, both in 768-dimen-
sions. We used both of these embeddings in our 
study as independent representation methods. TAPE 
transformer model is accessible at https://​github.​
com/​songl​ab-​cal/​tape.

–	 protvec was developed by Asgari and Mofrad [23] 
as one of the first models used in the construction 
of learned protein embeddings. It was trained on 
546,790 sequences in the UniProtKB/Swiss-Prot 
database using the skip-gram modelling approach, in 
which, given a target residue, the model predicts the 
surrounding amino acids in the sequence. In protvec, 
protein sequences were embedded into 100-D vec-
tors of 3-g subsequences (i.e., 3 consecutively located 
amino acids) as biological words. For characterizing 
biophysical and biochemical properties of sequences, 
these 3-g were analyzed qualitatively and quantita-
tively in terms of mass, volume, van der Waals vol-
ume, polarity, hydrophobicity, and charge. Protein 
feature extraction capability of protvec was also 
evaluated in terms of protein family classification and 
disordered sequence characterization tasks by repre-
senting each protein sequence as the summation of 
100-D vectors of its 3-g. 100-D vector representation 
of protvec can be retrieved from http://​dx.​doi.​org/​10.​
7910/​DVN/​JMFHTN.

–	 seqvec utilizes bi-directional language model archi-
tecture of the “Embeddings from Language Models 

(ELMo)” method for extracting features relevant to 
per-residue and per-protein prediction tasks. Heinz-
inger et  al. developed the seqvec model by training 
on approximately 33 million UniRef50 sequences 
with the goal of predicting the next amino acid in the 
sequence [25]. The authors evaluated the success of 
seqvec on the prediction of secondary structures and 
regions with intrinsic disorder at the residue level, 
and subcellular localization prediction at the protein 
level. 1024-dimensional seqvec protein embeddings 
can be computed using the seqvec data repository at 
https://​github.​com/​rostl​ab/​SeqVec.

Random feature vectors  We constructed dummy feature 
vectors (to be used in baseline prediction models) for per-
formance comparison against real representations, with 
the aim of observing to what degree proteins descriptors 
are utilized by DTI prediction models. The one for pro-
teins, namely random200, is a descriptor that constructs 
a feature vector (with the size of 200 × 1) for each protein 
sequence containing randomly generated continuous val-
ues ranging from 0 to 1 in each dimension.

Compound representations
We employed the (circular) fingerprinting approach, and 
used Extended-Connectivity Fingerprints (ECFPs) as 
feature vectors (representations) of compounds. ECFPs 
are circular topological fingerprints that are widely used 
for molecular characterization, similarity searching, and 
structure–activity relationship modeling. ECFPs repre-
sent the presence of particular substructures by consider-
ing circular atom neighborhoods within a diameter range 
[79]. We constructed 1024-bit ECFP4 fingerprints (cor-
responding to a radius of 2) using RDKit [61], for which 
compound SMILES notations were used as input. As out-
put, a fixed-length binary fingerprint vector was gener-
ated for each compound by applying a hash function on 
its substructures. For the medium- and large-scale PCM 
models, we also generated 1024-bit “random compound 
fingerprints” to be used in dummy (baseline) models for 
evaluating the effect of compound information on DTI 
prediction performances. To be able to simulate ECFP4 
fingerprints more realistically, we adjusted the frequency 
of ones and zeros in the vectors to 0.1 and 0.9, respec-
tively (similar to real ECFP4 feature vectors in our data-
sets) by introducing prior probabilities during vector 
construction.

Modelling approaches
In order to evaluate different protein featurization meth-
ods on DTI prediction, we utilized 2 different modelling 
approaches: (i) target feature-based modelling, and (ii) 

https://github.com/churchlab/UniRep
https://github.com/churchlab/UniRep
https://github.com/songlab-cal/tape
https://github.com/songlab-cal/tape
http://dx.doi.org/10.7910/DVN/JMFHTN
http://dx.doi.org/10.7910/DVN/JMFHTN
https://github.com/rostlab/SeqVec
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PCM modelling. Below, we summarized each approach 
together with the implementation details.

Target feature‑based modelling
In this modelling approach (which is also known as "in 
silico target-fishing” or “reverse-screening based model-
ling" in the literature), we trained an independent DTI 
prediction model for each selected drug/compound 
cluster on small-scale (please see “Dataset construction 
and splitting” section for more information about the 
dataset). Feature vectors of proteins that are in the posi-
tives and negatives dataset of the compound of interest 
are given to the model as input for training and testing. 
Here, the model predicts whether a query protein could 
be the target of the corresponding compound, via binary 
classification. Hence, the system input is solely composed 
of protein features, where compounds are just used as 
labels.

We generated separate models for each protein 
descriptor set using SVM and RF classifiers, as these are 
widely used and well-performing machine learning algo-
rithms. The models are implemented with scikit-learn 
python library [80]. For SVM models, “rbf” kernel was 
applied with optimized C and gamma parameters within 
ranges of [1, 10, 100] and [0.001, 0.01, 0.1, 1], respectively. 
RF models were constructed by adjusting the param-
eters as; number of trees: 200, and the maximum feature 
number: the square root of the total number of features. 
Nested cross-validation (with tenfold inner loop in vali-
dation and fivefold outer loop in testing) was applied for 
model evaluation. In the end, we trained and tested 1935 
RF and 1935 SVM models (i.e., 43 protein descriptor sets 
-including random200- for 9 different drug/compound 
clusters, fivefold outer loop in nested cross validation: 
43*9*5).

Proteochemometric (PCM) modelling
We constructed PCM models for both medium-scale 
and large-scale datasets (please see “Dataset construc-
tion and splitting” section for more information about 
these datasets). Here, we only used the RF regression 
algorithm, since we observed that RF models performed 
better than SVM models in the previous analysis of target 
feature-based modelling. For parameters, we adjusted the 
number of trees to 100 and maximum ratio of features to 
0.33 (corresponding to one third of the total number of 
features).

Here, the task is predicting the actual binding affinity 
(bioactivity) values of the input samples (i.e., compound-
target pairs) in terms of pKd/pChEMBL values. We 
constructed PCM models for 10 conventional protein 
descriptor sets, including apaac, ctdd, ctriad, dde, geary, 
k-sep_pssm, pfam, qso, spmap and taap, and 6 learned 

representations including protvec, seqvec, transformer-
avg, transformer-pool, unirep1900, and unirep5700. 
Since PCM models are based on compound-target pairs, 
protein representations were concatenated with 1024 bits 
ECFP4 representations of compounds to construct the 
finalized input feature vectors.

We generated two baseline models (to be used in both 
medium- and large-scale analysis) by concatenating 
random200 protein feature vectors (size: 200 × 1) with 
(i) real ECFP4 fingerprints, and (ii) random compound 
fingerprints, which are named “random200” and “ran-
dom200-random-ecfp4” models, respectively. Further-
more, we constructed two additional baseline models to 
be used in the large-scale analysis, in which the protein 
features are not utilized at all. In the first one, we used 
the real ECFP4 fingerprint of the compound in the cor-
responding compound-target pair to represent the pair 
(called “only-ecfp4”), and in the second one, we used 
random compound fingerprints of size 1024 × 1 to rep-
resent input pairs (called “only-random-ecfp4”). Thus, we 
trained and tested 18 PCM models for the medium-scale 
analysis using the mDavis kinase dataset (i.e., models 
built on 10 conventional descriptor sets, 6 learned rep-
resentations, and 2 baseline models). For the large-scale 
analysis, we trained and tested models for 20 featuriza-
tion types (10 conventional descriptor sets + 6 learned 
embeddings + 4 baseline models) on 10 protein family-
specific datasets each having 3 versions of train-test split 
folds. Therefore, we constructed 600 PCM models (i.e., 3 
splits * 10 families * 20 types of featurization).

t‑SNE projection of protein representations on large‑scale 
datasets
t-SNE is a non-linear dimensionality reduction technique 
that is frequently employed for the visualization of high 
dimensional datasets [81]. For exploratory analysis of 
protein family-specific large-scale datasets, we applied 
the t-SNE algorithm on the feature vectors of each pro-
tein featurization method and colored nodes according 
to protein (sub)families and train-test fold data points 
in two different analyses. For the application of t-SNE, 
we employed the scikit-learn [80] manifold module with 
default parameters (i.e., 2-D embedding space, perplex-
ity = 30, and Euclidean distance metric). We investigated 
different perplexity values in the range of 40 to 100, and 
decided that the default value performed sufficiently well 
for all projections.

Performance evaluation
The performance of target feature-based classification 
models (in small-scale analysis) was evaluated with accu-
racy, precision, recall, F1-score, and MCC metrics via 
nested cross-validation. F1-score is the harmonic mean 
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of precision and recall; thus, it takes both false positive 
and false negative predictions into account. It is a widely 
used metric that balances precision and recall. However, 
it doesn’t consider true negative predictions and can be 
biased in imbalanced datasets. MCC incorporates all true 
and false predictions into the equation, and it is preferred 
over both accuracy and F1-score due to its robustness 
and reliability, especially in the cases of dataset imbal-
ance [82].

The performance of PCM-based regression models (in 
both medium-scale and large-scale analysis) was evalu-
ated using RMSE and Spearman rank correlation (rs) 
metrics over the hold-out test sets. RMSE computes 
the deviation of predictions from the actual values, and 
lower RMSE scores indicate better model performance. 
Spearman correlation evaluates the relationship between 
the ranks of the predicted and actual values. One of the 
problems related to regression-based prediction mod-
els is that the distribution of predicted values can have 
a shifted average (i.e., the rank of predictions is in cor-
relation with the true labels; however, the mean/median 
prediction value is either higher or lower than the true 
mean). Value-based performance metrics suffer from 
this problem and report underestimated scores. In order 
to handle this problem in the large-scale analysis (where 
the problem is evident), we calculated an additional ver-
sion of RMSE via median correction, so that the median 
value of predictions becomes equal to the median of the 
true value distribution (i.e., the median corrected RMSE 
score).

We also evaluated the results of PCM-based regres-
sion models on the basis of classification, using F1-score 
and MCC metrics. To achieve this in the medium-scale 
analysis (on the mDavis dataset), samples were classified 
as active (1) or inactive (0) based on an activity cut-off 
value of pKd = 7 (i.e., 100 nM in terms of Kd) using the 
RF classification algorithm. For the large-scale analysis 
over protein family-specific datasets, regression-based 
prediction results were converted into binary class and 
multiclass formats, as it was not possible to retrain 600 
models due to high computational requirements. For the 
binary class, median pChEMBL values of the data points 
in the training datasets were used as threshold values to 
separate actives and inactives from each other (i.e., com-
pound-target pairs with bioactivity values higher than the 
median value of the dataset are accepted as actives, and 
the ones equal to or lower than the median are accepted 
as inactives). We also calculated corrected version of 
MCC using the procedure explained above for “median 
corrected RMSE” score, and similarly called this met-
ric the “median corrected MCC”. For the calculation of 
multi-class scores, samples were placed into six different 
classes based on their true pChEMBL values (class1: < 5.0, 

class2: 5.0–5.5, class3: 5.5–6.0, class4: 6.0–6.5, class5: 
6.5–7.0, and class5: ≥ 7.0) and calculated average MCC 
scores over all 6 classes. The reason behind using such a 
variety of performance metrics was to evaluate models 
from as many different aspects as possible.

The equations for the basic versions of these metrics 
are given below:

where Di = R(yi)  −  R(ŷi ); Di denotes the difference 
between ranks of true ( yi ) and predicted ( ̂yi ) values of 
samples with the dataset size n. TP, TN, FP, and FN rep-
resent the total counts of true positive, true negative, 
false positive, and false negative predictions, respectively.

In this study, we used Python (v3) programming lan-
guage, scikit-learn library [80] for the t-SNE projection 
and machine learning applications, NetworkX package 
[62] for splitting protein family-specific datasets, RDKit 
toolkit [61] for compound featurization and clustering, 
POSSUM [47] and PROFEAT [77] web tools as well as 
iFeature stand-alone tool [48] for protein featurization, 
and seaborn [83] and matplotlib [84] libraries for the 
heatmap analysis and data visualization.
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of the protein family specific datasets used in the large-scale analysis. 
Figure S1. t-SNE based visualization of conventional and learned protein 
representations on; (a) enzymes including hydrolases, oxidoreductases, 
proteases, transferases, and other-enzymes, and (b) other protein families 
(non-enzymes) including epigenetic regulators, ion channels, membrane 
receptors, transcription factors and transporters. Figure S2. Bioactivity dis-
tributions of protein family-specific datasets in terms of; (a) random split, 
(b) dissimilar-compound split, and (c) fully-dissimilar split sets, together 
with the median values shown as vertical dashed lines. Figure S3: KS 
distance (between train and test samples) score distributions of (a) apaac, 
and (b) transformer-avg representations among random, dissimilar-com-
pound, and fully-dissimilar splits in the transferases family proteins. Figure 
S4. Clustered heatmaps of different protein representation approaches 
for protein families on (a) the random-split, (b) dissimilar-compound-split, 
and (c) fully-dissimilar-split datasets.

Acknowledgements
Heval Atas Guvenilir has been supported by TUBITAK-BIDEB 2211 and YOK 
100/2000 individual scholarship programs.

Author contributions
TD conceived the idea and conceptualized the study. HAG and TD designed 
the methodology. HAG coded the platform, prepared the datasets, performed 
all data analyses, visualized the results, and prepared the data repository. 

HAG and TD evaluated and discussed the findings. HAG and TD wrote the 
manuscript. TD supervised the overall study. Both authors read and approved 
the final manuscript.

Funding
No funding has been obtained to support this work.

Availability of data and materials
The source code, datasets and the results of this study are available at https://​
github.​com/​HUBio​DataL​ab/​ProtB​ENCH.

Declarations

Competing interests
There are no competing interests to declare.

Author details
1 Biological Data Science Laboratory, Department of Computer Engineering, 
Hacettepe University, Ankara, Turkey. 2 Department of Health Informatics, 
Graduate School of Informatics, METU, Ankara, Turkey. 3 Institute of Informatics, 
Hacettepe University, Ankara, Turkey. 4 Department of Bioinformatics, Graduate 
School of Health Sciences, Hacettepe University, Ankara, Turkey. 

Received: 2 September 2022   Accepted: 30 January 2023

References
	1.	 Rifaioglu AS, Atas H, Martin MJ et al (2019) Recent applications of deep 

learning and machine intelligence on in silico drug discovery: methods, 
tools and databases. Brief Bioinform 20:1878–1912. https://​doi.​org/​10.​
1093/​bib/​bby061

	2.	 Rifaioglu AS, Nalbat E, Atalay V et al (2020) DEEPScreen: high performance 
drug–target interaction prediction with convolutional neural networks 
using 2-D structural compound representations. Chem Sci 11:2531–2557. 
https://​doi.​org/​10.​1039/​C9SC0​3414E

	3.	 Lavecchia A, Di Giovanni C (2013) Virtual screening strategies in drug 
discovery: a critical review. Curr Med Chem 20:2839–2860

	4.	 Cortés-Ciriano I, Ain QU, Subramanian V et al (2015) Polypharmacology 
modelling using proteochemometrics (PCM): recent methodological 
developments, applications to target families, and future prospects. 
Medchemcomm 6:24–50. https://​doi.​org/​10.​1039/​C4MD0​0216D

	5.	 Tabei Y, Pauwels E, Stoven V et al (2012) Identification of chemogenomic 
features from drug–target interaction networks using interpretable clas-
sifiers. Bioinformatics 28:487–494. https://​doi.​org/​10.​1093/​bioin​forma​tics/​
bts412

	6.	 Qiu T, Qiu J, Feng J et al (2017) The recent progress in proteochemomet-
ric modelling: focusing on target descriptors, cross-term descriptors and 
application scope. Brief Bioinform 18:125–136. https://​doi.​org/​10.​1093/​
bib/​bbw004

	7.	 Cereto-Massagué A, Ojeda MJ, Valls C et al (2015) Molecular fingerprint 
similarity search in virtual screening. Methods 71:58–63. https://​doi.​org/​
10.​1016/j.​ymeth.​2014.​08.​005

	8.	 Muegge I, Mukherjee P (2016) An overview of molecular fingerprint simi-
larity search in virtual screening. Expert Opin Drug Discov 11:137–148. 
https://​doi.​org/​10.​1517/​17460​441.​2016.​11170​70

	9.	 Sawada R, Kotera M, Yamanishi Y (2014) Benchmarking a wide range 
of chemical descriptors for drug–target interaction prediction using a 
chemogenomic approach. Mol Inform 33:719–731. https://​doi.​org/​10.​
1002/​minf.​20140​0066

	10.	 Chou K-C (2005) Using amphiphilic pseudo amino acid composition to 
predict enzyme subfamily classes. Bioinformatics 21:10–19. https://​doi.​
org/​10.​1093/​bioin​forma​tics/​bth466

	11.	 Ong SA, Lin HH, Chen YZ et al (2007) Efficacy of different protein descrip-
tors in predicting protein functional families. BMC Bioinformatics 8:300. 
https://​doi.​org/​10.​1186/​1471-​2105-8-​300

	12.	 Van Westen GJP, Swier RF, Cortes-Ciriano I et al (2013) Benchmarking 
of protein descriptor sets in proteochemometric modeling (part 1): 

https://doi.org/10.1186/s13321-023-00689-w
https://doi.org/10.1186/s13321-023-00689-w
https://github.com/HUBioDataLab/ProtBENCH
https://github.com/HUBioDataLab/ProtBENCH
https://doi.org/10.1093/bib/bby061
https://doi.org/10.1093/bib/bby061
https://doi.org/10.1039/C9SC03414E
https://doi.org/10.1039/C4MD00216D
https://doi.org/10.1093/bioinformatics/bts412
https://doi.org/10.1093/bioinformatics/bts412
https://doi.org/10.1093/bib/bbw004
https://doi.org/10.1093/bib/bbw004
https://doi.org/10.1016/j.ymeth.2014.08.005
https://doi.org/10.1016/j.ymeth.2014.08.005
https://doi.org/10.1517/17460441.2016.1117070
https://doi.org/10.1002/minf.201400066
https://doi.org/10.1002/minf.201400066
https://doi.org/10.1093/bioinformatics/bth466
https://doi.org/10.1093/bioinformatics/bth466
https://doi.org/10.1186/1471-2105-8-300


Page 35 of 36Atas Guvenilir and Doğan ﻿Journal of Cheminformatics           (2023) 15:16 	

Modeling performance of 13 amino acid descriptor sets. J Cheminform 
5:41. https://​doi.​org/​10.​1186/​1758-​2946-5-​41

	13.	 Sun M, Wang X, Zou C et al (2016) Accurate prediction of RNA-binding 
protein residues with two discriminative structural descriptors. BMC 
Bioinformatics 17:231. https://​doi.​org/​10.​1186/​s12859-​016-​1110-x

	14.	 Wu D, Huang Q, Zhang Y et al (2012) Screening of selective histone dea-
cetylase inhibitors by proteochemometric modeling. BMC Bioinformatics 
13:212. https://​doi.​org/​10.​1186/​1471-​2105-​13-​212

	15.	 Saravanan V, Gautham N (2015) Harnessing computational biology for 
exact linear B-cell epitope prediction: a novel amino acid composition-
based feature descriptor. OMICS 19:648–658. https://​doi.​org/​10.​1089/​
omi.​2015.​0095

	16.	 Perlman L, Gottlieb A, Atias N et al (2011) Combining drug and gene simi-
larity measures for drug–target elucidation. J Comput Biol 18:133–145. 
https://​doi.​org/​10.​1089/​cmb.​2010.​0213

	17.	 Doǧan T, Güzelcan EA, Baumann M et al (2021) Protein domain-based 
prediction of drug/compound–target interactions and experimental 
validation on LIM kinases. PLoS Comput Biol 17:e1009171. https://​doi.​
org/​10.​1371/​JOURN​AL.​PCBI.​10091​71

	18.	 Yamanishi Y, Pauwels E, Saigo H, Stoven V (2011) Extracting sets of 
chemical substructures and protein domains governing drug–target 
interactions. J Chem Inf Model 51:1183–1194. https://​doi.​org/​10.​1021/​
ci100​476q

	19.	 Doğan T (2018) HPO2GO: prediction of human phenotype ontology term 
associations for proteins using cross ontology annotation co-occur-
rences. PeerJ 6:e5298. https://​doi.​org/​10.​7717/​PEERJ.​5298

	20.	 Doǧan T, Macdougall A, Saidi R et al (2016) UniProt-DAAC: domain 
architecture alignment and classification, a new method for automatic 
functional annotation in UniProtKB. Bioinformatics 32:2264. https://​doi.​
org/​10.​1093/​BIOIN​FORMA​TICS/​BTW114

	21.	 Saini H, Raicar G, Lal S et al (2016) Protein fold recognition using genetic 
algorithm optimized voting scheme and profile bigram. J Softw 
11:756–767. https://​doi.​org/​10.​17706/​jsw.​11.8.​756-​767

	22.	 Unsal S, Atas H, Albayrak M et al (2022) Learning functional properties of 
proteins with language models. Nat Mach Intell 4:227

	23.	 Asgari E, Mofrad MRK (2015) Continuous distributed representation of 
biological sequences for deep proteomics and genomics. PLoS ONE 
10:141287. https://​doi.​org/​10.​1371/​journ​al.​pone.​01412​87

	24.	 Alley EC, Khimulya G, Biswas S et al (2019) Unified rational protein 
engineering with sequence-based deep representation learning. Nat 
Methods 16:1315–1322. https://​doi.​org/​10.​1038/​s41592-​019-​0598-1

	25.	 Heinzinger M, Elnaggar A, Wang Y et al (2019) Modeling aspects of the 
language of life through transfer-learning protein sequences. BMC Bioin-
formatics 20:723. https://​doi.​org/​10.​1186/​s12859-​019-​3220-8

	26.	 Mirabello C, Wallner B (2019) rawMSA: end-to-end deep learning using 
raw multiple sequence alignments. PLoS ONE 14:e0220182. https://​doi.​
org/​10.​1371/​JOURN​AL.​PONE.​02201​82

	27.	 Rao R, Bhattacharya N, Thomas N et al (2019) Evaluating protein transfer 
learning with TAPE. In: 33rd Conference on Neural Information Processing 
Systems

	28.	 Kim PT, Winter R, Clevert DA (2021) Unsupervised representation learning 
for proteochemometric modeling. Int J Mol Sci 22:12882. https://​doi.​org/​
10.​3390/​IJMS2​22312​882/​S1

	29.	 öztürk H, Ozkirimli E, özgür A (2019) WideDTA: prediction of drug-target 
binding affinity. ArXiv 1902:04166

	30.	 Rifaioglu AS, Cetin Atalay R, Cansen Kahraman D et al (2021) MDeeP-
red: novel multi-channel protein featurization for deep learning-based 
binding affinity prediction in drug discovery. Bioinformatics 37:693–704. 
https://​doi.​org/​10.​1093/​BIOIN​FORMA​TICS/​BTAA8​58

	31.	 Dutta A, Dubey T, Singh KK, Anand A (2018) SpliceVec: distributed 
feature representations for splice junction prediction. Comput Biol Chem 
74:434–441. https://​doi.​org/​10.​1016/J.​COMPB​IOLCH​EM.​2018.​03.​009

	32.	 You R, Huang X, Zhu S (2018) DeepText2GO: improving large-scale 
protein function prediction with deep semantic text representation. 
Methods 145:82–90. https://​doi.​org/​10.​1016/j.​ymeth.​2018.​05.​026

	33.	 Strodthoff N, Wagner P, Wenzel M, Samek W (2020) UDSMProt: universal 
deep sequence models for protein classification. Bioinformatics 36:2401. 
https://​doi.​org/​10.​1093/​BIOIN​FORMA​TICS/​BTAA0​03

	34.	 Ain QU, Méndez-Lucio O, Ciriano IC et al (2014) Modelling ligand selectiv-
ity of serine proteases using integrative proteochemometric approaches 
improves model performance and allows the multi-target dependent 

interpretation of features. Integr Biol 6:1023–1033. https://​doi.​org/​10.​
1039/​C4IB0​0175C

	35.	 Van Westen GJ, Swier RF, Cortes-Ciriano I et al (2013) Benchmarking of 
protein descriptor sets in proteochemometric modeling (part 2): mod-
eling performance of 13 amino acid descriptor sets. J Cheminform 5:42. 
https://​doi.​org/​10.​1186/​1758-​2946-5-​42

	36.	 Xu Y, Verma D, Sheridan RP et al (2020) Deep dive into machine learning 
models for protein engineering. J Chem Inf Model 60:2773–2790. https://​
doi.​org/​10.​1021/​acs.​jcim.​0c000​73

	37.	 Lenselink EB, Ten Dijke N, Bongers B et al (2017) Beyond the hype: deep 
neural networks outperform established methods using a ChEMBL 
bioactivity benchmark set. J Cheminform 9:45. https://​doi.​org/​10.​1186/​
s13321-​017-​0232-0

	38.	 Liang S, Yu H (2020) Revealing new therapeutic opportunities through 
drug target prediction: a class imbalance-tolerant machine learning 
approach. Bioinformatics 36:4490–4497. https://​doi.​org/​10.​1093/​bioin​
forma​tics/​btaa4​95

	39.	 Mayr A, Klambauer G, Unterthiner T et al (2018) Large-scale comparison 
of machine learning methods for drug target prediction on ChEMBL. 
Chem Sci 9:5441–5451. https://​doi.​org/​10.​1039/​c8sc0​0148k

	40.	 Wu Z, Ramsundar B, Feinberg EN et al (2018) MoleculeNet: a benchmark 
for molecular machine learning. Chem Sci 9:513–530. https://​doi.​org/​10.​
1039/​C7SC0​2664A

	41.	 Ye Q, Hsieh CY, Yang Z et al (2021) A unified drug–target interaction pre-
diction framework based on knowledge graph and recommendation sys-
tem. Nat Commun 12:1–12. https://​doi.​org/​10.​1038/​s41467-​021-​27137-3

	42.	 Rice P, Longden I, Bleasby A (2000) EMBOSS: the european molecular 
biology open software suite. Trends Genet 16:276–277. https://​doi.​org/​
10.​1016/​S0168-​9525(00)​02024-2

	43.	 Dalke A (2019) The chemfp project. J Cheminformat 11(1):1–21. https://​
doi.​org/​10.​1186/​S13321-​019-​0398-8

	44.	 Darrell T, Kloft M, Pontil M et al (2015) Machine learning with interde-
pendent and non-identically distributed data (Dagstuhl Seminar 15152). 
Dagstuhl Rep. https://​doi.​org/​10.​4230/​DAGREP.​5.4.​18

	45.	 Hengl T, Nussbaum M, Wright MN et al (2018) Random forest as a generic 
framework for predictive modeling of spatial and spatio-temporal vari-
ables. PeerJ 2018:e5518. https://​doi.​org/​10.​7717/​PEERJ.​5518/​SUPP-1

	46.	 Dharani G, Nair NG, Satpathy P, Christopher J (2019) Covariate Shift: 
a review and analysis on classifiers. In: 2019 Global Conference for 
Advancement in Technology, GCAT 2019. https://​doi.​org/​10.​1109/​GCAT4​
7503.​2019.​89784​71

	47.	 Wang J, Yang B, Revote J et al (2017) POSSUM: a bioinformatics toolkit 
for generating numerical sequence feature descriptors based on PSSM 
profiles. Bioinformatics 33:2756–2758. https://​doi.​org/​10.​1093/​bioin​forma​
tics/​btx302

	48.	 Chen Z, Zhao P, Li F et al (2018) iFeature: a Python package and web 
server for features extraction and selection from protein and peptide 
sequences. Bioinformatics 34:2499–2502. https://​doi.​org/​10.​1093/​bioin​
forma​tics/​bty140

	49.	 Cichońska A, Ravikumar B, Allaway RJ et al (2021) Crowdsourced map-
ping of unexplored target space of kinase inhibitors. Nat Commun 
12(1):1–18. https://​doi.​org/​10.​1038/​s41467-​021-​23165-1

	50.	 Hanser T, Barber C, Marchaland JF, Werner S (2016) Applicability domain: 
towards a more formal definition. SAR QSAR Environ Res 27:893–909. 
https://​doi.​org/​10.​1080/​10629​36X20​16125​0229

	51.	 Sahigara F, Mansouri K, Ballabio D et al (2012) Comparison of different 
approaches to define the applicability domain of QSAR models. Mol-
ecules 17:4791. https://​doi.​org/​10.​3390/​MOLEC​ULES1​70547​91

	52.	 Subramanian V, Ain QU, Henno H et al (2017) 3D proteochemometrics: 
using three-dimensional information of proteins and ligands to address 
aspects of the selectivity of serine proteases. Medchemcomm 8:1037. 
https://​doi.​org/​10.​1039/​C6MD0​0701E

	53.	 Cortes-Ciriano I, Van Westen GJP, Lenselink EB et al (2014) Proteochemo-
metric modeling in a Bayesian framework. J Cheminform 6:1–16. https://​
doi.​org/​10.​1186/​1758-​2946-6-​35/​FIGUR​ES/6

	54.	 Doǧan T, Atas H, Joshi V et al (2021) CROssBAR: comprehensive resource 
of biomedical relations with knowledge graph representations. Nucleic 
Acids Res 49:e96. https://​doi.​org/​10.​1093/​nar/​gkab5​43

	55.	 Gaulton A, Hersey A, Nowotka M et al (2017) The ChEMBL database in 
2017. Nucleic Acids Res 45:D945–D954. https://​doi.​org/​10.​1093/​nar/​
gkw10​74

https://doi.org/10.1186/1758-2946-5-41
https://doi.org/10.1186/s12859-016-1110-x
https://doi.org/10.1186/1471-2105-13-212
https://doi.org/10.1089/omi.2015.0095
https://doi.org/10.1089/omi.2015.0095
https://doi.org/10.1089/cmb.2010.0213
https://doi.org/10.1371/JOURNAL.PCBI.1009171
https://doi.org/10.1371/JOURNAL.PCBI.1009171
https://doi.org/10.1021/ci100476q
https://doi.org/10.1021/ci100476q
https://doi.org/10.7717/PEERJ.5298
https://doi.org/10.1093/BIOINFORMATICS/BTW114
https://doi.org/10.1093/BIOINFORMATICS/BTW114
https://doi.org/10.17706/jsw.11.8.756-767
https://doi.org/10.1371/journal.pone.0141287
https://doi.org/10.1038/s41592-019-0598-1
https://doi.org/10.1186/s12859-019-3220-8
https://doi.org/10.1371/JOURNAL.PONE.0220182
https://doi.org/10.1371/JOURNAL.PONE.0220182
https://doi.org/10.3390/IJMS222312882/S1
https://doi.org/10.3390/IJMS222312882/S1
https://doi.org/10.1093/BIOINFORMATICS/BTAA858
https://doi.org/10.1016/J.COMPBIOLCHEM.2018.03.009
https://doi.org/10.1016/j.ymeth.2018.05.026
https://doi.org/10.1093/BIOINFORMATICS/BTAA003
https://doi.org/10.1039/C4IB00175C
https://doi.org/10.1039/C4IB00175C
https://doi.org/10.1186/1758-2946-5-42
https://doi.org/10.1021/acs.jcim.0c00073
https://doi.org/10.1021/acs.jcim.0c00073
https://doi.org/10.1186/s13321-017-0232-0
https://doi.org/10.1186/s13321-017-0232-0
https://doi.org/10.1093/bioinformatics/btaa495
https://doi.org/10.1093/bioinformatics/btaa495
https://doi.org/10.1039/c8sc00148k
https://doi.org/10.1039/C7SC02664A
https://doi.org/10.1039/C7SC02664A
https://doi.org/10.1038/s41467-021-27137-3
https://doi.org/10.1016/S0168-9525(00)02024-2
https://doi.org/10.1016/S0168-9525(00)02024-2
https://doi.org/10.1186/S13321-019-0398-8
https://doi.org/10.1186/S13321-019-0398-8
https://doi.org/10.4230/DAGREP.5.4.18
https://doi.org/10.7717/PEERJ.5518/SUPP-1
https://doi.org/10.1109/GCAT47503.2019.8978471
https://doi.org/10.1109/GCAT47503.2019.8978471
https://doi.org/10.1093/bioinformatics/btx302
https://doi.org/10.1093/bioinformatics/btx302
https://doi.org/10.1093/bioinformatics/bty140
https://doi.org/10.1093/bioinformatics/bty140
https://doi.org/10.1038/s41467-021-23165-1
https://doi.org/10.1080/1062936X20161250229
https://doi.org/10.3390/MOLECULES17054791
https://doi.org/10.1039/C6MD00701E
https://doi.org/10.1186/1758-2946-6-35/FIGURES/6
https://doi.org/10.1186/1758-2946-6-35/FIGURES/6
https://doi.org/10.1093/nar/gkab543
https://doi.org/10.1093/nar/gkw1074
https://doi.org/10.1093/nar/gkw1074


Page 36 of 36Atas Guvenilir and Doğan ﻿Journal of Cheminformatics           (2023) 15:16 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

	56.	 Jasial S, Hu Y, Vogt M, Bajorath J (2016) Activity-relevant similarity values 
for fingerprints and implications for similarity searching. F1000Res 5:591. 
https://​doi.​org/​10.​12688/​f1000​resea​rch.​8357.2

	57.	 The UniProt Consortium (2021) UniProt: the universal protein knowledge-
base in 2021. Nucleic Acids Res 49. https://​doi.​org/​10.​1093/​nar/​gkaa1​100

	58.	 Davis MI, Hunt JP, Herrgard S et al (2011) Comprehensive analysis of 
kinase inhibitor selectivity. Nat Biotechnol 29:1046–1051. https://​doi.​org/​
10.​1038/​nbt.​1990

	59.	 öztürk H, özgür A, Ozkirimli E (2018) DeepDTA: deep drug–target binding 
affinity prediction. Bioinformatics 34:i821–i829. https://​doi.​org/​10.​1093/​
BIOIN​FORMA​TICS/​BTY593

	60.	 Suzek BE, Wang Y, Huang H et al (2015) UniRef clusters: a comprehensive 
and scalable alternative for improving sequence similarity searches. Bioin-
formatics 31:926–932. https://​doi.​org/​10.​1093/​bioin​forma​tics/​btu739

	61.	 Landrum G (2016) RDKit: Open-Source Cheminformatics Software. http://​
www.​rdkit.​org/

	62.	 Hagberg A, Swart P, S Chult D (2008) Exploring Network Structure, 
Dynamics, and Function using NetworkX. United States

	63.	 Blondel VD, Guillaume JL, Lambiotte R, Lefebvre E (2008) Fast unfolding 
of communities in large networks. J Stat Mech Theory Exp 2008:P10008. 
https://​doi.​org/​10.​1088/​1742-​5468/​2008/​10/​P10008

	64.	 Dubchak I, Muchnik I, Mayor C et al (1999) Recognition of a protein fold 
in the context of the SCOP classification. Proteins Struct Funct Genetics 
35:401–407. https://​doi.​org/​10.​1002/​(SICI)​1097-​0134(19990​601)​35:​4<​
401::​AID-​PROT3​>3.​0.​CO;2-K

	65.	 Shen J, Zhang J, Luo X et al (2007) Predicting protein–protein interac-
tions based only on sequences information. Proc Natl Acad Sci USA 
104:4337–4341. https://​doi.​org/​10.​1073/​pnas.​06078​79104

	66.	 Geary RC (1954) The contiguity ratio and statistical mapping. Incorpo-
rated Statist 5:115–146

	67.	 Li ZR, Lin HH, Han LY et al (2006) PROFEAT: a web server for computing 
structural and physicochemical features of proteins and peptides from 
amino acid sequence. Nucleic Acids Res 34:W32–W37. https://​doi.​org/​10.​
1093/​nar/​gkr284

	68.	 El-Gebali S, Mistry J, Bateman A et al (2019) The Pfam protein families 
database in 2019. Nucleic Acids Res 47:D427–D432. https://​doi.​org/​10.​
1093/​nar/​gky995

	69.	 Liu H, Sun J, Guan J et al (2015) Improving compound–protein interac-
tion prediction by building up highly credible negative samples. Bioinfor-
matics 31:i221–i229. https://​doi.​org/​10.​1093/​bioin​forma​tics/​btv256

	70.	 Schneider G, Wrede P (1994) The rational design of amino acid sequences 
by artificial neural networks and simulated molecular evolution: de 
novo design of an idealized leader peptidase cleavage site. Biophys J 
66:335–344

	71.	 Chou K-C (2000) Prediction of protein subcellular locations by incor-
porating quasi-sequence-order effect. Biochem Biophys Res Commun 
278:477–483. https://​doi.​org/​10.​1006/​bbrc.​2000.​3815

	72.	 Sarac OS, Gürsoy-Yüzügüllü O, Cetin-Atalay R, Atalay V (2008) Subse-
quence-based feature map for protein function classification. Comput 
Biol Chem 32:122–130. https://​doi.​org/​10.​1016/j.​compb​iolch​em.​2007.​11.​
004

	73.	 Rifaioglu AS, Doğan T, Saraç ÖS et al (2018) Large-scale automated func-
tion prediction of protein sequences and an experimental case study 
validation on PTEN transcript variants. Proteins Struct Funct Bioinformat 
86:135–151. https://​doi.​org/​10.​1002/​PROT.​25416

	74.	 Dalkiran A, Rifaioglu AS, Martin MJ et al (2018) ECPred: a tool for the 
prediction of the enzymatic functions of protein sequences based on the 
EC nomenclature. BMC Bioinformatics 19:1–13. https://​doi.​org/​10.​1186/​
S12859-​018-​2368-Y/​TABLES/​14

	75.	 Kawashima S, Pokarowski P, Pokarowska M et al (2008) AAindex: amino 
acid index database, progress report 2008. Nucleic Acids Res 36:D202–
D205. https://​doi.​org/​10.​1093/​nar/​gkm998

	76.	 Gromiha MM, Suwa M (2006) Influence of amino acid properties for 
discriminating outer membrane proteins at better accuracy. Biochim Bio-
phys Acta Proteins Proteom 1764:1493–1497. https://​doi.​org/​10.​1016/j.​
bbapap.​2006.​07.​005

	77.	 Zhang P, Tao L, Zeng X et al (2017) PROFEAT update: a protein features 
web server with added facility to compute network descriptors for study-
ing omics-derived networks. J Mol Biol 429:416–425. https://​doi.​org/​10.​
1016/j.​jmb.​2016.​10.​013

	78.	 Vaswani A, Brain G, Shazeer N et al (2017) Attention ıs all you need. In: 
31st Conference on Neural Information Processing Systems

	79.	 Rogers D, Hahn M (2010) Extended-connectivity fingerprints. J Chem Inf 
Model 50:742–754. https://​doi.​org/​10.​1021/​ci100​050t

	80.	 Pedregosa F, Varoquaux G, Gramfort A et al (2011) Scikit-learn: machine 
learning in Python. J Mach Learn Res 12:2825–2830

	81.	 Van Der Maaten L, Hinton G (2008) Visualizing data using t-SNE. J Mach 
Learn Res 9:2579–2605

	82.	 Chicco D, Jurman G (2020) The advantages of the Matthews correla-
tion coefficient (MCC) over F1 score and accuracy in binary classifica-
tion evaluation. BMC Genomics 21:1–13. https://​doi.​org/​10.​1186/​
s12864-​019-​6413-7

	83.	 Waskom M (2021) seaborn: statistical data visualization. J Open Source 
Softw 6:3021. https://​doi.​org/​10.​21105/​joss.​03021

	84.	 Hunter JD (2007) Matplotlib: a 2D graphics environment. Comput Sci Eng 
9:90–95. https://​doi.​org/​10.​1109/​MCSE.​2007.​55

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.12688/f1000research.8357.2
https://doi.org/10.1093/nar/gkaa1100
https://doi.org/10.1038/nbt.1990
https://doi.org/10.1038/nbt.1990
https://doi.org/10.1093/BIOINFORMATICS/BTY593
https://doi.org/10.1093/BIOINFORMATICS/BTY593
https://doi.org/10.1093/bioinformatics/btu739
http://www.rdkit.org/
http://www.rdkit.org/
https://doi.org/10.1088/1742-5468/2008/10/P10008
https://doi.org/10.1002/(SICI)1097-0134(19990601)35:4<401::AID-PROT3>3.0.CO;2-K
https://doi.org/10.1002/(SICI)1097-0134(19990601)35:4<401::AID-PROT3>3.0.CO;2-K
https://doi.org/10.1073/pnas.0607879104
https://doi.org/10.1093/nar/gkr284
https://doi.org/10.1093/nar/gkr284
https://doi.org/10.1093/nar/gky995
https://doi.org/10.1093/nar/gky995
https://doi.org/10.1093/bioinformatics/btv256
https://doi.org/10.1006/bbrc.2000.3815
https://doi.org/10.1016/j.compbiolchem.2007.11.004
https://doi.org/10.1016/j.compbiolchem.2007.11.004
https://doi.org/10.1002/PROT.25416
https://doi.org/10.1186/S12859-018-2368-Y/TABLES/14
https://doi.org/10.1186/S12859-018-2368-Y/TABLES/14
https://doi.org/10.1093/nar/gkm998
https://doi.org/10.1016/j.bbapap.2006.07.005
https://doi.org/10.1016/j.bbapap.2006.07.005
https://doi.org/10.1016/j.jmb.2016.10.013
https://doi.org/10.1016/j.jmb.2016.10.013
https://doi.org/10.1021/ci100050t
https://doi.org/10.1186/s12864-019-6413-7
https://doi.org/10.1186/s12864-019-6413-7
https://doi.org/10.21105/joss.03021
https://doi.org/10.1109/MCSE.2007.55

	How to approach machine learning-based prediction of drugcompound–target interactions
	Abstract 
	Introduction
	Results and discussion
	Exploration of data characteristics
	t-SNE projection of protein families
	Split-based characteristics of protein family-specific datasets
	Pairwise similarity distributions 
	The assessment of the IID assumption 
	t-SNE projection of train-test datasets for three splits 


	Small-scale analysis (target feature-based modelling)
	Medium-scale analysis (PCM modelling)
	Large-scale analysis (PCM modelling)
	Investigation of performance metrics
	Evaluation of protein representations
	Comparison of data splitting strategies
	Examination of baseline models
	Exploration of the prediction similarities between family-specific PCM models
	Applicability domain (AD) analysis of family-specific PCM models


	Conclusions
	Methods
	Dataset construction and splitting
	Small-scale: compound-centric datasets
	Medium-scale: mDavis kinase dataset
	Large-scale: protein family-specific datasets
	Random-split dataset 
	Dissimilar-compound-split dataset 
	Fully-dissimilar-split dataset 


	Types of featurization for proteins and compounds
	Protein representations
	Conventional descriptor sets 
	Learned embeddings 
	Random feature vectors 

	Compound representations

	Modelling approaches
	Target feature-based modelling
	Proteochemometric (PCM) modelling

	t-SNE projection of protein representations on large-scale datasets
	Performance evaluation

	Acknowledgements
	References


