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Abstract 

Protein mutations, especially those which occur in the binding site, play an important role in inter-individual drug 
response and may alter binding affinity and thus impact the drug’s efficacy and side effects. Unfortunately, large-scale 
experimental screening of ligand-binding against protein variants is still time-consuming and expensive. Alternatively, 
in silico approaches can play a role in guiding those experiments. Methods ranging from computationally cheaper 
machine learning (ML) to the more expensive molecular dynamics have been applied to accurately predict the muta-
tion effects. However, these effects have been mostly studied on limited and small datasets, while ideally a large data-
set of binding affinity changes due to binding site mutations is needed. In this work, we used the PSnpBind database 
with six hundred thousand docking experiments to train a machine learning model predicting protein-ligand binding 
affinity for both wild-type proteins and their variants with a single-point mutation in the binding site. A numerical 
representation of the protein, binding site, mutation, and ligand information was encoded using 256 features, half of 
them were manually selected based on domain knowledge. A machine learning approach composed of two regres-
sion models is proposed, the first predicting wild-type protein-ligand binding affinity while the second predicting the 
mutated protein-ligand binding affinity. The best performing models reported an RMSE value within 0.5 − 0.6 kcal/
mol-1 on an independent test set with an R2 value of 0.87 − 0.90. We report an improvement in the prediction perfor-
mance compared to several reported models developed for protein-ligand binding affinity prediction. The obtained 
models can be used as a complementary method in early-stage drug discovery. They can be applied to rapidly obtain 
a better overview of the ligand binding affinity changes across protein variants carried by people in the population 
and narrow down the search space where more time-demanding methods can be used to identify potential leads 
that achieve a better affinity for all protein variants.

Keywords  Binding affinity, Mutation effect, SNP, Binding site, Machine learning, Feature engineering, Predictive 
model, Random forest

Introduction
Approved drugs on the market show more side effects 
and variable efficacy in clinical practice than in the ran-
domized control trials (RCT) that form the basis of 
their approval. RCT conducts trials on highly selective 
groups of people, and it is performed under tightly con-
trolled settings. RCTs follow the assumption that the 
research results of the selected sample of people resem-
ble the entire sampled population [1]. Moreover, studies 
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showed that marketed drugs have not been as effective 
as expected for 40–70% of patients, with clinical prac-
tice showing them to have insufficient efficacy [2]. Fur-
thermore, drugs that have a low therapeutic index TI (the 
lethal dose in 50% ( LD50 ) of animal population over the 
effective dose in 50% ( ED50 ) of animal population) and a 
narrow margin of safety (TI value close to one) tend to 
result in a higher number of patients developing severe 
adverse side effects and experiencing toxicity [3]. The 
observation of large variability in drug response among 
patients and susceptibility to side effects requires a shift 
towards precision medicine [4].

Therefore, over the last 50 years, pharmacogenom-
ics has studied the genetic basis for inter-individual 
drug response variability [5]. Many factors are involved 
in patient-drug response including environmental and 
behavioral factors. At the same time, genetic factors also 
play an essential role [3]. Genetic factors that can have 
functionally substantial consequences on drug response 
are numerous. For example, they include the genetic vari-
ants’ effects on protein structure and stability, DNA tran-
scription, and mRNA regulation [5]. Studies have shown 
that 80% of patients carry at least one functional variant 
in the drug targets of the top 100 commonly prescribed 
drugs in the United States [6].

Many studies [7–13] have shown relations between sin-
gle nucleotide polymorphisms SNPs and drug response 
and toxicity. For example, a 2019 study identified novel 
SNPs associated with severe toxicity of 5-FU, a com-
mon chemotherapeutic agent. A change in the binding 
of DPYD repressor to the SNP rs72728443 suggests a 
mechanism by which liver DPYD, a detoxifying enzyme 
that metabolizes 5-FU, expression is decreased [7]. 
Another study showed that eight positions in the CCR5 
receptor have SNPs that suggest altered responses in 
patients treated for HIV infection [8]. In the same study, 
ligand binding affinity to 24 GPCR receptors with 49 
experimentally tested mutations was assessed. A five-fold 
change in the affinity or potency was shown to at least 
one of the tested ligands. The Manish et al. study in 2019 
showed that Cytochrome P450 2C9 includes 6 SNPs 
associated with the variable enzyme activity of tamox-
ifen [9]. The review of Oliveira-Paula et  al. mentioned 
that the common SNP rs1801253 (Arg389Gly) contained 
in the beta1-adrenergic receptor ADRB1, the main tar-
get for all beta-blockers, resulted in better blood pres-
sure response to metoprolol for patients carrying the Arg 
allele [10]. Bessman et al. showed that epidermal growth 
factor (EGF) protein receptor expressed an increase in 
ligand binding affinity due to mutations in glioblastoma 
[11]. Toy et  al. suggested that ligand-binding domain 
mutations in the estrogen receptor (ESR1) mediate clini-
cal resistance to hormonal therapy in breast cancer [12]. 

Lastly, Fanning et  al. also demonstrated that somatic 
mutations in ESR1 lead to anti-estrogen endocrine ther-
apy resistance [13].

The variation in drug-response at the protein level 
and its underlying mechanisms are of significant inter-
est in developing new drugs with an estimate of six SNPs 
affecting five different FDA-approved drugs carried by 
every individual [14]. Hence, being able to predict the 
effect of mutations on drug-protein interactions has a 
notable benefit in drug discovery. SNPs may occur any-
where in the protein and not all of them lead to muta-
tions on the amino acid level since the 20 proteinogenic 
amino acids can be encoded by 64 nucleotide triplets or 
codons. Moreover, even when an amino acid is mutated 
into another one, the location of the mutation, its type 
and the role that amino acid plays in the protein struc-
ture and function largely affects the impact of such a 
mutation. Hence, the changes in the protein resulting 
from a single amino acid substitution maybe too small to 
be reflected on the protein level, and for drug-binding, 
those mutations that occur in the binding site are the 
most likely to influence the binding affinity.

Having such a model will save time and costs for virtual 
screening and, at the same time, give the ability to screen 
the ligand against the target protein with all known bind-
ing site variants. Hence, it will report more realistic bind-
ing affinity, capture a wide range of populations’ genetic 
makeup, and help develop drugs that show more consist-
ent efficiency across different populations. Being able to 
predict mutation effects would also help in the area of 
precision medicine where drugs and doses can be cho-
sen following the genetic makeup of the patient to avoid 
adverse side effects and maximize the drug response.

Related work
The problem of predicting mutation’s effect on protein 
structure and function is well studied in the literature 
with a scope ranging from predicting mutation effect on 
protein sequence [15–17] to 3D mapping of mutations 
onto protein structures with visualization and highlight-
ing their impact [18, 19]. Many studies focused on SNP-
related problems like their effect on protein-protein 
binding interactions [20], transcription factor binding 
[21–23], cell signaling [24, 25] and protein stability [26–
29]. However, the specific impact of missense mutations 
in the binding site on protein-ligand binding affinity is 
much less covered. Also, studies often focus on a small 
set of mutations in a specific target protein. In the fol-
lowing paragraph, we highlight some of the related works 
that studied protein-ligand binding affinity or mutations’ 
effect on it.

 Choudhury et al. used a data mining approach to inte-
grate multiple resources to identify single-nucleotide 
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variants (SNV) that occur at drug-binding sites and 
their effects. They used data sources including data-
sets for genetic and clinical variations, chemical struc-
tures, drugs, protein-ligand structure complexes, and 
drug targets [30]. Schneider et  al. proposed a machine 
learning random forest regression model to predict 
the protein-ligand binding affinity using structure and 
ligand descriptors. The model achieved a correlation 
coefficient of 0.73 on the internal test set [31]. How-
ever, this study did not incorporate mutation effects on 
the binding affinity, but their approach is relevant to our 
research goals. Shaikh et  al. used a proteochemometric 
modeling approach to predict drug-target interactions 
using machine learning models. The authors formulated 
the problem as a classification problem where positive 
instances are protein-ligand complexes with ligand’s 
activity value equal to or larger than 1 µ M against the 
protein target. The features used to train the models 
included sequence and structure-based descriptors for 
proteins, structural descriptors for the binding pocket as 
implemented in FuzCav fingerprint, and Morgan circular 
fingerprint as ligand descriptors with the highest AUC 
being 89% [32]. Pires et  al. used a Gaussian processes 
machine learning approach to predict protein-ligand 
binding affinity (the method called CSM-lig). They used 
cutoff scanning matrix (CSM), a graph-based signature, 
to represent the 3D structural environment of proteins 
and ligands [33]. The same authors presented in a dif-
ferent study a regression model to predict the effect of 
single-point missense mutations on ligand affinity. The 
method named mCSM-lig used graph-based features to 
encode geometrical and physicochemical properties for 
the proteins and the protein-ligand complex. The regres-
sion model achieved a Pearson correlation coefficient of 
0.627 over the entire dataset and 0.737 after 10% outlier 
removal [34]. A third study for the same authors resulted 
in mCSM-AB, a method to predict the antibody-antigen 
affinity changes upon mutation in terms of Gibbs Free 
Energy with limited applications for antibody engineer-
ing and development. The method used graph-based 
structural signatures to train a machine learning regres-
sion model and achieved a Pearson correlation coefficient 
of 0.53 on 10-fold cross-validation [35]. Kim et  al. built 
the mutLBSgeneDB database using an integrative multi-
source approach. The database included genetic, protein 
structure, ligand-binding site mutations, differential gene 
expression, gene-gene network, and phenotype informa-
tion from several sources integrated into this database. 
The mutLBSgeneDB database also contained drug bind-
ing affinities for drugs and their targets selected as the 
top 20 ranked genes [36]. Petukh et  al. proposed a new 
methodology termed Single Amino Acid Mutation based 
change in Binding Free Energy (SAAMBE) to predict the 

changes of the binding free energy upon mutations in 
protein-protein complexes. The method predicted the 
binding free energy change upon single-point mutations 
achieving a Pearson correlation coefficient of 0.62 [37]. 
Sawada et al. presented a benchmarking study for a wide 
range of chemical descriptors for drug-target interaction 
prediction. The authors formulated the problem as a clas-
sification problem (interact, does not interact). The study 
compared 18 chemical descriptors of drugs (e.g., CDK, 
KlekotaRoth, MACCS, ECFP, KlekotaRoth, FCFP, E-state, 
MACCS, PubChem, graph kernels, Dragon, and KCF-
S) and four descriptors of proteins (e.g., domain profile, 
local sequence similarity, amino acid composition, and 
string kernel) on   100,000 drug-target interactions. The 
KCF-S descriptor resulted in the best prediction accuracy 
[38]. KCF-S (KEGG Chemical Function and Substruc-
tures) uses the information of chemical structure con-
version in enzyme reactions to encode different levels of 
substructures and functional groups. KCF-S descriptor is 
composed of seven attributes: atom, bond, triplet, vicin-
ity, ring, skeleton, and inorganic. These can be used for 
many applications like structure-based molecule cluster-
ing and machine learning [39].

None of the previous studies were performed on a 
large-scale dataset of proteins and mutations, and spe-
cifically on the binding site mutations to predict their 
effect on binding affinity. Hence, our research aims to fill 
this gap and build a machine learning model trained on a 
relatively large dataset of protein variants with an appli-
cation focus on drug discovery and precision medicine.

Methods
The methodology of this work aims at building a machine 
learning model that predicts the protein-ligand bind-
ing affinity of wild-type proteins and their variants with 
single-point binding site mutations. Figure  1 shows the 
proposed approach which is composed of two regression 
models. The first model predicts wild-type protein-ligand 
binding affinity using the numerical representation of the 
protein, ligand and the binding site. The second model 
uses the wild-type protein-ligand binding affinity besides 
numerical representation of the mutation to predict the 
mutated protein-ligand binding affinity.

Data sources
PSnpBind [40] is the main data source used in this work 
to obtain information about proteins, binding pocket 
mutations and ligands that are docked to both the 
wild-type protein and its variants. PSnpBind is a large 
database of protein-ligand complexes covering a wide 
range of binding pocket mutations and a large small 
molecules’ landscape. It is primarily designed for appli-
cations like developing machine learning algorithms to 
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predict protein-ligand affinity or single-point mutation 
effect on it. The PSnpBind database contains around 
600,000 protein-ligand complexes covering 730 protein 
variants for 26 proteins and more than 32,000 ligands. 
Moreover, PDBbind [41] was used as a resource for 
the annotated binding pockets of the proteins in order 
to generate numerical features from them. Since PSn-
pBind is constructed using the structures from PDB-
bind, it was straightforward to use the same structures 
for feature engineering. The core set of PDBbind 2016 
(also known as CASF 2016) was used in this work.

Feature engineering
The following sections describe the groups of descrip-
tors/features used to build the dataset for machine 
learning training and testing.

Protein features
Ain et.al [42] study conducted a benchmark of 21 pro-
tein descriptors used in modeling ligand selectivity. The 
Sequence-Order-Coupling Number (SOCN), along with 
amino acid and dipeptide composition showed a bet-
ter performance than other sequence-based features like 
quasi sequence order (QSO) and composition, transi-
tion and distribution (CTD), and ProFeat descriptors. 
SOCN is a protein descriptor composed of 60 values. It 
reflects the indirect effect of the protein sequence order 
by calculating the coupling factor according to the phys-
icochemical distance between coupled residues based on 
the Schneider-Wrede distance matrix [43]. Schneider-
Wrede distance matrix is derived from hydrophobicity, 
hydrophilicity, polarity, and side-chain volume properties 
of amino acids. Protr R package (v1.6-2) [44] was used 
to generate the protein features. Protr is a freely avail-
able and open-source R package that calculates various 

Fig. 1  Overview of PSnpBind-ML methodology composed of two regression models. The first model predicts wild-type protein-ligand binding 
affinity using the numerical representation of the protein, ligand and the binding site. The second model uses the wild-type protein-ligand binding 
affinity besides numerical representation of the mutation to predict the mutated protein-ligand binding affinity
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commonly used structural and physicochemical descrip-
tors from protein sequences and properties retrieved 
from the AAindex database [45].

Binding pocket features
Four main aspects were considered when designing fea-
tures for the binding pocket: secondary structure, buried 
and exposed residues, accessible surface area, and bind-
ing pocket volume. BioJava library (v5.3.0) [46] was used 
to compute the features of the binding pockets.

•	 Secondary structure: the percentages of residues 
involved in the binding pocket belonging to each of 
the secondary structures (Helix, Strand, Other) were 
used as features. Further, the dominant secondary 
structure that pocket residues are composing was 
also used as a feature.

•	 Accessible surface area: the total accessible surface 
area (ASA) of the binding pocket was used as a fea-
ture. Total ASA was calculated as the sum of the 
ASA of all residues annotated as part of the binding 
pocket.

•	 Buried and exposed residues: Each residue with a 
relative ASA of 20% or less was considered buried. 
In contrast, Each residue with a relative ASA of more 
than 20% was considered exposed. The number of 
buried residues, the number of exposed residues, and 
the ratio of the number of buried to exposed residues 
were used as features.

•	 Binding pocket volume: the volume was calculated 
using ProteinVolume v1.3, a tool to compute the geo-
metric volume of proteins, in this case, the binding 
pocket structure [47].

Mutation features
Amino acid mutation features were designed to cap-
ture both physicochemical and structural changes in the 
mutated residue’s local environment. BioJava library was 
used to compute the features of mutations. Following is 
the description of the designed features:

•	 Secondary structure information: protein second-
ary structure (SS) is the smallest three-dimensional 
structure formed from the polypeptide chain upon 
folding. The DSSP algorithm was used to obtain the 
8-class SS features [48]. Another simplified version 
of the secondary structure was included where the 
mutation residue was assigned to one of three groups 
of SS (Helix, Beta Strand, or Other).

•	 Specific amino acid mutations: cysteine, glycine, 
and proline are three amino acids that play unique 

roles in protein structure. Cysteine forms disulfide 
bridges with another cysteine residue, an essential 
component of the secondary and tertiary struc-
tures. Cysteine also binds to Zn metal ions in the 
binding pocket resulting in an important complex 
for the protein structure [49]. The backbone flexi-
bility is substantially affected by the conformational 
flexibility of glycine side chains and the rigidity of 
proline side chains [50]. Large structural effects 
can take place by mutations from or to one of 
these three amino acids. Three binary terms were 
included as features to capture if the mutation was 
from or to glycine, proline, or cysteine.

•	 Amino acid group changes: the twenty amino acids 
were grouped into three groups for each of the 
seven types of physicochemical properties: hydro-
phobicity, normalized Van der Waals volume, sec-
ondary structures and solvent accessibility, polarity, 
polarizability, and charge [51]. Each mutation has 
nine possibilities of being changed from one group 
to another for each attribute (3x3 possibilities). The 
features were encoded as categorical variables with 
nine possible values.

•	 Mutation residue amino acid and surrounding 
properties: A combination of 48 amino acid prop-
erties analyzed in a previous study for relations to 
protein stability [52] were used to calculate two 
sets of features. First, for each property, a change 
induced by the mutation is calculated using a 
simple formula [P(i) = Pmutation(i) − PWT(i)] [53]. 
Second, the influence of the local structural envi-
ronment surrounding the mutation residue was 
incorporated for each of the AA properties. The 
amino acids were represented by their alpha carbon 
atoms, and the surrounding residues (j) within the 
sphere of radius 8 Å [54] were selected. The sur-
rounding features for each property were calculated 
using the formula: Psurr(i) = [ 

∑

j Pj ] − Pmutation(i).
•	 Solvent Accessible Area (ASA) change: Solvent 

accessibility of a residue was calculated with Bio-
Java using the rolling ball algorithm [55], and the 
relative ASA was obtained for both wild-type and 
mutated residues. Relative ASA is the ASA of the 
residue with respect to its ASA in an extended 
tri-peptide conformation (GLY-x-GLY) [56]. The 
ratio between relative ASA values (ASAmutation − 
ASAWT) was used as a feature.

•	 Phi and Psi dihedral angles: In chemistry, a dihe-
dral angle is an angle between planes defined by 
two sets of three atoms, having two atoms in com-
mon. These angles have restrictions for their values, 
reflecting energetically allowed regions for back-
bone dihedral angles. So, changes in dihedral angles 
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upon mutation capture structural changes in the 
backbone of the protein chain.

•	 FoldX energy terms: FoldX [57], a software used to 
introduce mutations to the protein structure in PSn-
pBind, produces 22 energy-term changes between 
the wild-type and the mutated versions of the pro-
tein. Those terms obtained during the construction 
of the PSnpBind database were used to describe the 
structural effect of the mutation on the protein [40].

Ligand features
Chemistry Development Kit v2.3 [58, 59] was used for 
molecule standardization and molecular descriptors 
generation. Ligands, obtained as SMILES strings, were 
parsed using the CDK and several steps were applied 
to normalize them. First, atom type perception and 
atom configuration normalization was applied. Next, 
implicit hydrogens were removed and re-added using 
the CDKHydrogenAdder function and then converted to 
explicit hydrogens. Finally, aromatic system identification 
and kekulization were applied to all molecules. Chemical 
descriptors covering four layers of chemical representa-
tion (0D, 1D, 2D and 3D) were calculated and used to 
represent the ligands as numerical vectors. The code was 
implemented using Java, an object-oriented program-
ming language.

Data balancing
The PSnpBind database contains a large imbalance in 
the number of ligands docked to each protein (rang-
ing from 119 to 7058). Since ligands capture structural 
and functional information for the proteins they bind 
to, that could make the ML model biased toward learn-
ing the representation of the proteins (and their pockets) 
with the highest number of ligands. It would also learn to 
recognize ligands that fit certain proteins more than the 
others since their number is relatively large in the data-
set. For the previous reasons, the data composition was 
balanced before splitting by selecting 350 ligands for each 
protein. Two proteins had less than 350 ligands binding 
pairs, and for these two cases, all ligands were consid-
ered. The ligands were sampled with respect to the Tani-
moto index distribution since the rationale behind using 
a low value for it was to include a wide range of ligands 
that would show different binding affinities.

Dataset preparation
The features described in the previous sections were used 
in conjunction with the docking binding affinity results 
from PSnpBind and different splits were applied to cre-
ate the datasets to be used in model training and valida-
tion. For preprocessing, the features that had zero values 

or near zero variance were removed. Next, all instances 
with extreme binding affinity values falling outside the 
range [− 16, − 4] kcal/mol were excluded. Finally, all cat-
egorical values were encoded as binary arrays of features 
using the One Hot Encoding technique in sklearn v0.24.0 
Python package [60].

Data splitting
Data splitting was carried out to explore its effect on the 
machine learning models performance, incorporating 
three levels of similarities among the dataset instances 
(protein, binding site, and ligand) besides the random 
splitting stratified on three variables (binding affinity, 
ligand molecular weight and volume). Different train-
test datasets were generated on which machine learning 
models were trained and validated.

Split 1: Protein similarity‑based splitting
Proteins with similar sequences tend to have similar 
structures [61–63]. Therefore, having proteins in the 
training set that are similar to the ones in the test set 
can cause leakage issues to the model. Hence, splitting 
the dataset by protein similarity could help examining 
such a case if any. Protein sequence clustering was per-
formed in order to split the data on the bases of protein 
similarity, where sequence clustering algorithms try to 
group protein sequences that share similarities in clusters 
[64]. UCLUST [65], is a sequence clustering algorithm 
included in the USEARCH sequence analysis tool, was 
used for this purpose. Sequence identities are computed 
using a global alignment method, and every sequence, in 
order to be added to the cluster, should have a similarity 
with the centroid above a defined threshold. UCLUST is 
reliable at identity scores of  50% and above for proteins 
and  75% and above for nucleotides. The effectiveness of 
this method becomes questionable at low identity scores 
because of the degrading alignment quality. Besides, 
homology cannot be reliably determined from the 
alignment.

UCLUST pre-compiled 32-bit executable for Linux 
was used, downloaded from https://drive5.com/use-
arch. Sequences for the 26 proteins in PSnpBind were 
obtained from UniProt using their UniProt IDs. Then, 
sequences were ordered by sequence length using the 
“-sort” parameter. For further investigation, after cluster-
ing did not work as expected (see the results section), an 
all-against-all protein-protein sequence similarity search 
was performed using “BLASTp”, a tool from the NCBI 
BLAST tool suite [66]. An E-value cutoff of 10-5 was used 
using the “-evalue” parameter.

Another approach was explored, protein family 
domains annotation using the Pfam database. A local 
version of the Pfam [67] database (version 32.0) was 
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downloaded. Then, the Pfam database was prepared for 
use with HMMER v3.3 [68] (“hmmpress” tool), which is 
the same program that Pfam site uses to search for pro-
tein domains in submitted queries. The “hmmsearch” 
command was used to perform a search against the Pfam 
database using the 26 protein sequence and an E-value 
cutoff of 10-5.

Split 2: Binding site similarity‑based splitting
Proteins that share no distinct global (sequence or 
structural) similarity can still share similar binding sites 
[69]. Hence, they can bind to similar ligands. Therefore, 
splitting the dataset by binding site similarity can help 
observe how that affects the model performance. Fuz-
Cav [70] was used to calculate the all-against-all simi-
larity between the binding pockets. Ehrt et al. published 
in 2018 an exhaustive evaluation study to benchmark 
binding sites comparison methodologies [71]. The study 
grouped these methods into three groups (residue-based, 
surface-based, and interaction-based), where FuzCav 
belongs to the residue-based group. FuzCav was the only 
method that fulfilled all four aspects of quality covered in 
the study (site definition, similarity ranking, complete-
ness, and run time). FuzCav featurizes druggable pro-
tein-ligand binding sites using a 4833 long integer vector. 
It can also be applied to any protein and binding cavity. 
SimCalc tool in the FuzCav package was used to calculate 
pairwise similarity for all the binding pockets (Additional 
file 1: Table S3). The authors of FuzCav showed in their 
research that a similarity threshold of 0.16 could be used 
to identify similar binding sites and the same threshold 
was used to filter the pairwise similarity results in this 
work.

Split 3: Ligand similarity‑based splitting
Ligands that bind to proteins can share structural and 
functional similarities. Chemical characteristics of 
ligands are also known to capture the functional and 
mechanistic properties of proteins. Therefore, splitting 
the dataset by ligand similarity can help detect if the 
ligand similarity has an effect on the model’s performance 
and the potential data leaking problems resulting from it. 
RDKit Python library v2022.3.4 was used to select 20% of 
the most dissimilar ligands to the remaining 80% using 
the sphere exclusion algorithm. Next, all instances related 
to the 20% ligands were used as a test set and the remain-
ing 80% of instances formed the training set.

Split 4–6: Stratified random splitting
In this scenario, splitting with stratification on three vari-
ables (the binding affinity, ligand’s molecular weight and 
ligand’s volume) was performed resulting in three differ-
ent data splits each having 80% train set and 20% test set. 

The caret R package [72] was used for this purpose. The 
function “createDataPartition” provided by “caret” cre-
ates balanced splits of the data based on a selected vari-
able preserving its overall distribution.

Chemical space characterization
The chemical space for all the obtained train-test splits 
was characterized by the scattered distributions of the 
first two principal components derived from the princi-
pal component analysis (PCA) for 53 out of 54 molecu-
lar descriptors (the feature “rule of five” violations was 
excluded because it is not numeric) and by the scattered 
distributions of molecule weight and atom-additive 
octanol-water partition coefficient (XlogP) [73].

Machine learning models training and validation
The problem under investigation was formulated as a 
regression problem to predict the protein-ligand binding 
affinity taking into consideration single-point mutation 
information and its effect on the binding affinity. This 
task was accomplished over two steps: model training, 
and evaluation.

Machine learning modeling
Four machine learning methods were compared for their 
ability to predict protein-ligand binding affinity (model 
1), namely, random forest, decision tree, lasso regres-
sion and ridge regression.Training multiple methods 
helps estimating the influence of selecting the modeling 
method. For the linear regression models, standard scal-
ing was applied on the datasets (independent variables) 
before training. Nested cross-validation (CV) was car-
ried out to select the best model and perform parameter 
tuning [74]. For the outer loop, 5-fold CV was used and 
3-fold CV for the inner loop as depicted in Fig. 1. With-
out nested cross-validation, model selection uses the 
same data to evaluate model performance and fine-tune 
model parameters, which could result in an optimisti-
cally biased evaluation of the model. The model resulted 
from the best performing ML method and its tuned 
parameters for each data split was further validated using 
an independent test set and the best model parameters 
among all data split based models was used to train the 
mutated protein-ligand binding affinity model (model 
2). The implementation of sklearn v0.24.0 Python pack-
age was used for the chosen model types. Finally, feature 
importance was obtained from the models and the rel-
evant plots were provided.

Model evaluation
Three approaches for model validation were followed. 
First, nested cross-validation was applied to all mod-
els. Next, to ensure our models were independently 
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evaluated, the best model resulting from each data split 
was validated against an independent test set. Further, 
a third validation approach was applied which is Y-ran-
domization, or response permutation testing. It is an 
approach to estimate the risk of chance correlations [75]. 
Y-randomization was applied by keeping the features 
space fixed and randomly shuffling the binding affinity 
(Y variable) and then retraining the model. The process 
was repeated ten times, each time with a different ran-
domized dependent variable vector. The performance of 
each model was evaluated using four metrics, coefficient 
of determination (R2), Root Mean Square Error (RMSE), 
Mean Absolute Error (MAE), and Mean Squared Error 
(MSE). Moreover, two metrics were provided to com-
pare the error of the obtained models against a dummy 
regression model predicting the mean of the depend-
ent variable and which serves as a base model. The two 
metrics are relative absolute error (RAE) and root rela-
tive squared error (RRSE) which are also used in other 
machine learning packages like WEKA [76]. The previ-
ously mentioned metrics were calculated as follows:

Results and discussion
Feature engineering
The feature engineering phase resulted in 256 features 
covering four layers of information: proteins (60 fea-
tures), binding sites (9 features), ligands (54 features) and 
mutations (133 features). Table 1 shows a summary of the 
features and their counts for each of the four aspects of 
data.

(1)R2
= 1−

∑ntest
i=1

(Yobs − Ypred)
2

∑ntest
i=1

(Yobs − ¯Ytrain)2

(2)MAE =

∑ntest
i=1

|Yobs − Ypred |

ntest

(3)MSE =

∑ntest
i=1

(Yobs − Ypred)
2

ntest

(4)RMSE =

√

∑ntest
i=1

(Yobs − Ypred)2

ntest

(5)RAE =

MAERF model

MAEdummy model

(6)RRSE =

RMSERF model

RMSEdummy model

Meaningful representation of proteins plays an essen-
tial role in the performance of many bioinformatics 
methods such as predicting protein functions [77], pro-
tein family classification [78], and predicting the inter-
actions between protein-protein [79] and protein-ligand 
pairs [80]. Sequence-derived features are a common type 
of features that are used to represent proteins. Proteins 
that share the same family or domains can bind to simi-
lar ligands. The biophysical and functional properties of 
proteins are known to be captured by the chemical prop-
erties of their ligands. Hence, ligand-based features can 
be used to represent proteins [81]. Also, proteins with 
no global similarity can still have similar binding sites 
and hence bind similar ligands [69]. Therefore, features 
representing the binding site of the target proteins were 
included in order to capture those similarities when pro-
teins themselves are not similar. Lastly, since the aim of 
this work is to predict the binding affinity for proteins 
with different single-point mutations in their binding site, 
mutations here introduce another level of complexity 
that needs to be explicitly encoded using unique features 
enabling the machine learning model to capture their 
effect on the binding affinity. For example, the mutation’s 
amino acid group change and the physicochemical prop-
erties of the mutation’s surrounding residues.

Data splitting
The data used to train and test machine learning mod-
els directly affects their applicability and generalizability. 
Unfortunately, there is no consistency in the literature 
on how to split the datasets. This inconsistency makes 
it tricky to compare models’ applicability. Random split-
ting of the datasets is commonly used, which also leads to 
variances in the output, and it is not always best for eval-
uating machine learning methods [82, 83]. For example, 
Sheridan et al. showed for QSAR modeling on assay data 
that time-based split (i.e. building a model on assay data 
available at a certain date and tests the model on data 
that is generated later) gives an R2 that is more like that 
of true prospective prediction than the R2 from random 
selection (too optimistic) or from leave-class-out selec-
tion (too pessimistic). In this work, six different splits 
were created to evaluate the models’ prediction capability 
on a wide range of protein-ligand complexes.

Protein similarity‑based data splitting
As proteins with similar sequences will probably 
have similar structures and hence may bind to simi-
lar ligands, protein similarity-based splitting was 
performed to observe such an effect. The clustering 
process of protein sequences using UCLUST resulted 
in 25 clusters for the 26 proteins included in the PSn-
pBind dataset used as the main data source in this 
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work. That was unexpected and unhelpful to split the 
dataset by protein similarity. The likely reason for 
these results is that the 26 proteins share low identities 
among each other, and that is supported by the meth-
odology of constructing the PDBbind dataset from 
which those proteins were selected in order to build the 
PSnpBind database. Furthermore, the pairwise similar-
ity search confirmed that these protein sequences have 
a low identity among each other, where 25 out of 26 
proteins have an identity of less than 50%. That explains 
why UCLUST was not able to find a smaller number 
of clusters. Additional file 1:  Table  S1 shows BLASTp 
results (excluding the similarity of the proteins against 
themselves).

Next, in another attempt to split proteins and that is 
by their family domain annotation similarity, the Pfam 
search resulted in 125 family hits for all the proteins 
(Additional file 1: Table S2). Multiple families were linked 
to each protein sequence. After careful examination, five 
out of 26 proteins were selected and found not to share 
any protein family with the remaining 21 proteins or 
among each other. Hence, those protein structures and 
consequently, all their mutated structures and selected 
ligands were used as a test set (20%) while the rest were 
used for the training set (80%). Table 2 shows the proteins 
included in the train and test sets by protein similarity.

The motive behind using protein family annotation 
to group the proteins is that if the proteins do not share 

Table 1  Features and descriptors breakdown for protein, binding pocker, mutation and ligand representation

Protein, binding site and mutation features (202 features)

Protein (60 features) Sequence-Order-Coupling Number (SOCN) descriptor

Binding site (9 features) Secondary structure (4 features)
Accessible surface area (1 feature)
Buried and exposed residues (3 features)
Binding pocket volume (1 feature)

Mutation (133 features) Secondary structure information (2 features)
Cysteine, glycine, and proline mutations (3 features)
Amino acid groups changes (7 features)
Properties of mutated AA and its surrounding (96 features)
Solvent Accessible Area (ASA) change (1 feature)
Phi and Psi dihedral angles (2 features)
FoldX energy terms (22 features)

Ligand features (54 features)

Descriptor category Descriptors/Fingerprints

0D Descriptors Molecular weight (1 feature)
Aromatic atoms count (1 feature)
Aromatic bonds count (1 feature)
All atoms count (1 feature)
N atoms count (1 feature)
O atoms count (1 feature)
Electronegativity (1 feature)

1D Descriptors Number of Hydrogen donors (1 feature)
Number of Hydrogen acceptors (1 feature)
Number of rotatable bonds (1 feature)
Number of violations of Lipinski’s rule (1 feature)
Basic groups count (1 feature)
XlogP (1 feature)
AlogP (3 features)
JPLogP (1 feature)

2D Descriptors (Topological) BCUT eigenvalue based descriptor (6 features)
Topological polar surface area (1 feature)
Fractional polar surface area (1 feature)
Small rings count of sizes 3-9 atoms (9 features)
Vertex adjacency information (1 feature)
Carbon connectivity types (9 features)
Atomic polarizabilities descriptor (1 feature)

3D Descriptors (Geometric) Van der Waals Volume (1 feature)
Solvent accessible surface area (1 feature)
Momentum of inertia (6 features)
Radius of gyration (1 feature)
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global sequence similarity, it makes more sense to look 
for similarities on a smaller scale like functional domains. 
So, if we can group proteins by similar domains they 
share, then we can split them into two different sets for 
training and testing. The Pfam database is a large col-
lection of protein domain families. Each family is rep-
resented by multiple sequence alignments and a hidden 
Markov model (HMM). After examining the Pfam web-
site, it was found that the website offers a search func-
tion through the web UI, but it has no API for automated 
scripts and workflows, and that also affects the reproduc-
ibility of our research. Hence, the database preparation 
and search were conducted locally on Pfam v32.0.

Binding site similarity‑based data splitting
Since unrelated proteins may have similar binding 
sites that are capable of recognizing chemically similar 
ligands, a binding site similarity-based split was carried 
out to observe this effect if exists. Filtering the pairwise 
similarities obtained using FuzCav fingerprints of the 
pocket structures resulted in 19 pairs of binding pockets 

belonging to 13 protein structures that share similarity 
(Additional file 1:  Table S3). Hence, the dataset was split 
using the binding site similarity to a training dataset ( ∼
83%) containing the thirteen proteins with similar bind-
ing pockets and eight more of the proteins with dissimi-
lar binding pockets along with their mutated structures 
and selected ligands. Finally, the remaining 5 proteins 
were used as a test dataset ( ∼17%) along with their cor-
responding mutated structures and selected ligands. 
Table 2 shows the proteins included in the train and test 
sets by binding site similarity.

Chemical space characterization
The characterization showed similar results for all data 
splits. Therefore, one example of the ligand molecular 
weight-stratified random split is presented in the sec-
tion. The remaining characterization results are avail-
able as Additional file  (Additional fie 1: Figs. S1–S5). As 
shown in Fig.  2, the chemical space of the independent 
test set was roughly within the scope of the training set, 
and therefore it is possible to reliably predict the binding 

Table 2  List of the proteins used in PSnpBind-ML model and the selected proteins for train and test sets based on protein similarity-
based (PS) and binding site similarity-based (BSS) data split

PDB ID Gene name UniProt ID Protein name PS BSS

1owh PALU P00749 Urokinase plasminogen act. Train set Test set

2c3i PIM1 P11309 Pimtide protein kinase PIM1 Train set Train set

2hb1 PTPN1 P18031 Tyrosine phosphatase type 1 Test set Train set

2pog ESR1 P03372 Estrogen receptor Train set train set

2weg CA2 P00918 Carbonic anhydrase 2 Test set Train set

2y5h F10 P00742 Factor XA Train set Train set

3b27 HSP90AA P07900 Heat shock protein 90-alpha Test set Train set

3b5r AR P10275 Androgen receptor Train set Test set

3fv1 GRIK1 P39086 Glutamate receptor Train set Train set

3jvr CHK1 O14757 protein kinase Chk1 Train set Train set

3pxf CDK2 P24941 Cell division protein kinase 2 Train set Train set

3u9q PPARG​ P37231 PPAR gamma Train set Train set

3udh BACE1 P56817 Beta-secretase 1 Test set Train set

3up2 AURKA O14965 Aurora kinase A Train set Train set

3utu F2 P00734 Thrombin Train set Train set

4crc F11 P03951 Coagulation factor XI Train set Train set

4dli MAPK14 Q16539 Human p38 MAP kinase Train set Train set

4e5w JAK1 P23458 Tyrosine-protein kinase JAK1 Train set Train set

4gr0 HME P39900 Macrophage metalloelastase Train set Train set

4j21 TNKS2 Q9H2K2 Tankyrase-2 Train set Test set

4jia JAK2 O60674 Tyrosine-protein kinase JAK2 train set Train set

4m0y ITK Q08881 Tyrosine-protein kinase Train set Train set

4twp ABL1 P00519 abl1 kinase Train set Train set

4wiv BRD4 O60885 First bromodomain of Brd4 Test set Train set

5a7b TP53 P04637 Cellular tumor antigen P53 Train set Test set

5c28 PDE10A Q9Y233 Phosphodiesterase 10 Train set Test set
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affinity in the test set using a machine learning model 
trained on the training set. Figure 3 shows the distribu-
tions of six molecular properties of the ligands in the 
dataset. These included molecular weight (MW), H-bond 
acceptor count, rotatable bonds count, octanol-water 
partitioning coefficient (XlogP), topological polar surface 
area (TPSA), and Van der Waals volume. It was observed 
that 90% of the selected ligands contained a maximum of 
eight hydrogen bond acceptors and ten rotatable bonds 
without showing a correlation to the binding affinity. 
XlogP showed a relatively stronger negative correlation 
to binding affinity (R = − 0.26) where higher XlogP val-
ues correspond to smaller binding affinity values (i.e. 
stronger binding affinity) and 90% of the compounds had 
a value below 6.029. Similarly, 90% of the compounds 
in the dataset had a molecular weight smaller than 530 
daltons, and the correlation analysis showed a relatively 
high negative correlation to binding affinity (R = − 0.27). 
The number of hydrogen bond acceptors and TPSA are 
usually used to represent hydrophilicity, and as shown in 
Fig. 3, they had no correlations to the binding affinity (R 
= −  0.069 and − 0.1) than those related to hydrophobic-
ity (XlogP). The ligand volume accounts for the size or 

bulk of a molecule, and it had a higher correlation than 
TPSA but lower than molecular weight (R = −  0.22). 
Apparently, no single descriptor showed a high correla-
tion to binding affinity, and therefore binding affinity 
could not be reliably predicted from only a single or sev-
eral molecular descriptors. We hypothesize that combin-
ing features representing the protein, the binding site, 
and the ligand could increase the ability to predict the 
binding affinity.

Machine learning modeling
The architecture in (Fig.  4) shows the proposed model 
which is composed of two regression models. The first 
model learns the wild-type protein-ligand binding affinity 
using protein, binding site, and ligand features only. The 
second model learns the mutated protein-ligand binding 
affinity using the wild-type binding affinity and the muta-
tion features. In the second model, the wild-type binding 
affinity can be obtained either from the real data (dock-
ing experiments) or from the output of the first model 
(predicted wild-type binding affinity) as in Fig.  4A and 
B respectively. By design, four possible training/testing 

Fig. 2  Diversity distribution of ligands in the ligand molecular weight-based data split. Training set (n = 6770) and test set (n = 1651). A, B 
Chemical space defined by PCA factorization; C chemical space defined by molecular weight as X-axis and XlogP as Y-axis; D comparison of binding 
affinity value distribution in the train/test sets. The blue color stands for the training set, and the red color stands for the test set
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scenarios were explored for the second model (mutated 
protein-ligand binding affinity prediction) as follows:

•	 Training using the real WT binding affinities and 
testing also using the real data.

•	 Training using the real data and testing with the pre-
dicted data from the first model.

•	 Training using the predicted data and testing with 
the real data.

•	 Training using the predicted output of the first RF 
model and testing using the predicted data.

Protein‑ligand binding affinity prediction model
Four machine learning models were trained on six data 
splits to predict protein-ligand binding affinity using pro-
tein, ligand and binding site features. The nested cross 
validation results (Table  3) shows a good performance 

Fig. 3  Distributions of six ligand properties and their corresponding correlation to the binding affinity. The six properties from top-left to 
bottom-right: H-bond acceptor count, rotatable bonds count, XlogP, molecular weight, topological surface area and ligand’s volume
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of random forest over the other three models: decision 
tree, lasso regression and ridge regression. These results 
were expected since random forest [84] has been consist-
ently among the top-performing methods for several bio-
informatics tasks  [85–87]. Moreover, it has been shown 
to outperform other feature-based supervised learning 
approaches in bioinformatics and other domains [88–91]. 

Random forest models obtained an R2 between 0.85 and 
0.87 across the six data splits, ridge regression mod-
els obtained an R2 of 0.76−  0.77, decision tree models 
obtained an R2 of 0,71–0,77 and Lasso regression mod-
els obtained an R2 of 0.62−  0.65. The tuned parameters 
and their optimal values for all the models are available in 
the Additional files (Additional file 1: Tables S4–S7). The 

Fig. 4  A machine learning model design to predict protein-ligand binding affinity with a single mutation in the protein’s binding site. The design 
is composed of two models, the first predicts wild-type protein-ligand binding affinity, while the second one predicts the the binding affinity for a 
mutated protein. Two training scenarios were conducted. A The second model was trained using real wild-type protein-ligand binding affinities. B 
The second model was trained using the predicted output of the first model
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best performing random forest models had the following 
tuned parameter values: number of trees of 500, maxi-
mum features of 62 (50% of the total number of features), 
min_samples_leaf of 1 and min_samples_split of 2.

The best performing models and their tuned param-
eter in the nested cross-validation were further vali-
dated with the independent test sets of the six data splits 
as described in the methods section. Table  4 shows the 
5-fold cross-validation and test set validation results 
for the resulting six random forest models. The models 
trained on stratified data splits (binding affinity, ligand’s 
molecular weight and ligand’s volume) outperformed the 
other three models by a substantial margin when evalu-
ated using an independent test set. All models performed 
exceptionally well in 5-fold cross-validation showing an 
(R2) value higher than 0.84 and RMSE values lower than 
0.59. For validation with independent test sets, the model 
trained on protein similarity-based data split showed 
the worst performance with a very low R2 of 0.25 and an 
RMSE of 1.06 kcal/mol-1. That suggests that the model 
does not perform well on totally new targets with low to 
no similarity to the ones it already trained on.

Furthermore, the model trained on binding site 
similarity-based data split also had a bad performance 
with R2 of 0.42 and RMSE of 1.0 kcal/mol-1. However, 
this is slightly better than the protein similarity-based 
model. That indicates that the binding site similarity is 
important to predict the binding affinity. It also sug-
gests that this model is not applicable for new protein 
targets that are structurally dissimilar to have a dissim-
ilar binding site to the ones in PSnpBind. The model 
trained on ligand similarity-based data split showed a 
good performance with R2 of 0.81 and RMSE of 0.68 
kcal/mol-1. The diversity of the ligands between the 

train and test datasets did not largely affect the abil-
ity to predict the protein-ligand binding affinity which 
suggests that such a model can be used to predict new 
instances with dissimilar ligands and still achieve a 
good performance. Furthermore, the models trained 
on stratified data splits showed almost identical evalu-
ation metrics with an R2 of 0.87 and RMSE of 0.55−
−0.56 kcal/mol-1. Considering that, the model trained 
on the ligand weight stratified data split was selected 
for downstream analysis of Y-randomization, predic-
tion time evaluation and feature importance. Figure 5 
shows a scatter plot of the measured against the pre-
dicted mutated protein-ligand binding affinity values 
resulting from training a random forest model using 
six different data splits. The prediction speed evalu-
ation showed that the obtained models are capable 
of predicting 10k instances per second. Hence, when 
compared to the time required on average for a single 
docking in PSnpBind ( 60 s), this approach is faster by 
five orders of magnitude.

A third approach was applied to validate the best 
performance model, y-randomization, a tool used to 
test whether the predictions obtained by the model are 
made by chance or not. The Y-randomization validation 
method was applied ten times with test set validation and 
returned an R2 of zero value each time. The results were 
conclusive that the y-randomized models were signifi-
cantly worse, and the obtained models had a high perfor-
mance that is not related to chance.

Mutated protein‑ligand binding affinity prediction model
The second model uses features of mutations besides 
either a real or predicted wild-type protein-ligand bind-
ing affinity to predict the mutated protein-ligand binding 
affinity. Table 5 shows the 5-fold cross-validation and test 
set validation results for the resulting four random forest 
models. It appears from the table that when training the 
model with real wild-type protein-ligand binding affini-
ties (i.e. obtained with docking) and testing it with real 
data also, it achieves the best performance with a deter-
mination coefficient (R2 = 0.90 and RMSE = 0.50 kcal/
mol-1). The same model (trained with real data) resulted 
in slightly less but very close performance when tested 
with predicted wild-type protein-ligand binding affinity 
values (R2 = 0.89 and RMSE = 0.52 kcal/mol-1).

Meanwhile, the model trained with predicted wild-
type protein-ligand binding affinity (pred-real in Table 5) 
showed the lowest performance compared to the other 
models when tested with real wild-type protein-ligand 
binding affinities (R2 = 0.87 and RMSE = 0.56 kcal/mol-
1). However, the results get slightly better when tested 
with predicted wild-type protein-ligand binding affinity 
data (R2 = 0.88 and RMSE = 0.52 kcal/mol-1). Figure  6 

Table 3  Nested cross-validation results of four machine learning 
models on six data splits to predict protein-ligand binding 
affinity (Model 1)

The models are: Random Forest, Decision Tree, Lasso Regression and Ridge 
Regression. The models performance metric reported is correlation coefficient R2

Data splits acronyms: BASR binding affinity-stratified random split, PS protein 
similarity-based split, BSS binding site similarity-based split, LS ligand similarity-
based split, LWSR ligand weight-stratified random split, and LVSR ligand volume-
stratified random split

Dataset Random forest Decision tree Lasso 
regression

Ridge 
regression

BASR 0.85 0.75 0.62 0.76

BSS 0.87 0.77 0.65 0.77

PS 0.86 0.74 0.64 0.76

LS 0.87 0.75 0.62 0.76

LWSR 0.85 0.72 0.62 0.76

LVSR 0.85 0.71 0.62 0.76
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shows a scatter plot of the measured against the pre-
dicted mutated protein-ligand binding affinity values 
resulting from training a random forest model using 
four train/test scenarios. Even though, the four models 

performed relatively well and achieved an R2 above 0.86 
and an RMSE below 0.56 kcal/mol-1. Regarding predic-
tion speed, the obtained models need 0.1 ms to predict a 
single instance which is faster by five orders of magnitude 

Fig. 5  Test set observed versus predicted binding affinities for the trained random forest model on six different split datasets. A Binding 
affinity-stratified random split. B Protein similarity-based split. C Pocket similarity-based split. D Ligand weight-stratified random split. E Ligand 
volume-stratified random split. F Ligand similarity-based split

Table 4  Training/testing results of a random forest model that uses features of proteins, ligands and binding sites to predict the wild-
type protein-ligand binding affinity

The model was trained/tested against six different data splits: BASR binding affinity-stratified random split, PS protein similarity-based split, BSS binding site similarity-
based split, LS ligand similarity-based split, LWSR ligand weight-stratified random split, and LVSR ligand volume-stratified random split

Metric BASR PS BSS LS LWSR LVSR

R2 (5-fold CV) 0.85 0.87 0.86 0.87 0.85 0.85

MAE (5-fold CV) 0.42 0.41 0.41 0.40 0.42 0.42

MSE (5-fold CV) 0.34 0.32 0.33 0.30 0.33 0.34

RMSE (5-fold CV) 0.58 0.56 0.57 0.55 0.58 0.58

R2 (test set) 0.87 0.25 0.42 0.81 0.87 0.87

MAE (test set) 0.40 0.86 0.78 0.48 0.41 0.40

MSE (test set) 0.30 1.12 1.01 0.46 0.31 0.31

RMSE (test set) 0.55 1.06 1.00 0.68 0.56 0.56

RAE (test set) 0.33 0.85 0.75 0.39 0.33 0.33

RRSE (test set) 0.37 0.87 0.77 0.44 0.37 0.36
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than the average time needed for a single docking in 
PSnpBind.

Comparison with publicly available models
The approach proposed in this work is composed of two 
models. Since the first ML model (predicting wild-type 
protein-ligand binding affinity) does not contain muta-
tion information, it can be compared to similar models 
from the literature designed to predict protein-ligand 
binding affinity as described in the related work section. 
This model outperformed the reported performances by 
[31] which obtained an R2 of 0.73. Also, it performed bet-
ter than the DeepAtom Convolutional Neural Networks 
(CNN) deep learning model (2019) [92] which reported 
a Pearson’s correlation of 0.83 (R2 = 0.69). The authors 
claimed that the model outperforms the recent state-
of-the-art models in predicting protein-ligand binding 
affinity like Kdeep [93] and DeepSite [94]. Even though 
it is hard to compare regression models without applying 

them to the same dataset and using the same evaluation 
techniques, the DeepAtom model was trained and tested 
on the PDBbind core set 2016 which is the same dataset 
that PSnpBind, the primary data source of this work, was 
built upon. However, the authors used the entire core set 
since they were not interested in human variants only as 
in our case.

The second ML model (predicting mutated protein-
ligand binding affinity) showed the best performance 
when trained using measured wild-type protein-ligand 
binding affinity data besides the mutation features. This 
model reported an (R2 = 0.89) which is higher than what 
was reported by the mCSM-lig method in the best case 
scenario (Pearson correlation R = 0.737, R2  =  0.543) 
[34] and the mCSM-AB method (Pearson correlation 
R = 0.53) [35]. Besides comparisons with other machine 
learning approaches, the obtained models in this study 
outperformed a method developed in 2018 that uses 
free energy calculations (Rosetta + molecular dynamics 

Fig. 6  Test set observed versus predicted binding affinities to mutated proteins using two trained random forest models (one using measured 
wild-type protein-ligand binding affinity and the second using predicted wild-type protein-ligand binding affinity as input). A The model trained 
with measured wild-type binding affinity and tested using measured wild-type binding affinity. B The model trained with measured wild-type 
binding affinity and tested using predicted wild-type binding affinity. C The model trained with predicted wild-type binding affinity and tested 
using measured wild-type binding affinity. D The model trained with predicted wild-type binding affinity and tested using predicted wild-type 
binding affinity
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MD) to estimate ligand-binding affinity changes upon 
mutation and they applied it to 134 mutations [95]. The 
method reported an RMSE of 1.2 kcal/mol-1 for the full 

benchmark set while the model developed in this work 
achieved an RMSE of 0.50-.56 kcal/mol-1.

Feature importance
Feature importance analysis was performed on the two 
RF models obtained for WT and mutated protein-ligand 
binding affinity respectively. Figure  7 shows the most 
important features of each model. Figure  7A shows the 
most important features of the first model predict-
ing the WT protein-ligand binding affinity. The volume 
and the accessible surface area (ASA) of the binding site 
are the top most influential features on binding affin-
ity prediction. Other related features to the binding site 
ASA appeared in the list like the number of buried and 
exposed residues. Among the most ligand-related fea-
tures contributing to predicting the binding affinity is 
small ring descriptors followed by other types of descrip-
tors like aromatics bonds and atom counts, molecular 
weight, carbon types, total surface area and moment 
of inertia. Clearly, 1D, 2D and 3D characteristics of the 
ligand are important to predict the binding affinity. The 
highlighted features of the ligand and binding site align 
well with the known relation between ligands and bind-
ing sites. For example, a large volume ligand will prob-
ably not bind to a small binding site since it will not fit 
inside it. Figure 7B and C show the important features to 
the model predicting the mutated protein-ligand bind-
ing affinity which is trained on real WT binding affinity 

Table 5  Training/testing results of a random forest model that 
uses features of mutations besides either a real or predicted 
wild-type protein-ligand binding affinity to predict the mutated 
protein-ligand binding affinity

The model was trained/tested in four scenrios. real–real: the model trained using 
real wild-type protein-ligand bindinf affinity data and tested on real binding 
affinities also. real-pred: the model is trained using real wild-type protein-ligand 
binding affinity data and tested on predicted binding affinities. pred-real: the 
model is trained using predicted wild-type protein-ligand binding affinity 
data and tested on real binding affinities. pred–pred: the model is trained 
using predicted wild-type protein-ligand binding affinity data and tested on 
predicited binding affinities

Metric real–real real-pred pred-real pred–pred

R2 (5-fold CV) 0.90 0.90 0.89 0.89

MAE (5-fold CV) 0.35 0.35 0.38 0.38

MSE (5-fold CV) 0.25 0.25 0.28 0.28

RMSE (5-fold CV) 0.50 0.50 0.53 0.53

R2 (test set) 0.90 0.89 0.87 0.88

MAE (test set) 0.35 0.38 0.40 0.38

MSE (test set) 0.25 0.27 0.32 0.28

RMSE (test set) 0.50 0.52 0.56 0.52

RAE (test set) 0.28 0.30 0.32 0.30

RRSE (test set) 0.33 0.34 0.37 0.34

Fig. 7  Feature importance of random forest models: A important features for WT BA prediction model; B important features for mutation BA 
prediction model trained with real WT BA;  C same as B but with wt_ba feature removed to better visualize the other features; D important features 
for mutation BA prediction model trained with predicted WT BA; E same as D but with wt_ba feature removed to better visualize the other features
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data. As one would expect, the WT protein-ligand bind-
ing affinity was the most important feature for predic-
tion by a large margin. Therefore, in Fig. 7C, that feature 
was removed to show more clearly the contribution of 
other features. The properties of the surrounding of 
the mutated amino acid were at the top of the list. The 
local environment of the mutation captures the physico-
chemical information of an area that is close to the ligand 
where a change could affect the binding affinity. Moreo-
ver, the phi dihedral angle of the mutated amino acid also 
appeared in the list. Figure 7D and E show the important 
features to the model predicting the mutated protein-
ligand binding affinity which is trained on predicted 
WT binding affinity data. Similar to the previous model 
(trained on real WT BA data), the WT binding affinity 
was the most important feature and nine out of ten fea-
tures in the list were the same.

Conclusion
Machine learning models can be applied to predict the 
protein-ligand binding affinity for proteins with single-
point mutations in their binding sites with high accuracy. 
This study provides an evaluation of six data split sce-
narios to obtain the best models and concluded that data 
split by ligand molecular weight, ligand volume and bind-
ing affinity resulted in the best-performance ML models. 
Moreover, it showed that the models perform best when 
tested on structurally similar proteins or at least proteins 
with structurally similar binding pockets while their per-
formance significantly degrades when tested on structur-
ally different proteins or binding pockets. Furthermore, 
the study showed the importance of features that cap-
ture the binding site volume and accessible surface area 
and ligands’ 2D and 3D descriptors on the prediction of 
binding affinity. Additionally, features that capture the 
physicochemical properties of the residues surrounding 
the mutation’s amino acid are important to predict the 
ligand’s binding affinity to the protein with a single-point 
mutation in its binding site. We report an improvement 
in the prediction performance of the ML models, com-
pared to several published models developed for protein-
ligand binding affinity prediction. The obtained models 
have high accuracy and a much higher speed than con-
ventional docking approaches (five orders of magnitude) 
which makes it feasible to be used as a complementary 
method in early-stage drug discovery. It can be applied 
to obtain a better overview of the ligand’s binding affin-
ity changes across protein variants carried by people in 
the population and to select potential leads that achieve a 
better affinity overall protein variants.
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