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Abstract 

Molecular representation learning is a crucial task to accelerate drug discovery and materials design. Graph neural 
networks (GNNs) have emerged as a promising approach to tackle this task. However, most of them do not fully con‑
sider the intramolecular interactions, i.e. bond stretching, angle bending, torsion, and nonbonded interactions, which 
are critical for determining molecular property. Recently, a growing number of 3D-aware GNNs have been proposed 
to cope with the issue, while these models usually need large datasets and accurate spatial information. In this work, 
we aim to design a GNN which is less dependent on the quantity and quality of datasets. To this end, we propose a 
force field-inspired neural network (FFiNet), which can include all the interactions by incorporating the functional 
form of the potential energy of molecules. Experiments show that FFiNet achieves state-of-the-art performance on 
various molecular property datasets including both small molecules and large protein–ligand complexes, even on 
those datasets which are relatively small and without accurate spatial information. Moreover, the visualization for 
FFiNet indicates that it automatically learns the relationship between property and structure, which can promote an 
in-depth understanding of molecular structure.

Keywords  Molecular representation learning, Graph neural networks, Force field, Molecular property prediction, 
Protein–ligand binding affinity

Introduction
Molecular representation learning is a fundamental task 
to learning the molecular structure–property relation-
ship. Accurate and effective molecular representations 
have a pivotal role in drug discovery [1] and materials 
design [2] and have drawn increasing attention in the last 

decades [3–5]. In the early days of the study, scientists 
utilized hand-crafted or computed molecular descrip-
tors, like molecular fingerprints [6] and Coulomb matrix 
[7], as inputs and fed them into conventional machine 
learning methods, like random forests [8] (RF) and sup-
port vector machine [9] (SVM). However, the manual 
features are not task-specific and might be easily redun-
dant or insufficient on different tasks. This drawback can 
be attributed to the fact that the method based on man-
ual features is not an end-to-end process. A more natural 
way to represent a molecule is to consider it as a graph, 
consisting of nodes and edges which are defined either 
via a predefined molecular graph or simply by connecting 
atoms that lie within a cutoff distance. Then the molecu-
lar property prediction task can be solved with the help 
of graph representation learning. Recent advances in 
graph representation learning have shown great prom-
ise in applying graph neural networks (GNNs) to model 
graphs. How to update node embeddings by the edges 
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and nodes around the target node (as known as the mes-
sage passing phase) is the core problem of GNNs. Kipf 
and Welling [10] first apply spectral graph convolutions 
to learning node embeddings, so-called graph convolu-
tional network (GCN), and get the best performance on 
many node-level tasks. In addition to GCN, many other 
models use different message passing methods, such as 
graph attention network [11] (GAT) and graph isomor-
phism network [12] (GIN). These GNNs show strong 
competitiveness in many graph-related tasks, such as 
node classification and graph classification. Recent stud-
ies on molecular representation learning attempt to take 
advantage of these powerful GNNs.

In recent years, many effective GNNs in molecular rep-
resentation learning have been developed. They make 
several adaptions in the inputs and network structures 
to make GNNs perform well on molecule datasets. Basi-
cally, these GNNs can be divided into two categories, i.e. 
3D-unaware GNNs and 3D-aware GNNs. As literally, 
3D-unaware GNNs do not utilize the 3D geometry of 
molecules, and they typically take predefined molecular 
graphs as inputs. One of the most famous 3D-unaware 
models is called DMPNN [5], which improves the GNNs’ 
performance on molecular property prediction tasks by 
incorporating bond information in the message pass-
ing phase. However, these 3D-unaware GNNs do not 
consider spatial information, which is very important to 
determine intramolecular interactions, and these inter-
actions often have a close relationship with molecular 
properties. For example, the nonbonded interactions 
between nonbonded atom-pairs play an essential role in 
determining molecular functions and structures [13–15]. 
Although 3D-unaware models can gain the message from 
nonbonded atoms by stacking graph layers, they have to 
struggle with the over-smoothing problem. To tackle the 
limitations of 3D-unaware GNNs, a series of 3D-aware 
GNNs have been developed. These 3D-aware GNNs are 
dedicated to utilizing accurate 3D information to obtain 
more powerful molecular representations. To include 
both bonded and nonbonded interactions, these models 
construct 3D graphs without predefined edges to cap-
ture all the interactions within the cutoff distance. The 
first obstacle that 3D-aware GNNs encounter is how 
to maintain translational and rotational invariance of 
molecular spatial information. There have been many 
attempts for solving this problem. The DTNN [16] and 
SchNet [17] maintain these invariances by computing 
pairwise distance; the DimeNet [18] adds considerations 
of angles between bond pairs by using a directional mes-
sage passing scheme; the SphereNet [19] unifies SchNet 
and DimeNet and establishes a spherical message passing 
scheme using distance, angle, and dihedral. As for expan-
sions of spatial information, the SchNet and DTNN use 

radial basis functions (RBF) to project the distance or 
angle into Gaussian space. DimeNet [18] and SphereNet 
[19] project the spatial information in the solution space 
of the Schrödinger equation, i.e., learnable RBF and 
spherical Bessel functions (SBF). These 3D-aware GNNs 
have shown their excellence in quantum property pre-
diction; however, these models sometimes show worse 
performance than 3D-unaware GNNs, especially on 
datasets that are relatively small and without accurate 
spatial information [20, 21]. This shortage can be attrib-
uted to two reasons. First, these models ignored prede-
fined bonded information, which makes these models 
need a great number of data points to learn the atom-pair 
relationship, such as whether two atoms are bonded or 
nonbonded. Second, these models often expand spatial 
information on a sophisticated space, which makes them 
sensitive to the accuracy of 3D information. When they 
take datasets that do not have accurate information, they 
will magnify this inaccuracy and generate biased molecu-
lar representations. However, the fact is that most labeled 
molecular datasets are relatively small and lack accurate 
spatial information since it is very time-consuming to get 
labeled data points and the best conformers. Therefore, 
it is worth exploring a 3D-aware method that can uti-
lize the most prior knowledge of molecules, while with 
less sensitivity to the accuracy of the 3D information, to 
obtain powerful molecular representations.

In this paper, we construct a force field-inspired neural 
network (FFiNet) that can utilize all the interactions in 
molecules. Force field, which is a simple approximation 
to calculate the potential energy in molecules, divides all 
the interactions in molecules into four parts, i.e., bonded 
interactions, angle bending  interactions, torsion inter-
actions, and nonbonded interactions. Intuitively, these 
interactions can denote the importance of source atoms 
toward target atoms, which can be associated with graph 
attention mechanisms. Following this idea, we construct 
a novel attention-based message passing scheme that 
calculates the importance scores of source atoms within 
three hops according to their interactions with target 
atoms. The proposed model shows state-of-the-art per-
formance on extensive molecular property benchmark 
tasks, even on those small datasets without accurate 
information. Moreover, we also applied our model to 
represent large protein–ligand complexes and predict 
their property (i.e. binding affinity). The result shows that 
FFiNet can outperform all the baselines on the PDBBind 
dataset, which further indicates the competence of FFi-
Net for molecular representation learning. Furthermore, 
the visualization of the learned node features and atten-
tion weights agrees well with the intuition of the relation-
ship between chemical molecular structure and property.
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Results
Network architecture
The force field divides the total potential energy into four 
terms [22]:

where Ebond is the bond stretching energy, Eangle is the 
angle bending energy, Etorsion is the torsional energy, and 
Enonbonded is the nonbonded interaction energy. Figure 1a 
shows a more intuitive explanation. As shown, there is 
bond stretching between bonded atoms, angle bending 
between bonds, torsion angle between two atomic pairs 
(i.e., the dihedral angle between two planes defined by 
pairs of bonds), and nonbonded interactions between 
nonbonded atoms. As previously introduced, the main 
purpose of GNNs is to update node embeddings. There-
fore, Fig. 1a can also be interpreted differently: if the yel-
low node is the node to update embedding, it involves 
the bond stretching with the pink node (1-hop node), 

(1)E = Ebond + Eangle + Etorsion + Enonbonded

the angle bending and nonbonded interactions with the 
green node (2-hop node), and the torsion and nonbonded 
interactions with blue node (3-hop node). From this intu-
ition, we build up the FFiNet model aggregating node 
information and corresponding spatial information from 
nodes within 3-hop instead of only 1-hop to update node 
embeddings (Fig. 1b). Setting the receptive filed of GNNs 
as three hops can not only help include nonbonded infor-
mation, angle, and dihedral information but also reduce 
computational cost compared to global molecular rep-
resentation learning models (such as Graphormer [23]). 
More advantages for setting receptive field as three hops 
can be seen in the Ablation studies section and Addi-
tional file  1: Fig. S2. As shown in Fig.  1b, the message 
passing phase is involved within three hops nodes (i.e. 
1-hop nodes (pink), the 2-hop nodes (green), and the 
3-hop nodes (blue)). The contributions of these nodes to 
the target nodes are measured by two types of attention 
mechanisms, i.e., k-hop attention and axial attention. The 
k-hop attention is to calculate the importance scores with 

Fig. 1  Illustration of the proposed FFiNet model. a Illustration of four types of potential energy terms in a molecule. b Illustration of message 
passing in FFiNet. Message from 1-hop nodes (pink), 2-hop nodes (green), and 3-hop nodes (blue) are used to inform the update to the embedding 
of the carbon atom located at the junction of two rings. c The model structure of FFiNet. The model takes 3D molecular structure as input and 
generates atom features and spatial information. Then the model takes the embedded atom features and spatial information to the k-hop attention 
module and gets k-hop outputs. Positional encoding and axial attention are applied to get the final node embeddings to distinguish the nodes 
from different hops. Finally, the model uses a readout function and a multi-layer perceptron (MLP) to predict molecular properties
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target nodes of source nodes in the same hop by incor-
porating the functional form of intramolecular potential 
energy, and the axial attention is to calculate the scores of 
source nodes in the different hops.

The overall architecture can be seen in Fig. 1c. First, we 
extract the k-hop index of molecules, including the 1-hop 
index of pair nodes (also called edge index), 2-hop index 
of three atoms chain, and 3-hop index of four atoms 
chain. Then the distance, angle, and dihedral can be cal-
culated with the atomic positions and the indexes. To 
include the spatial information in the FFiNet model, we 
refer to the functional form in the force field. Since most 
force fields have a very similar functional form [24–26], 
we choose the widely used OPLS force field [27] to help 
embed the spatial information in the model. The formu-
las of four interaction terms in the OPLS force field are 
listed below.

As shown in Table  1, the embedding basis can be 
extracted from the functional form in the OPLS force 
field. Then, we include the spatial information in the 
k-hop attention mechanism (similar to GATv2 [28], the 
novel variants of GAT) to distinguish the contributions 
of the same hop nodes. The attention mechanism can be 
written as:

where ekij denotes the attention score between the k-hop 
atom j and the target atom i , Ik

(

i, j
)

 denotes the k-hop 
index with i as the target index and j as the source index, 
r denotes the node index in the k-hop index, hr denotes 
the input node representations, ak ,W r ,W k are learn-
able parameters, and mk denotes the embedding basis 
of different hops, i.e. bonded embedding basis for one-
hop nodes, the concatenation of angle and nonbonded 
embedding basis for two-hop nodes, and the concat-
enation of torsion and nonbonded embedding basis for 
three-hop nodes. After the k-hop attention scores are cal-
culated, a softmax function is used to normalize scores 
across the same hop nodes. Since the above attention 
mechanism contains no information about the relative 

(2)

ekij = a
T
k LeakyReLU

((

∑

r∈Ik(i,j)
W rhr

)

⊙ (W kmk)

)

position of different hop nodes, we introduce the posi-
tional encoding module to the input node embeddings. 
We use sine and cosine functions of different frequencies 
as position encodings just like the transformer [29] did, 
and multiply them to the input embeddings. After cal-
culating the normalized attention scores, the new node 
embeddings are generated by a weighted average of the 
node features of the same hop neighbors. Finally, three 
new node embeddings (k-hop outputs) are generated, 
called 1-hop output, 2-hop output, and 3-hop output, 
respectively.

From the intuition that different hop atoms have dif-
ferent forces with the destination atom, we use axial 
attention to determine the contributions of these three 
outputs. We adopt dot production of k-hop outputs and 
input embeddings to get the axial attention score of dif-
ferent hops. Then the node embeddings are updated by 
a weighted sum of these three outputs. After the node 
updating steps are iterated for N steps, a readout func-
tion is applied to aggregate the output embeddings of all 
nodes into a graph-level representation. More precisely, 
we apply weighted sum and max-pooling to the node 
representations and concatenate the results as the graph 
representation. Finally, we use an MLP to give a final 
molecular property prediction. Besides, the model uses 
some performance-improving mechanics, such as resid-
ual connect [30], dropout [31], and layer normalization 
[32]. More detailed information about the FFiNet model 
can be referred to Additional file 1: Note 1.

Performance of methods on the property prediction 
of small molecules
We experiment on ten molecular property benchmarks 
from MoleculeNet [33], including small datasets with-
out spatial information (ESOL, Lipophilicity, FreeSolv, 
BACE, BBBP, ClinTox, Tox21, SIDER, HIV) and large 
datasets with spatial information (QM9). Below, we 
include a short description of these tasks.

•	 ESOL, FreeSolv, Lipophilicity: Regression tasks for 
predicting log water solubility (ESOL), hydration free 

Table 1  The OPLS force field potential energy terms and corresponding embedding basis

r  is bond length, θ is valence angle, and φ is the dihedral angle; other variables are parameters of the force field (specific definitions can be found in Reference [27])

OPLS potential energy terms Embedding basis

Ebond =
∑

bondsKr
(

r − req
)2

{r , r2}

Eangle =
∑

anglesKθ
(

θ − θeq
)2

{θ , θ2}

Etorsion =
∑

dihedrals
Vφ,1
2

[

1+ cos
(

φ + fφ,1
)]

+
Vφ,2
2

[

1− cos
(

2φ + fφ,2
)]

+
Vφ,3
2

[

1+ cos
(

3φ + fφ,3
)]

{cosφ, cos2φ, cos3φ, sinφ, sin2φ, sin3φ}

Enonbonded =
∑

i

∑

j

[

qiqj
rij

+ 4ǫij

(

σ 12
ij

r12ij
−

σ 6
ij

r6ij

)]

fij
{r−1, r−12, r−6

}
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energy of small molecules in water (FreeSolv), and 
octanol/water distribution coefficient (Lipophilicity). 
The datasets have 1128, 642, and 4200 molecules, 
respectively. These datasets represent the molecules 
in SMILES format, which does not include the spatial 
information of molecules.

•	 BACE, BBBP, HIV: Binary classification tasks for pre-
dicting inhibition of human β-secretase 1 (BACE), 
the ability to penetrate the blood–brain (BBBP) inhi-
bition of HIV replication (HIV). The datasets have 
1513, 2039, and 41,127 molecules, respectively. These 
datasets represent the molecules in SMILES format.

•	 QM9: Quantum mechanical properties regression 
tasks with 12 targets. The dataset has 133,885 mol-
ecules and all the molecules in the dataset have accu-
rate spatial information.

•	 ClinTox, Tox21, SIDER: Multi-class classification 
tasks for predicting toxicity (ClinTox, Tox21) and 
sider effects of drugs (SIDER). The datasets have 
1478, 7831, and 1427 molecules, respectively. The 
datasets have 2, 12, and 27 tasks, respectively. These 
datasets represent the molecules in SMILES format.

Many models can be used to give predictions for these 
benchmarks. Basically, these models can be divided into 
descriptors-based methods and graph-based methods. 
In this work, we compare FFiNet with multiple methods, 
including (1) SVM and RF, which are traditional machine 
learning (ML) tools for classification and regression; (2) 
GIN [12], GCN [10], which are commonly used GNNs 
for graph representation learning; (3) GATv2 [28], which 
is a novel graph attention network with more expressive 
dynamic attention than original GAT; (4) DMPNN [5], 
which is a well-designed GNN for molecular property 
prediction. (5) DimeNet [18], which is a recent excellent 
method for modeling on 3D molecule graphs. In order 
to give a comparison with these baseline models, root 
mean square error (RMSE) and area under the receiver 
operating characteristic curve (ROC-AUC) are applied to 
evaluate the performance of the models on the regression 
tasks (except QM9) and classification tasks, respectively. 
Following the most recent works [17, 34, 35], we report 
the mean absolute error (MAE) on QM9 dataset. The 
results of the proposed FFiNet model and various base-
line models on the selected benchmark datasets are listed 
in Tables  2 and 3. It can be seen that the graph-based 
methods perform better than the ML-based methods on 
most benchmarks. Unlike the ML-based methods can 
only operate on given molecule features, the graph-based 
methods can generate task-specific molecule features by 
aggregating atom features.

Tables 2 and 3 shows that the proposed FFiNet model 
performs better than the GATv2, GIN, GCN, and 

DMPNN models on all the datasets. A possible explana-
tion might be that the latter models do not consider spa-
tial information and nonbonded interactions. Although 
the traditional GNNs can get the message from non-
bonded atoms by stacking layers, they usually only aggre-
gate the message from no more than five hops atoms 
due to the problem of over-smoothing [36–38]. Besides, 
their message passing scheme only propagates messages 
along with chemical bonds, which is inconsistent with 
the intuition that atoms can interact with others with-
out chemical bonds. Compared with 3D-unaware GNNs, 
the FFiNet can leverage spatial information and include 
nonbonded interactions explicitly. As for 3D-aware 
GNNs, although DimeNet outperforms other models on 
the QM9 dataset which is large and has accurate spatial 
information, it does not perform better on small datasets 
without accurate spatial information than the FFiNet, 
even compared with the traditional 3D-unaware GNNs. 
The reason why DimeNet performs better than FFiNet on 
the QM9 dataset can be attributed to the simple expan-
sion of spatial information in FFiNet, which, however, 
also means our model is less sensitive on accurate 3D 
molecular geometry. Moreover, since DimeNet loses the 
predefined bonded information, they need a number of 
data points to learn this information, leading to bad per-
formance on small datasets.

Performance of methods on the property prediction 
of protein–ligand complexes
Apart from molecular property prediction of small mol-
ecules, the prediction of protein–ligand binding affinity is 
also of vital importance in computational drug discovery 
[39]. The first step of predicting protein–ligand proper-
ties is to get protein–ligand complex representations. In 
the early days of molecular representation study, scien-
tists first generate protein–ligand descriptors including 

Table 2  Performance comparison on property prediction of 
small molecules (regression tasks)

The SOTA results are shown in bold. Standard deviations are in brackets
a As SVM on QM9 is too time-consuming, we could not finish on time

Metric RMSE ↓ MAE ↓

Dataset ESOL Lipophilicity FreeSolv QM9

SVM 1.128 (0.081) 0.785 (0.032) 2.283 (0.324) –a

RF 1.206 (0.034) 0.859 (0.030) 2.093 (0.566) 14.584 (0.047)

GATv2 0.578 (0.031) 0.618 (0.014) 1.017 (0.122) 3.449 (0.146)

GIN 0.619 (0.044) 0.756 (0.007) 1.136 (0.235) 4.972 (0.263)

GCN 0.778 (0.101) 0.899 (0.035) 1.582 (0.325) 10.158 (0.236)

DMPNN 0.665 (0.052) 0.596 (0.050) 1.167 (0.150) 3.101 (0.010)

DimeNet 0.730 (0.154) 0.699 (0.096) 0.890 (0.191) 0.748 (0.065)
FFiNet 0.551 (0.030) 0.579 (0.022) 0.756 (0.138) 1.803 (0.102)
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atom features or intermolecular features [40, 41], then 
they introduce these features into traditional machine 
learning methods (such as RF and SVM) or modern 
deep learning methods (such as OnionNet [41]) to give 
the final prediction. To achieve end-to-end predictions, 
Pafnucy [42] treats a protein–ligand complex as a 3D 
grid and uses a 3DCNN to predict its binding affinity. 
With the development of GNNs, GraphDTA [43] repre-
sents a protein–ligand complex as the combination of a 
ligand graph and a protein sequence, and applies GNNs 
and convolutional neural networks (CNNs), respec-
tively. With the development of 3D-aware GNNs, SIGN 
[44] constructs complex interaction graphs based on 
atom positions and cutoff distance. The model, including 
polar-inspired graph attention layers and pairwise inter-
active pooling, can achieve SOTA performance on affin-
ity predictions. To demonstrate the extensibility of our 
model, we construct complex graphs which do not lose 
bonded information (as shown in Fig. 2a). We merge pre-
defined protein graphs and predefined ligand graphs by 
generating nonbonded edges if their atom-pair distance 
is less than the cutoff threshold of 5  Å. This cutoff dis-
tance has been proved an appropriate distance to achieve 
a trade-off between better molecular representations and 
less computational cost [44]. In order not to change the 
basic structure of FFiNet, we concatenate nonbonded 
edges and bonded edges as total edge index and distin-
guish them by edge attribute indicators. As for the atten-
tion scores of nonbonded edges, we use the nonbonded 
basis for their nonbonded distances.

Herein, we use a well-known protein–ligand binding 
affinity benchmark (PDBBind) [45] to evaluate the perfor-
mance of our model and baselines. PDBBind benchmark 
is a regression task for predicting binding affinities for 
bio-molecular complexes. The dataset provides detailed 
3D Cartesian coordinates of atoms in both ligands and 
their target proteins. In our experiment, we choose dif-
ferent examples of the refined set (4057 complexes) and 

core set (290 complexes) to train the FFiNet model and 
the core set with the best quality as the test set. We use 
four evaluation metrics in our experiments, i.e. RMSE, 
MAE, Pearson correlation coefficient (R), and the stand-
ard deviation (SD) introduced in Pafnucy [42]. The per-
formance of all baselines is from Li et al. [44].

As shown in Fig.  2b and c, the predicted and experi-
mental values are highly correlated and their distributions 
are consistent on the validation and test sets, highlighting 
the impressive predictive capacity of the FFiNet model. 
To be more expressive, we list performance compari-
sons of various models in Table 4. As shown in Table 4, 
FFiNet can achieve SOTA performance on the PDBBind 
dataset. This is because our model is able to retain prior 
knowledge of the complexes to the greatest extent possi-
ble, such as spatial information, bonded information, and 
nonbonded information. Moreover, the protein–ligand 
binding affinity is dominated by nonbonded interactions 
such as Van der Waals forces and hydrogen bonds [46]. 
Therefore, the FFiNet with the explicit consideration of 
nonbonded interactions can perform well on the PDB-
Bind dataset, which also indicates that the FFiNet could 
be easily transferred to predict other biomacromolecules 
or protein–protein complexes properties.

Ablation studies
Since our model makes several changes compared with 
the previous GNNs, we do some ablation experiments to 
verify the necessity of each added module (Table 5). To 
study the effect of the proposed k-hop attention mecha-
nism, we remove the 3-hop attention (the model called 
FFiNet-2hop) or remove both the 2-hop attention and 
the 3-hop attention (the model called FFiNet-1hop), then 
test their performance on all the datasets in this work. 
As shown, the model performances increase in the order 
from FFiNet-1hop, FFiNet-2hop to FFiNet on most data-
sets. The result proves that the 2-hop and 3-hop atten-
tion can help increase the model performance. To study 

Table 3  Performance comparison on property prediction of small molecules (classification tasks)

The SOTA results are shown in bold. Standard deviations are in brackets

Metric ROC-AUC ↑

Dataset BACE BBBP HIV Tox21 SIDER ClinTox

SVM 0.811 (0.054) 0.829 (0.060) 0.627 (0.009) 0.822 (0.006) 0.682 (0.013) 0.669 (0.092)

RF 0.815 (0.049) 0.790 (0.062) 0.645 (0.015) 0.769 (0.015) 0.684 (0.009) 0.713 (0.056)

GATv2 0.843 (0.035) 0.893 (0.021) 0.818 (0.012) 0.840 (0.026) 0.618 (0.036) 0.694 (0.146)

GIN 0.850 (0.031) 0.890 (0.007) 0.786 (0.031) 0.824 (0.015) 0.619 (0.009) 0.753 (0.132)

GCN 0.829 (0.037) 0.895 (0.003) 0.752 (0.020) 0.788 (0.025) 0.624 (0.019) 0.615 (0.013)

DMPNN 0.878 (0.032) 0.913 (0.026) 0.816 (0.023) 0.845 (0.015) 0.646 (0.016) 0.894 (0.027)

DimeNet 0.832 (0.023) 0.822 (0.040) 0.724 (0.016) 0.758 (0.019) 0.626 (0.008) 0.738 (0.020)

FFiNet 0.891 (0.016) 0.916 (0.012) 0.828 (0.010) 0.852 (0.009) 0.656 (0.017) 0.919 (0.021)
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Fig. 2  FFiNet on PDBBind v2016. a FFiNet constructs a complex graph by adding nonbonded edges if the atoms in protein and the atoms in 
ligand are close enough. b FFiNet-predicted pKa against the experimentally measured pKa on the validation set. c FFiNet-predicted pKa against the 
experimentally measured pKa on the core (test) set

Table 4  Performance comparison on PDBBind 2016

The SOTA results are shown in bold. Standard deviations are in brackets

Method PDBBind 2016

RMSE ↓ MAE ↓ SD ↓ R ↑

ML-based methods RF 1.446 (0.008) 1.161 (0.007) 1.335 (0.010) 0.789 (0.003)

SVR 1.555 (0.000) 1.264 (0.000) 1.493 (0.000) 0.727 (0.000)

CNN-based methods OnionNet 1.407 (0.034) 1.078 (0.028) 1.391 (0.038) 0.768 (0.014)

Pafnucy 1.585 (0.013) 1.284 (0.021) 1.563 (0.022) 0.695 (0.011)

GraphDTA methods GCN 1.735 (0.034) 1.343 (0.037) 1.719 (0.027) 0.613 (0.016)

GAT​ 1.765 (0.026) 1.354 (0.033) 1.740 (0.027) 0.601 (0.016)

GIN 1.640 (0.044) 1.261 (0.044) 1.621 (0.036) 0.667 (0.018)

GAT-GCN 1.562 (0.022) 1.191 (0.016) 1.558 (0.018) 0.697 (0.008)

GNN-based methods DMPNN 1.493 (0.016) 1.188 (0.009) 1.489 (0.014) 0.729 (0.006)

DimeNet 1.453 (0.027) 1.138 (0.026) 1.434 (0.023) 0.752 (0.010)

SIGN 1.316 (0.031) 1.027 (0.025) 1.312 (0.035) 0.797 (0.012)

Ours FFiNet 1.310 (0.012) 1.056 (0.006) 1.304 (0.014) 0.801 (0.005)
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the effect of the proposed axial attention mechanism, 
we remove the axial attention in the model; instead, we 
simply sum k-hop outputs to get the final node embed-
ding (the modified model called FFiNet-no-axial). Table 5 
shows that the FFiNet-no-axial model performs worse 
than FFiNet on all datasets. The result can be attributed 
to that simply summation does not consider the differ-
ent contributions from nodes of different hops. However, 
with axial attention, the model can distinguish different 
hops contributions by assigning different scores to k-hop 
outputs.

Model interpretation
The FFiNet has achieved state-of-the-art performance 
on a variety of molecular prediction tasks. Therefore, it 
is worth investigating the interpretability of the model. 
Model interpretation can help us find how the model 
learns the molecule representations and what happened 
during the model learning process. Although neural net-
works are often called “black boxes”, we can explore the 
interpretability of the model by visualizing the features 
and attention weights. Taking the lipophilicity dataset 
as an example, we choose some molecules to visual-
ize atom similarity, atom contributions, and attention 
weights (Fig. 3). Since the GNN models learn mainly by 
updating the node embeddings, the final node embed-
dings are essential for predicting molecular property. 
To explore whether the model has learned some pattern 
after the message passing phase, we plot the heat map of 
the atom similarity matrix by calculating the Pearson cor-
relation coefficient between atom pairs (Fig. 3a). Taking 
the molecular structure of 2-(phenoxy)-1-phenyletha-
none as an example, we can find that there are two parts 
with high values in the matrix. The part shown in the red 
square corresponds to the area highlighted in red in the 
molecule, and the part shown in the green square corre-
sponds to the areas highlighted in green in the molecule. 
This pattern clearly suggests that the model can distin-
guish the benzene rings and the carbon–oxygen chain 
after training. In addition to this molecule, more exam-
ples of atom similarity heat maps are shown in Additional 

file 1: Figs. S3–5, which provide further evidence that the 
FFiNet can distinguish functional groups in molecules.

Figuring out which parts of a molecule play a more 
important role in a certain property is helpful for the 
chemist to design molecules with the desired property 
and learn the nature of the property. Since our model 
uses weighted sum pooling and max pooling as readout 
functions, the weight that each atom obtained can rep-
resent the importance of atoms for a certain property 
to some degree. Taking the lipophilicity property as 
an example, we plot a heat map over molecules show-
ing the atom contributions to the property (Fig.  3b). 
As shown, for the molecule above, the chlorine atom 
shows the largest atomic contribution; for the mole-
cule below, the chlorine atom and the secondary amine 
atom shows large atomic contribution values. These 
findings are consistent with that of Wildman et al. [47] 
who use the atomic contributions method to give a 
prediction of lipophilicity. Their results show that the 
chlorine atom has a large positive value of contribu-
tion for lipophilicity and the secondary amine atom 
has a large negative value of the contribution. And as 
Fig.  3b shows, the partition coefficient (LogP) which 
describes the lipophilicity of molecule of the mole-
cule above and the molecule below are 2.68 and 0.38, 
respectively. This consistency indicates that the FFiNet 
can correctly assess the importance of atoms to the 
molecular property. Additional examples can be found 
in Additional file 1: Fig. S6. To further explore how the 
attention mechanisms in FFiNet work, we multiply the 
axial attention weights and k-hop attention weights 
between the target atom and the query atoms as total 
attention weights, then plot the attention weights 
between the target atom (denoted by a blue penta-
gram) and the atoms within 3-hop on different heads 
(Fig.  3c). As shown, Head-6, Head-3, and Head-2 give 
higher weights to 1-hop atoms, 2-hop atoms, and 3-hop 
atoms, respectively. The result indicates that the target 
atom gets comprehensive information about the sur-
rounding atoms by assigning different attention weights 
to different heads in FFiNet.

Table 5  Ablation studies

The SOTA results are shown in bold. Standard deviations are in brackets

Method Regression tasks (RMSE)
(RMSE, lower is better)

Classification tasks
(ROC-AUC, higher is better)

ESOL Lipophilicity FreeSolv PDBBind BACE BBBP

FFiNet-no-axial 0.638 (0.048) 0.603 (0.037) 1.019 (0.283) 1.624 (0.045) 0.869(0.010) 0.847 (0.021)

FFiNet-1hop 0.614 (0.047) 0.685 (0.088) 0.951 (0.010) 1.437 (0.031) 0.876 (0.024) 0.897 (0.015)

FFiNet-2hop 0.607 (0.039) 0.648 (0.076) 0.808 (0.148) 1.392 (0.044) 0.856 (0.022) 0.907 (0.019)

FFiNet 0.551 (0.030) 0.579 (0.022) 0.756 (0.138) 1.310 (0.012) 0.891 (0.016) 0.916 (0.012)
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Conclusion
Molecular property is of vital importance in various 
fields, e.g., pharmaceutical and chemical engineering. 
There have been many attempts at the accurate predic-
tion of molecular properties. Early attempts use molecule 
descriptors as input features and feed them into RF, SVM, 
or neural networks (NN). However, the generation of 
descriptors is time-consuming, and the descriptors-based 
methods cannot obtain satisfactory results due to the 
unchanged molecule representation. Recently, more and 
more research has been on applying machine learning 
to graphs, and many graph-based network architectures 
have been constructed, e.g., GCN, GAT, GIN. However, 
these models are designed mainly for citation graphs and 
knowledge graphs, which are not mainly designed for 
molecular representation learning. To this end, a series 
of well-designed GNNs are proposed for molecular prop-
erties, e.g., DMPNN, DimeNet. However, these models 
also do not uncover all the information about a molecule. 
Some of them lose spatial information, and some of them 
lose bonded or nonbonded information.

In this work, we construct a theory-guided network 
based on the force field. Inspired by the force field, we 
devise an attention network including all the interactions 

in a molecule, i.e., bonded and nonbonded interactions. 
The bonded interactions include bond stretching, angle 
bending, and torsion, corresponding to spatial informa-
tion of distance, angle, and dihedral. We utilize the spa-
tial information with guidance from the functional form 
in the force field to include all these intramolecular inter-
actions. Since FFiNet is less sensitive to the accuracy of 
spatial information, it enables quick screening for those 
molecules without accurate spatial information. In con-
trast to other tested models, FFiNet performs well across 
a wide range of molecular property prediction tasks. 
Even in the task with large molecule graphs, the model 
can also perform well. Moreover, the visualization of the 
hidden state, atom contributions, and attention weights 
provides access to model interpretation. The results indi-
cate that our theory-based model has the interpretability 
to relate property with molecular structure.

Our FFiNet can easily extend to other complex tasks, 
such as protein–protein interactions prediction or DNA-
binding proteins prediction. These tasks need a model 
that has a sizeable receptive field and can model intramo-
lecular interactions since their molecular size is very large 
and the nonbonded interactions often play a leading role 
in the properties. One potential limitation of the model 

Fig. 3  Visualization of FFiNet. a Heat maps of the atom similarity matrix for the compound 2-(phenoxy)-1-phenylethanone. The atom similarity 
is obtained by calculating the Pearson correlation coefficient for the output state vectors of the final layer. The atoms in the molecule are 
automatically separated into two clusters after training. The part shown in the red square corresponds to the area highlighted in red in the 
molecule, and the part shown in the green square corresponds to the areas highlighted in green in the molecule. b The atomic contributions for 
the lipophilicity. The chlorine atom in the first molecule and the secondary amine atom in the second molecule get the most weight. The LogP of 
the molecule above and the molecule below are 2.68 and 0.38, respectively. c The attention weights of the atoms within 3-hop of the target atom. 
The target atom is denoted by a blue pentagram. Different attention heads can perceive the message of atoms at different hops
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is that in our message passing phase, a node involves two 
attention mechanisms, which need more parameters. 
Therefore, our following work is to find a generic global 
attention mechanism which can distinguish different hop 
nodes and nodes in the same hop with spatial informa-
tion. All in all, the design philosophy of our model has 
great potential for driving the development of molecular 
representation learning.

In addition, FFiNet has great potential to cover other 
more specific tasks by changing the applied force field. 
By extracting the embedding basis from other functional 
forms of force fields, it is simple to utilize other force 
fields for better representations of a certain class of mol-
ecules. For example, when the task is about macromol-
ecules (such as the property prediction task of proteins), 
the functional form of CHARMM [48] and OPLS-AA 
[49] could be utilized to embed spatial information. 
When studying the property of the condensed phase, the 
functional form of GROMOS [50] can provide a potential 
embedding basis for better predictions. Meanwhile, in 
this work, the function of force fields in FFiNet is mainly 
to provide a series of embedding basis for spatial infor-
mation. Future work could consider using the force field 
parameters to help obtain more powerful molecular rep-
resentations with more prior knowledge.

Methods
Since the datasets except PDBBind and QM9 do not pro-
vide the 3D structure of molecules, we generate atom 
positions with the fast ETKDG method [51]. Although 
this method cannot give the best conformer for a mol-
ecule, it is very fast for conformer generation and con-
ducive to large-scale molecule screening. We chose 
the atomic number, formal charge, chirality, number of 
bonded hydrogens atoms, hybridization, aromaticity, 
atomic mass, and hydrogen bond information as input 
atom features (detailed information can be seen in Addi-
tional file  1: Table  S1), and all molecular manipulations 
were handled using RDKit and Pybel [52]. The 1-hop 
index, 2-hop index, and 3-hop index are generated by 
networkx [53]. After generating atom features, atom 
positions, and the indexes, the datasets are randomly 
split into train set, validation set, and test set with a split 
ratio of 8:1:1. The FFiNet model was implemented using 
PyTorch Geometric (PyG) [54] and PyTorch. In the train-
ing process, we optimize the model using Adam [55] with 
128 molecules per mini-batch. We use early stopping 
[56] to avoid overfitting and reduce training time con-
sumption. To give a fair comparison with the baselines, 
three independent runs with different random seeds are 
performed. Besides, we use the same input features for 
GATv2, GIN, GCN and the same training protocol for all 
GNNs. Since RF and SVM can only process tabular data, 

the Morgan fingerprint is generated to feed the models. 
The graph-based baselines are all implemented by Deep-
Chem [57], and ML-based baselines were implemented 
by scikit-learn [58]. We use Bayesian optimization for 
hyperparameters search by using Hyperopt [59] package. 
The search space of FFiNet and baselines are shown in 
Additional file 1: Tables S2 and S3.
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