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Abstract 

Introduction and methodology Pairs of similar compounds that only differ by a small structural modification 
but exhibit a large difference in their binding affinity for a given target are known as activity cliffs (ACs). It has been 
hypothesised that QSAR models struggle to predict ACs and that ACs thus form a major source of prediction error. 
However, the AC-prediction power of modern QSAR methods and its quantitative relationship to general QSAR-
prediction performance is still underexplored. We systematically construct nine distinct QSAR models by combining 
three molecular representation methods (extended-connectivity fingerprints, physicochemical-descriptor vectors and 
graph isomorphism networks) with three regression techniques (random forests, k-nearest neighbours and multilayer 
perceptrons); we then use each resulting model to classify pairs of similar compounds as ACs or non-ACs and to 
predict the activities of individual molecules in three case studies: dopamine receptor D2, factor Xa, and SARS-CoV-2 
main protease.

Results and conclusions Our results provide strong support for the hypothesis that indeed QSAR models frequently 
fail to predict ACs. We observe low AC-sensitivity amongst the evaluated models when the activities of both com-
pounds are unknown, but a substantial increase in AC-sensitivity when the actual activity of one of the compounds 
is given. Graph isomorphism features are found to be competitive with or superior to classical molecular representa-
tions for AC-classification and can thus be employed as baseline AC-prediction models or simple compound-optimi-
sation tools. For general QSAR-prediction, however, extended-connectivity fingerprints still consistently deliver the 
best performance amongs the tested input representations. A potential future pathway to improve QSAR-modelling 
performance might be the development of techniques to increase AC-sensitivity.
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Graphical Abstract

Introduction
Activity cliffs  (ACs) are pairs of small molecules that 
exhibit high structural similarity but at the same time 
show an unexpectedly large difference in their binding 
affinity against a given pharmacological target [9, 37, 
50, 51, 54–56]. The existence of ACs directly defies the 
intuitive idea that chemical compounds with similar 
structures should have similar activities, often referred 
to as the molecular similarity principle. An example of 
an AC between two inhibitors of blood coagulation fac-
tor Xa [33] is depicted in Fig. 1; a small chemical modi-
fication involving the addition of a hydroxyl group leads 
to an increase in inhibition of almost three orders of 
magnitude.

For medicinal chemists, ACs can be puzzling and 
confound their understanding of structure-activity 
relationships (SARs) [13, 54, 62]. ACs reveal small com-
pound-modifications with large biological impact and 
thus represent rich sources of pharmacological informa-
tion. Mechanisms by which a small structural transfor-
mation can give rise to an AC include a drastic change 
in 3D-conformation and/or the switching to a different 
binding mode or even binding site. ACs form discon-
tinuities in the SAR-landscape and can therefore have a 
crucial impact on the success of lead-optimisation pro-
grammes. While knowledge about ACs can be powerful 
when trying to escape from flat regions of the SAR-land-
scape, their presence can be detrimental in later stages of 
the drug development process, when multiple molecu-
lar properties beyond mere activity need to be balanced 
carefully to arrive at a safe and effective compound [9, 
54].

In the field of computational chemistry, ACs are sus-
pected to form one of the major roadblocks for successful 

quantitative structure-activity relationship  (QSAR) 
modelling [9, 18, 37, 50]; abrupt changes in potency are 
expected to negatively influence machine learning algo-
rithms for pharmacological activity prediction. During 
the development of QSAR models, ACs are sometimes 
dismissed as measurement errors [39], but simply remov-
ing ACs from a training data set can result in a loss of 
precious SAR-information [10].

Golbraikh  et  al. [18] developed the MODI metric to 
quantify the smoothness of the SAR-landscape of binary 
molecular classification data sets and showed that the 
SAR-landscape smoothness is a strong determinant for 
downstream QSAR-modelling performance. In a related 
work, Sheridan et al. [50] found that the density of ACs 
in a molecular data set is strongly predictive of its over-
all modelability by classical descriptor- and fingerprint-
based QSAR methods. Furthermore, they found that 
such methods incur a significant drop in performance 
when the test set is restricted to “cliffy” compounds that 
form a large number of ACs. In a more extensive study, 
van Tilborg  et  al. [60] observed a similar drop in per-
formance when testing classical and graph-based QSAR 
techniques on compounds involved in ACs. Notably, in 
both studies this performance drop was also observed 
for highly nonlinear and adaptive deep learning models. 
In fact, van Tilborg reports that descriptor-based QSAR 
methods even outperform more complex deep learning 
models on “cliffy” compounds associated with ACs. This 
runs counter to earlier hopes expressed in the literature 
that the approximation power of deep neural networks 
might ameliorate the problem of ACs [64].

While these works provide valuable insights into the 
detrimental effects of SAR discontinuity on QSAR mod-
els, they consider ACs mainly indirectly by focussing 
on individual compounds involved in ACs. Arguably, a 
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distinct and more natural approach would be to inves-
tigate ACs directly at the level of compound pairs. This 
approach has been followed in the AC-prediction field 
which is concerned with developing techniques to clas-
sify whether a pair of similar compounds forms an AC or 
not. An effective AC-prediction method would be of high 
value for drug development with important applications 
in rational compound optimisation and automatic SAR-
knowledge acquisition.

The AC-prediction literature is still very thin compared 
to the QSAR-prediction literature. An attempt to con-
duct an exhaustive literature review on AC-prediction 
techniques revealed a total number of 15 methods [3, 5, 
7, 11, 19, 21, 24, 26, 30, 34, 41–43, 46, 57], all of which 
have been published since 2012. Current AC-prediction 
methods are often based on creative ways to extract 
features from pairs of molecular compounds in a man-
ner suitable for standard machine learning pipelines. 
For example, Horvath et al. [21] used condensed graphs 
of reactions [20, 27], a representation technique origi-
nally introduced for modelling of chemical reactions, 
to encode pairs of similar compounds and subsequently 
predict ACs. Another method was recently described 
by Iqbal et al. [26] who investigated the abilities of con-
volutional neural networks operating on 2D images of 
compound pairs to distinguish between ACs and non-
ACs. Interestingly, none of the AC-prediction methods 
we identified employ feature extraction techniques built 
on modern graph neural networks (GNNs) [14, 17, 31, 
61, 66] with the exception of Park et al. [43] who recently 
applied graph convolutional methods to compound-pairs 
to predict ACs.

In spite of the existence of advanced AC-prediction 
models there are significant gaps left in the current AC-
prediction literature. Note that any QSAR model can 
immediately be repurposed as an AC-prediction model 

by using it to individually predict the activities of two 
structurally similar compounds and then threshold-
ing the predicted absolute activity difference. Never-
theless, at the moment there is no study that uses this 
straightforward technique to investigate the potential 
of current QSAR models to classify whether a pair of 
compounds forms an AC or not. Importantly, this also 
entails that the most salient AC-prediction models 
[19, 21, 26, 34, 57] have not been compared to a simple 
QSAR-modelling baseline applied to compound pairs. 
It is thus an open question to what extent (if at all) 
these tailored AC-prediction techniques outcompete 
repurposed QSAR methods in the detection of ACs. 
This is especially relevant in light of the fact that several 
published AC-prediction models [19, 26, 34] are evalu-
ated via compound-pair-based data splits which incur a 
significant overlap between training set and test set at 
the level of individual molecules; this type of data split 
should strongly favour standard QSAR models for AC-
prediction, yet a comparison to such baseline methods 
is lacking.

We address these gaps by systematically investigat-
ing the abilities of nine frequently used QSAR models 
to classify pairs of similar compounds as ACs or non-
ACs within three pharmacological data sets: dopamine 
receptor D2, factor Xa, and SARS-CoV-2 main pro-
tease. Each QSAR model is constructed by combining 
a molecular representation method (physicochemical-
descriptor vectors  (PDVs) [58], extended-connectivity 
fingerprints  (ECFPs) [47], or graph isomorphism net-
works (GINs) [66]) with a regression technique (random 
forests (RFs), k-nearest neighbours (kNNs), or multilayer 
perceptrons  (MLPs)). All models are used for two dis-
tinct prediction tasks: QSAR-prediction at the level of 
individual molecules, and AC-classification at the level of 
compound-pairs. The main contribution of this study is 
to shed light on the following questions:

• What is the relationship between the ability of a 
QSAR model to predict the activities of individual 
compounds, versus its ability to classify whether 
pairs of similar compounds form ACs?

• When (if at all) are common QSAR models capable 
of predicting ACs?

• When (if at all) are common QSAR models capable 
of predicting which of two similar compounds is the 
more active one?

• Which QSAR model shows the strongest AC-predic-
tion performance, and should thus be used as a base-
line against which to compare tailored AC-prediction 
models?

Fig. 1 Example of an activity cliff (AC) for blood coagulation factor 
Xa. A small structural transformation in the upper compound leads to 
an increase in inhibitory activity of almost three orders of magnitude. 
Both compounds were identified in the same ChEMBL assay with ID 
658338
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• Do trainable GINs outperform classical precomputed 
ECFPs and PDVs as molecular representations for 
QSAR- and/or AC-prediction?

• How could ACs potentially be used to improve 
QSAR-modelling performance?

Experimental methodology
Molecular data sets
We built three binding affinity data sets of small-mole-
cule inhibitors of dopamine receptor D2, factor Xa, and 
SARS-CoV-2 main protease. Factor Xa is an enzyme in 
the coagulation cascade and a canonical target for blood-
thinning drugs [33]. Dopamine receptor D2 is the main 
site of action for classic antipsychotic drugs which act as 
antagonists of the D2 receptor [49]. SARS-CoV-2 main 
protease is one of the key enzymes in the viral replica-
tion cycle of the SARS coronavirus 2, that recently caused 
the unprecedented COVID-19 pandemic; it is one of the 
most promising targets for antiviral drugs against this 
coronavirus [59]. Note that while we focus on three tar-
get-based data sets in this work, it might be worthwhile 
and interesting to extend the methodology of this study 
to also include ADMET-based data sets in the future.

For dopamine receptor D2 and factor Xa, data was 
extracted from the ChEMBL database [35] in the form 
of SMILES strings with associated  Ki  [nM] values. For 
SARS-CoV-2 main protease, data was obtained from the 
COVID moonshot project [1] in the form of SMILES 
strings with associated  IC50 [µ M] values. SMILES strings 
were standardised and desalted via the ChEMBL struc-
ture pipeline [6]. This step also removed solvents and all 
isotopic information. Following this, SMILES strings that 
produced error messages when turned into an RDKit mol 
object were deleted. Finally, a scan for duplicate mole-
cules was performed: If the activities in a set of duplicate 
molecules were within the same order of magnitude then 
the set was unified via geometric averaging. Otherwise, 
the measurements were considered unreliable and the 
corresponding set of duplicate molecules was removed. 
This procedure reduced the data set for dopamine recep-
tor D2 / factor Xa / SARS-CoV-2 main protease from 
8883 / 4116 / 1926 compounds to 6333 / 3605 / 1924 
unique compounds whereby 174 / 21 / 0 sets of duplicate 
SMILES were removed and the rest was unified.

Activity cliffs: definition of binary classification tasks
The exact definition of an AC hinges on two concepts: 
structural similarity and large activity difference. An 
elegant technique to measure structural similarity in the 
context of AC analysis is given by the matched molecu-
lar pair  (MMP) formalism [23, 29]. An MMP is a pair 
of compounds that share a common structural core but 

differ by a small chemical transformation at a specific 
site. Figure 1 depicts an example of an MMP whose vari-
able parts are formed by a hydrogen atom and a hydroxyl 
group. To detect MMPs algorithmically, we used the 
mmpdb Python-package provided by Dalke et  al. [12]. 
We restricted ourselves to the commonly used defini-
tion of MMPs [19, 21, 57] which employs relatively gen-
erous size constraints: the MMP core was required to 
contain at least twice as many heavy atoms as either of 
the two variable parts; each variable part was required to 
contain no more than 13 heavy atoms; the maximal size 
difference between both variable parts was set to eight 
heavy atoms; and bond cutting was restricted to single 
exocyclic bonds. To guarantee a well-defined mapping 
from each MMP to a unique structural core, we canoni-
cally chose the core that contained the largest number of 
heavy atoms whenever there was ambiguity.

Based on the ratio of the activity values of both MMP 
compounds, each MMP was assigned to one of three 
classes: “AC”, “non-AC” or “half-AC”. In accordance with 
the literature [4, 19, 21, 42, 62] we assigned an MMP to 
the “AC”-class if both activity values differed by at least 
a factor of 100. If both activity values differed by no 
more than a factor of 10, then the MMP was assigned 
to the “non-AC”-class. In the residual case the MMP 
was assigned to the “half-AC”-class. To arrive at a well-
separated binary classification task, we labelled all ACs 
as positives and all non-ACs as negatives. The half-ACs 
were removed and not considered further in our experi-
ments. It is relevant to know the direction of a potential 
activity cliff, i.e. which of the compounds in the pair is the 
more active one. We thus assigned a binary label to each 
MMP indicating its potency direction  (PD). PD-classi-
fication is a balanced binary classification task. Table  1 
gives an overview of all our curated data sets.

Table 1 Sizes of our curated data sets and their respective 
numbers of matched molecular pairs (MMPs), activity cliffs (ACs), 
half-activity-cliffs (half-ACs) and non-activity-cliffs (non-ACs)

Data Set Dopamine 
Receptor D2

Factor Xa SARS-
CoV-2 Main 
Protease

Compounds 6333 3605 1924

MMPs 35484 21292 12594

ACs 461 1896 521

Half-ACs 3804 4693 1762

Non-ACs 31219 14703 10311

ACs : Non-ACs ≈ 1 : 68 ≈ 1 : 8 ≈ 1 : 20
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Data splitting technique
ACs are molecular pairs rather than single molecules; it 
is thus not obvious how best to split up a chemical data 
set into non-overlapping training- and test sets for the 
fair evaluation of an AC-prediction method. There seems 
to be no consensus about which data splitting strategy 
should be canonically used. Several authors [19, 26, 34] 
have employed a random split at the level of compound 
pairs. While this technique is conceptually straightfor-
ward, it must be expected to incur a significant overlap 
between training- and test set at the level of individual 
molecules. For example, randomly splitting up a set of 
three MMPs {{s, s̃}, {s, ŝ}, {s̃, ŝ}} into a training- and a test 
set might lead to {s, s̃} and {s, ŝ} getting assigned to the 
training- and {s̃, ŝ} getting assigned to the test set which 
leads to a full inclusion of the test set in the training set 
at the level of individual molecules. This molecular over-
lap is problematic for at least three reasons: Firstly, it 
likely leads to overly optimistic results for AC-prediction 
methods since they will have already encountered some 
of the test compounds during training. Secondly, it does 
not model the natural situation encountered by medici-
nal chemists who we assume will not know the activity 
value of at least one compound in a test-set pair. Thirdly, 
the mentioned molecular overlap should lead to strong 
AC-prediction results for standard QSAR models, but to 
the best of our knowledge, no such control experiments 
have been run in the literature.

Horvath et  al. [21] and Tamura et  al. [57] have made 
efforts to address the shortcomings of a compound-pair-
based random split. They came up with advanced data 
splitting algorithms designed to mitigate the molecular-
overlap problem by either managing distinct types of test 
sets according to compound membership in the train-
ing set or by designing splitting techniques based on the 
structural cores of MMPs. However, their data splitting 
schemes exhibit a relatively high degree of complexity 
which can make their implementation and interpretation 
difficult.

We propose a novel data splitting method which rep-
resents a favourable trade-off between rigour, interpret-
ability and simplicity. Our technique shares some of its 
concepts with the methods proposed by Horvath et  al. 
[21] and Tamura et al. [57] but might be simpler to imple-
ment and interpret. We first split the data into a training- 
and test set at the level of individual molecules and then 
use this basic split to distinguish several types of test sets 
at the level of compound pairs. Let

be the given data set of individual compounds. Let M be 
the set of all MMPs in D that have been labelled as either 

D = {s1, s2, . . .}

ACs or non-ACs. Note that M is a subset of the set of 
general compound pairs in D , i.e.

In the following, we use the notation {s, s̃} to represent 
MMPs in M . Each MMP {s, s̃} ∈ M shares a common 
structural core denoted as core({s, s̃}) . We use a random 
split to partition D into a training set Dtrain and a test set 
Dtest and then define the following MMP-sets:

Here,

which describes the set of MMP-cores that appear in 
Dtrain.

Note that Mtrain ∪Minter ∪Mtest = M . The pair 
(Dtrain,Mtrain) describes the training space at the level 
of individual molecules and MMPs, and can be used 
to train a QSAR- or AC-prediction method. A trained 
method can then classify MMPs in Mtest , Minter and 
Mcores . Mtest models an AC-prediction setting where 
the activities of both MMP-compounds are unknown. 
Mcores represents the subset of MMPs in Mtest whose 
structural cores do not appear in Mtrain ∪Minter ; Mcores 
thus models the difficult task of predicting ACs within 
MMPs that do not contain near analogs to MMP-com-
pounds in the training set. Finally, Minter represents an 
AC-prediction scenario where the activity of one MMP-
compound is given a priori; this can be interpreted as a 
compound-optimisation task where one strives to predict 
small AC-inducing modifications of a query compound 
with known activity. An illustration of our data splitting 
strategy is given in Fig. 2.

We implemented our data splitting strategy within a 
k-fold cross validation scheme repeated with m random 
seeds. This generated data splits of the form

for n ∈ {1, . . . ,m} and l ∈ {1, . . . , k} where (Dn,l
train,D

n,l
test) 

represents the l-th split of D in the cross validation 
round with random seed n. The overall QSAR- and AC-
prediction performance of each model was recorded as 
the average over the mk training- and test runs based on 
all data splits S1,1, . . . ,Sm,k . We chose the configuration 
(m, k) = (3, 2) which gave a good trade-off between com-
putational costs and accuracy and reasonable numbers of 
MMPs in the compound-pair-sets. In particular, random 

M ⊆ {{si, sj} | i �= j and si, sj ∈ D}.

Mtrain = {{s, s̃} ∈ M | s, s̃ ∈ Dtrain},

Minter = {{s, s̃} ∈ M | s ∈ Dtrain, s̃ ∈ Dtest},

Mtest = {{s, s̃} ∈ M | s, s̃ ∈ Dtest},

Mcores = {{s, s̃} ∈ Mtest | core({s, s̃}) /∈ Ctrain}.

Ctrain = {core({s, s̃}) | {s, s̃} ∈ Mtrain ∪Minter},

S
n,l

= (D
n,l
train,D

n,l
test,M

n,l
train,M

n,l
test,M

n,l
inter,M

n,l
cores)
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cross-validation with k = 2 gave expected relative sizes 
of:

On average, 12.7 % , 11.91 % , and 6.84 % of MMPs in Mtest 
were also in Mcores for dopamine receptor D2, factor Xa, 
and SARS-CoV-2 main protease, respectively.

Prediction strategies and performance measures
In a data split of the form

each individual compound, s ∈ Dtrain ∪Dtest = D, can be 
associated with an activity label a(s) ∈ R which we define 
as the negative decadic logarithm of the experimentally 
measured activity of  s. We stuck with the original units 
used in the ChEMBL database and the COVID moon-
shot project before applying the logarithm ([nM] for  Ki 
and [ µ M] for  IC50); each activity label a(s) thus repre-
sents a standard  pKi- or  pIC50 value that was additively 
shifted towards 0 due to the use of [nM]- or [ µM]-units 
instead of the usual [M]-units; this shift towards 0 might 
slightly benefit prediction techniques initialised around 
the origin.

We are interested in QSAR-prediction functions,

that can map a chemical structure s ∈ D to an estimate 
of its binding affinity a(s). The mapping f is found via an 
algorithmic training process on the labelled data set

and can then either be used to predict the activity 
labels of compounds in Dtest , or it can be repurposed to 

|Mtrain| : |Minter| : |Mtest| = 1 : 2 : 1.

S = (Dtrain,Dtest,Mtrain,Mtest,Minter,Mcores)

f : D → R,

{(s, a(s)) | s ∈ Dtrain}

classify whether an MMP forms an activity cliff (AC-clas-
sification) and what the potency direction of an MMP is 
(PD-classification).

If {s, s̃} ∈ Minter , then one can assume that the activ-
ity label of one of the compounds, say a(s), is known; f is 
then used to classify {s, s̃} via:

Here dcrit ∈ R>0 is a critical threshold above which an 
MMP is classified as an AC. Throughout this work we use 
dcrit = 1.5 (in  pKi- or  pIC50 units) since this value repre-
sents the middle point between the intervals [0,  1] and 
[2,∞) which correspond to absolute activity-label differ-
ences associated with non-ACs and ACs respectively. If 
{s, s̃} ∈ Mtest ∪Mcores then the activities of both com-
pounds are unknown and we classify {s, s̃} via:

PD-classification for MMPs is performed in a straight-
forward manner: the activity labels of both MMP-
compounds are predicted via f and then compared to 
classify which compound is the more active one. Since 
the employed AC- and PD-prediction strategies are based 
solely on activity predictions for individual compounds 
in MMPs, they can be generated entirely on the basis of 
single-molecule representations and do not require an 
additional representation method for compound pairs.

The performance of f for standard QSAR prediction 
in Dtest is measured via the mean absolute error (MAE). 
Note that the MAE is measured over all compounds in 
Dtest and not just over compounds involved in MMPs or 
ACs. For the balanced PD-classification problem we rely 
on accuracy as a suitable performance measure. For the 

{s, s̃} �→

{

Non-AC if |a(s)− f (s̃)| ≤ dcrit,
AC if |a(s)− f (s̃)| > dcrit.

{s, s̃} �→

{

Non-AC if |f (s)− f (s̃)| ≤ dcrit,
AC if |f (s)− f (s̃)| > dcrit.

Fig. 2 Illustration of our data splitting strategy. We distinguish between three MMP-sets, Mtrain,Minter and Mtest , depending on whether both 
MMP-compounds are in Dtrain , one MMP-compound is in Dtrain and the other one is in Dtest , or both MMP-compounds are in Dtest . We additionally 
consider a fourth MMP-set, Mcores , consisting of the MMPs in Mtest whose structural cores do not appear in Mtrain ∪Minter
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highly imbalanced task of AC-classification, however, we 
use the Matthews correlation coefficient  (MCC), as well 
as sensitivity and precision. For the relatively small SARS-
CoV-2 main protease data set we sometimes encountered 
the edge case where there were no positive predictions; 
we then set MCC = 0 and ignored ill-defined precision 
measurements when averaging the performance metrics 
to obtain the final results.

Molecular representation- and regression techniques
We constructed nine QSAR models via a robust combi-
natorial methodology that systematically combines three 
molecular representation methods with three regression 
techniques. This setup allows, for example, to compare 
the performance of molecular representation methods 
across regression techniques, data sets and predictions 
tasks.

For molecular representation, we used extended-
connectivity fingerprints [47] (ECFPs), physicochemi-
cal molecular descriptor vectors [58] (PDVs), and graph 
isomorphism networks (GINs) [66]. Both ECFPs and 
PDVs were computed via RDKit [32]. The ECFPs were 
chosen to use a radius of two, a length of 2048 bits, 
and active chirality flags. The PDVs had a dimensional-
ity of 200 and were constructed using the general list of 
descriptors from the work of Fabian et al. [15]. This list 
encompasses properties related to druglikeness, logP, 
molecular refractivity, electrotopological state, molecular 

graph-structure, fragment profile, charge, and topologi-
cal surface properties. The GIN was implemented using 
PyTorch Geometric [16] and consisted of a variable 
number of graph convolutional layers, each with two 
internal hidden layers with ReLU activations and batch 
normalisation [25]. We further chose the maxpool opera-
tor which computes the component-wise maximum over 
all atom feature vectors in the final graph layer to obtain a 
graph-level representation.

Each molecular representation was used as an input 
featurisation for three regression techniques: random 
forests (RFs), k-nearest neigbours (kNNs) and multilayer 
perceptrons (MLPs). The RF- and kNN-models were 
implemented via scikit-learn [45] and the MLP-models 
via PyTorch [44]. The MLPs used ReLU activations and 
batch normalisation at each hidden layer.

The GIN was combined with the regression techniques 
as follows: For MLP regression, the GIN was trained with 
the MLP as a projection head after the pooling step in the 
usual end-to-end manner. For RF- or kNN-regression, 
the GIN was first trained with a single linear layer added 
after the global pooling step that directly mapped the 
graph-level representation to an activity prediction. After 
this training phase the weights of the GIN were frozen 
and it was used as a static feature extractor. The RF- or 
kNN-regressor was then trained on the features extracted 
by the frozen GIN. Figure 3 illustrates our combinatorial 
experimental methodology.

Fig. 3 Schematic showing the combinatorial experimental methodology used for the study. Each molecular representation method is 
systematically combined with each regression technique, giving a total of nine QSAR models. Each QSAR model is trained and evaluated for 
QSAR-prediction, AC-classification and PD-classification within a 2-fold cross validation scheme repeated with 3 random seeds. For each of the 
2 ∗ 3 = 6 trials, an extensive inner hyperparameter-optimisation loop on the training set is performed for each QSAR model
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Model training and hyperparameter optimisation
All models were trained using full inner hyperparameter-
optimisation loops. Hyperparameters of RFs and kNNs 
were optimised in scikit-learn [45] by uniformly random 
sampling of hyperparameters from a predefined grid. The 
hyperparameters of MLPs and GINs were sampled from 
a predefined grid via the tree-structured Parzen estima-
tor algorithm implemented in Optuna [2]. Deep learning 
models were trained for 500 epochs on a single NVIDIA 
GeForce RTX 3060 GPU via the mean squared error loss 
function using AdamW optimisation [36]. Weight decay, 
learning rate decay and dropout [52] were employed at all 
hidden layers for regularisation. Batch size, learning rate, 
learning rate decay rate, weight decay rate, and dropout 
rate were treated as hyperparameters and subsequently 
optimised. Note that the training length (i.e. the number 
of gradient updates) was implicitly optimised by tun-
ing the batch size for the fixed number of 500 training 
epochs. Further implementation details can be found in 
our public code repository.1

Results and discussion
The QSAR-prediction-, AC-classification- and PD-clas-
sification results for all three data sets are depicted in 
Figs. 4, 5, 6, 7, 8 and 9.

QSAR-prediction performance
When considering the results depicted in Figs. 4, 5, 6, 7, 8 
and 9 with respect to QSAR-prediction performance, one 
can see that ECFPs tend to lead to better performance 
(i.e.  a lower QSAR-MAE) compared to GINs, which in 
turn tend to lead to better performance compared to 
PDVs. In particular, the combination MLP-ECFP consist-
ently produced the lowest QSAR-MAE across all three 
targets. These observations reinforce a growing corpus of 
literature that suggests that trainable GNNs have not yet 
reached a level of technical maturity by which they con-
sistently and definitively outperform the much simpler 
task-agnostic ECFPs at important molecular property 
prediction tasks [8, 28, 38, 40, 48, 53, 65].

AC-classification performance
The AC-MCC plots in  Figs.  4, 5, 6 reveal surprisingly 
strong overall AC-classification results on Minter . This 
type of MMP-set models a compound-optimisation sce-
nario where a researcher strives to identify small struc-
tural modifications with a large impact on the activity of 
query compounds with known activities. For this task, 
a significant portion of our QSAR models exhibit an 

AC-MCC value greater than 0.5 across targets, which 
appears impressive considering the simplicity of the 
approach. Exchanging Minter with either Mtest or Mcores 
leads to a substantial drop in the AC-MCC to approxi-
mately 0.3 that appears to be mediated by a large drop in 
AC-sensitivity.

In most cases, GINs perform better than the other 
molecular representation methods with respect to the 
AC-MCC. Notably, the combination GIN-kNN consist-
ently performs considerably better for AC-classification 
than the combinations ECFP-kNN and PDV-kNN. This 
supports the idea that GINs might have a heightened abil-
ity to resolve ACs by learning an embedding of chemical 
space in which the distance between two compounds is 
reflective of activity difference rather than structural dif-
ference. The combinations GIN-MLP, GIN-RF and ECFP-
MLP exhibit particularly high AC-MCC values relative to 
the other methods. We recommend using at least one of 
these three models as a baseline against which to com-
pare tailored AC-prediction models; the practical utility 
of any AC-prediction technique that cannot outperform 
these three common QSAR methods is questionable.

Across all three targets, AC-sensitivity is moderately 
high on Minter but universally low on Mtest and Mcores . 
This is consistent with the hypothesis that ACs form 
one of the major sources of prediction error for QSAR 
models. The weak AC-sensitivity on Mtest and Mcores 
indicates that modern QSAR methods are largely blind 
to ACs formed by two MMP-compounds outside the 
training set and thus lack essential chemical knowledge. 
GINs clearly outperform the other two more classical 
molecular representations across regression techniques 
with respect to AC-sensitivity. In particular, the GIN-
MLP combination leads to the highest AC-sensitivity in 
all examined cases and thus discovers the most ACs. The 
highly parametric nature of GINs that makes them prone 
to overfitting could at the same time enable them to bet-
ter model jagged regions of the SAR-landscape that con-
tain ACs than classical task-agnostic representations.

There is a wide gap between distinct prediction tech-
niques with respect to AC-precision: some models 
achieve a considerable level of AC-precision such that 
over 50% of positively predicted MMPs in Mtest and 
Mcores are indeed actual ACs. Other QSAR models, 
however, seem to fail almost entirely with respect to this 
metric on Mtest and Mcores and only deliver modest per-
formance on Minter . RFs tend to exhibit the strongest 
AC-precision and the weakest AC-sensitivity. This might 
be as a result of their ensemble nature which should intu-
itively lead to conservative but trustworthy predictions of 
extreme effects such as ACs.

1 https:// github. com/ Marku sFerd inand Dabla nder/ QSAR- activ ity- cliff- exper 
iments.

https://github.com/MarkusFerdinandDablander/QSAR-activity-cliff-experiments
https://github.com/MarkusFerdinandDablander/QSAR-activity-cliff-experiments
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PD-classification performance
The abilities of the evaluated QSAR models to identify 
which is the more active compound in an MMP is uni-
versally weak, with PD-accuracies clustering around 
0.7 on Minter and around 0.6 on Mtest and Mcores , as 
can be seen in the top rows of Figs. 7, 8, 9. Predicting 
the potency direction for two compounds with similar 
structures and thus usually similar activity levels must 

be considered a challenging task. The combination 
ECFP-MLP reaches the strongest PD-accuracy in the 
majority of cases and we recommend starting with this 
model as a baseline for more advanced PD-prediction 
methods.

One can argue that the activity order of two similar 
compounds is of little interest if the true activity dif-
ference is small, as is often the case. We therefore also 

Fig. 4 QSAR-prediction- and AC-classification results for dopamine receptor D2. For each plot, the x-axis corresponds to a combination 
of MMP-set and AC-classification performance metric and the y-axis shows the QSAR-prediction performance on the molecular test set 
Dtest . The total length of each error bar equals twice the standard deviation of the performance metric measured over all mk = 3 ∗ 2 = 6 
hyperparameter-optimised models. For each plot, the lower right corner corresponds to strong performance at both prediction tasks
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restricted PD-classification to predicted ACs. The three 
plots in the bottom rows of  Figs.  7, 8, 9 depict the PD-
accuracy of each QSAR model on the subset of MMPs 
that were also predicted to be ACs by the same model. 
In this practically more relevant scenario PD-prediction 
accuracy tends to exceed 0.9 on Minter and 0.8 on Mtest 
and Mcores . The QSAR models investigated here are thus 
able to identify the correct activity order of MMPs if they 

also predict them to be ACs. The relatively rare instances 
in which the PD of a predicted AC is misclassified, how-
ever, reflect severe QSAR-prediction errors.

Linear relationship between QSAR-MAE and AC-MCC
Our experiments reveal a consistent linear relation-
ship between the QSAR-MAE and the AC-MCC as can 
be seen in the left columns of Figs. 4, 5, 6. A potential 

Fig. 5 QSAR-prediction- and AC-classification results for factor Xa. For each plot, the x-axis corresponds to a combination of MMP-set and 
AC-classification performance metric and the y-axis shows the QSAR-prediction performance on the molecular test set Dtest . The total length 
of each error bar equals twice the standard deviation of the performance metric measured over all mk = 3 ∗ 2 = 6 hyperparameter-optimised 
models. For each plot, the lower right corner corresponds to strong performance at both prediction tasks
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mechanism driving this effect could be that as the 
overall QSAR-MAE of a model improves, its accuracy 
at predicting activity differences between similar mol-
ecules might be expected to improve as well; previ-
ously misclassified MMPs whose predicted absolute 

activity differences were already close to the critical 
value dcrit = 1.5 might then gradually move to the cor-
rect side of the decision boundary and increase the AC-
MCC. The results suggest that for real-world QSAR 
models the AC-MCC and the QSAR-MAE are strongly 

Fig. 6 QSAR-prediction- and AC-classification results for SARS CoV-2 main protease. For each plot, the x-axis corresponds to a combination 
of MMP-set and AC-classification performance metric and the y-axis shows the QSAR-prediction performance on the molecular test set 
Dtest . The total length of each error bar equals twice the standard deviation of the performance metric measured over all mk = 3 ∗ 2 = 6 
hyperparameter-optimised models. The precision of the AC-classification task is lacking for the ECFP + kNN technique on Mtest and Mcores 
since this method produced only negative AC-predictions for all trials on this data set. For each plot, the lower right corner corresponds to strong 
performance at both prediction tasks
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predictive of each other; while this observation only 
rests on nine models, it is highly consistent across 
MMP-sets and pharmacological targets.

Conclusions
To the best of our knowledge this is the first study to 
investigate the capabilities of QSAR models to clas-
sify between ACs and non-ACs. It is also the first work 
to explore the quantitative relationship between QSAR-
prediction at the level of individual molecules and AC-
prediction at the level of compound-pairs. As part of our 
methodology we have additionally introduced a simple, 
interpretable, and rigorous data-splitting technique for 
pair-based prediction problems.

When the activities of both MMP-compounds are 
unknown (i.e.  absent from the training set) then com-
mon QSAR models exhibit low AC-sensitivity which 
limits their utility for AC-prediction. This strongly sup-
ports the hypothesis that QSAR methods do indeed reg-
ularly fail to predict ACs which might thus form a major 
source of prediction errors in QSAR modelling [9, 18, 
37, 50]. However, if the activity of one MMP-compound 
is known (i.e., present in the training set) then AC-sensi-
tivity increases substantially; for query compounds with 
known activities, QSAR methods can therefore be used 
as simple AC-prediction-, compound-optimisation- and 
SAR-knowledge-acquisition tools. Furthermore, based 
on the observed potency-direction (PD) classification 

Fig. 7 QSAR-prediction- and PD-classification results for dopamine receptor D2. Each column corresponds to an upper plot and a lower plot for 
one of the MMP-sets Minter , Mtest or Mcores . The x-axis of each upper plot indicates the PD-classification accuracy on the full MMP-set; the x-axis 
of each lower plot indicates the PD-classification accuracy on a restricted MMP-set only consisting of MMP predicted to be ACs by the respective 
method. The y-axis of each plot shows the QSAR-prediction performance on the molecular test set Dtest . The total length of each error bar equals 
twice the standard deviation of the performance metrics measured over all mk = 3 ∗ 2 = 6 hyperparameter-optimised models. For each plot, the 
lower right corner corresponds to strong performance at both prediction tasks
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results we can expect the estimated activity direction of 
predicted ACs to have a high degree of accuracy.

With respect to molecular representation, we have 
found robust evidence that precomputed task-agnostic 
ECFPs still outcompete differentiable GINs at general 
QSAR-prediction. This adds to a growing awareness 
that standard message-passing GNNs might need to be 
improved further to definitively beat classical molecu-
lar featurisations such as ECFPs [8, 28, 38, 40, 48, 53, 
65]. One potential angle to achieve this could be self-
supervised GNN-pretraining, which has recently shown 
promising results in the molecular domain [22, 63]. 
However, while GINs appear to be inferior to ECFPs 
for QSAR-prediction, they tend to be advantageous 

for AC-classification; their highly parametric nature 
might simultaneously lead to increased overfitting but 
to a better modelling of the more jagged regions of the 
SAR-landscape. We thus recommend using GINs as an 
AC-classification baseline since such an agreed-upon 
baseline is currently lacking.

The low AC-sensitivity of the tested QSAR mod-
els when the activities of both MMP-compounds are 
unknown suggests that such methods are still lacking 
essential SAR knowledge. On the flip side, it might be 
possible to considerably boost the performance of com-
mon QSAR models by developing techniques to increase 
their AC-sensitivity which could potentially provide a 
fruitful direction for future research.

Fig. 8 QSAR-prediction- and PD-classification results for factor Xa. Each column corresponds to an upper plot and a lower plot for one of the 
MMP-sets Minter , Mtest or Mcores . The x-axis of each upper plot indicates the PD-classification accuracy on the full MMP-set; the x-axis of each 
lower plot indicates the PD-classification accuracy on a restricted MMP-set only consisting of MMP predicted to be ACs by the respective method. 
The y-axis of each plot shows the QSAR-prediction performance on the molecular test set Dtest . The total length of each error bar equals twice the 
standard deviation of the performance metrics measured over all mk = 3 ∗ 2 = 6 hyperparameter-optimised models. For each plot, the lower right 
corner corresponds to strong performance at both prediction tasks
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