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Abstract 

It is insightful to report an estimator that describes how certain a model is in a prediction, additionally to the 
prediction alone. For regression tasks, most approaches implement a variation of the ensemble method, apart 
from few exceptions. Instead of a single estimator, a group of estimators yields several predictions for an input. 
The uncertainty can then be quantified by measuring the disagreement between the predictions, for example by 
the standard deviation. In theory, ensembles should not only provide uncertainties, they also boost the predictive 
performance by reducing errors arising from variance. Despite the development of novel methods, they are still 
considered the “golden‑standard” to quantify the uncertainty of regression models. Subsampling‑based methods to 
obtain ensembles can be applied to all models, regardless whether they are related to deep learning or traditional 
machine learning. However, little attention has been given to the question whether the ensemble method is 
applicable to virtually all scenarios occurring in the field of cheminformatics. In a widespread and diversified attempt, 
ensembles are evaluated for 32 datasets of different sizes and modeling difficulty, ranging from physicochemical 
properties to biological activities. For increasing ensemble sizes with up to 200 members, the predictive performance 
as well as the applicability as uncertainty estimator are shown for all combinations of five modeling techniques and 
four molecular featurizations. Useful recommendations were derived for practitioners regarding the success and 
minimum size of ensembles, depending on whether predictive performance or uncertainty quantification is of more 
importance for the task at hand.

Keywords Cross‑validation, Deep learning, Ensemble learning, Machine learning, Uncertainty quantification, 
Validation

Introduction
Machine learning (ML) for drug design purposes holds a 
long tradition  [1], but has recently started to gain further 
attention due to the success of deep learning (DL) [2]. Yet, 

the prediction of chemical properties and activities is only 
one step in a long and resource-intense process of drug 
design, discovery, and development. When developing ML 
models, predictions alone are not sufficient and require 
further analysis [3]. During model construction and testing, 
errors made by the model can easily be evaluated since the 
true target values are known. The error distribution allows 
the estimation of the quality of the model, but cannot be 
applied when predicting values for new compounds with 
unknown target values. In this case, it is good practice to 
provide an estimate of the uncertainty associated with 
the prediction. Measures quantifying the predictive 
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uncertainty can be used to set a threshold which defines 
the model’s applicability domain. The latter is defined as 
follows: “The applicability domain of a (Q)SAR model is 
the response and chemical structure space in which the 
model makes predictions with a given reliability.”  [4]. The 
reliability of a model can either be addressed by quantifying 
its confidence, or, conversely, its uncertainty. Recent 
studies make use of the term uncertainty quantification 
(UQ)  [5]. Uncertainty can be of aleatoric nature, relating 
to the random process that generates the target values, or 
epistemic nature, implying model-related uncertainty  [6]. 
Usually, these two types cannot be fully distinguished [7].

Classification algorithms often provide built-in 
mechanisms or augmentations to measure their 
uncertainty  [8]. One example is estimating posterior 
probabilities (through Platt scaling [9]) when using support 
vector machine (SVM) classifiers [10]. When using SVMs 
for regression  [11], however, no such UQ measure exists. 
In cases where the model provides no built-in uncertainty 
quantifier, practitioners use generic methods that are 
model-independent. A common procedure in such a 
situation is to compute ensembles of models instead of 
a single estimator  [12]. When an ensemble predicts the 
output of a given instance, it is presented to each individual 
model, which makes a single-valued prediction. These 
predictions are then combined to a single output by 
averaging them. Let ŷtesti  denote the prediction for a given 
instance from the test set, computed by ensemble member 
i (out of M members). Then, the final prediction that the 
ensemble reports for that instance is obtained as follows:

In the case of this study, the different ensemble members 
are generated by subsampling. Initially, ensembles 
were suggested to improve the predictive performance: 
Errors as a result of model variation are reduced since 
averaging across models smooths out those variances. 
This procedure also inherently yields a measure for 
UQ: The variability between the individual predictions 
for a specific compound quantifies the uncertainty of 
the whole ensemble for that instance. Regression tasks 
typically compute the average of the predictions as a 
point estimator and the standard deviation or variance as 
UQ measure  [13–15]. In case of the standard deviation, 
the uncertainty û of ˆ̄ytest is then computed as follows:

In terms of uncertainty analysis, this procedure estimates 
the epistemic uncertainty [16].
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Random forests (RFs)  [17], consisting of individual 
decision trees, are already ensembles by design, hence 
the ensemble variance is their default UQ measure. 
Although it is possible to conceive alternative methods 
when using RFs, the default approach seems to 
prevail  [18]. In DL, the dropout technique originating 
from regularization has been successfully transferred to 
generate UQ estimates [19], also known as Monte Carlo 
(MC) dropout  [20]. For a fitted neural network, a fixed 
fraction of randomly selected weights is deactivated 
during inference. Now, the output of a single instance 
can be predicted multiple times using a single network 
but different deactivated weights. Basically, UQ by MC 
dropout simulates an ensemble since each prediction 
per dropout mask can be considered to come from a 
different model  [21]. With the focus shifting more and 
more towards DL, novel UQ measures are developed 
that are specifically designed for neural networks  [22–
25]. A very promising approach has been introduced 
by Soleimany et  al.  [26]. Their application of evidential 
DL for cheminformatic regression tasks appears more 
efficient compared to ensembles and MC dropout. 
Nonetheless, depending on the dataset at hand, the 
success of ensembles can vary with the number of 
ensemble members and the strategy to generate 
ensembles  [27]. The type of molecular featurization 
can influence the outcome as well  [28]. The number of 
possible object representations to choose from is large in 
cheminformatics [29]: Among them, there are structural 
descriptors, physicochemical descriptors  [30], and 
certain descriptors generated by deep neural networks 
(DNNs) from structural inputs such as SMILES or 
molecular graphs. The latter descriptors comprise latent-
space encodings  [31] and recent graph convolutional 
neural networks, where the model automatically learns 
the optimal weighting of each subgraph contribution [32]. 
The combination of graph-based learned representations 
with DNNs is capable of surpassing traditional 
approaches [33]. Unfortunately, graphs cannot be applied 
to ML techniques that strictly require structured data, 
such as RF or SVM. Based on SMILES-to-SMILES 
autoencoders, task-independent latent-space encodings 
provide learned molecular representations that can 
be used as inputs for traditional ML algorithms. One 
example that is publicly available and applicable for ML 
related to drug discovery is continuous and data-driven 
descriptor (CDDD) developed by Winter et al. [34].

In theory, the ensemble method should provide 
UQ estimates for all settings. Although it might be 
outperformed at some point, it is expected to yield 
reasonable uncertainty estimates. UQ based on 
ensembles can also be used to calibrate conformal 
predictors  [35]. However, ensembles also come with 
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method-specific disadvantages. Obviously, an ensemble 
requires longer training and inference times and more 
disk space than a single model. For most practitioners, 
ensembles are therefore inconvenient to deploy, although 
sometimes no alternative is at hand.

To gain a better insight on the applicability of 
ensembles for UQ, a diverse collection of datasets has 
been compiled, including various tasks. Using four 
molecular featurizations, from traditional fingerprints to 
(task-unspecific) learned representations, the usefulness 
of the ensemble method is evaluated for neural networks 
and three other well-established supervised ML 
techniques. The dependency on the number of ensemble 
members (the ensemble size) and the comparison to 
model-specific measures (if available) is outlined. Prior 
studies also deal with the evaluation of different UQ 
methods and ensembles, but with less datasets and 
different focuses  [14, 36], e.g., exclusively for DNN 
ensembles of message passing neural networks [37].

Results and discussion
Predictive performance
Subsampling ensembles of 200 members were 
generated by running 200 2-fold cross-validations 
(CVs) for all datasets, in combination with all molecular 
featurizations, and all modeling techniques, resulting 
in 640 combinations (32 datasets * four featurizations * 
five modeling techniques = 640). The final prediction 
of the ensemble for each compound was obtained by 
averaging over the 200 individual member predictions. 
It can be seen in Fig.  1 that predictive performances 
are on average comparable across featurizations and 
modeling techniques, with MACCS  [38] showing the 
largest variability in performance. Morgan fingerprint 
count (MFC) shows the smallest performance variability. 
Either MFC or CDDD achieved the highest average 
performance for each modeling technique. An exhaustive 

overview for all individual predictive performances of 
each of the full 200-member ensembles obtained by 
2-fold CV is provided in Additional file 1: Fig. S1.

Although the box plots capture the variability between 
the modeling techniques, certain trends are hardly 
perceptible but can be visualized using rank sums. The 
sum of ranks for each combination of featurization 
and modeling technique across all datasets are shown 
in Fig.  2. Here, it can be seen that the four highest 
ranking (i.e., best) combinations were DNNs together 
with MFC, RDKit descriptors  [39], and CDDD, and 
XGBoost (XGB) [40] together with MFC. Out of the four 
lowest ranking (i.e., worst) combinations, three involved 
SVMs, namely combined with MACCS, MFC, and 
RDKit descriptors. The shallow neural network (SNN) in 
combination with MACCS achieved the second lowest 
rank sum. Combinations involving MACCS in general 
turned out to be underperforming when compared to 
other featurizations.

Fig. 1 Overview of all predictive performances ( R2 ) for the modeling techniques RF (a), XGB (b), SVM (c), SNN (d), and DNN (e) as box‑whisker 
plots. The featurization‑specific results (for MACCS, MFC, RDKit descriptors, and CDDD) are shown and colored separately within each plot. The only 
negative R2 , corresponding to MMP2, using RDKit descriptors and the SNN, was omitted for visual clarification

Fig. 2 Rank sums for each combination of featurization and 
modeling technique across all datasets, summed up for predictive 
performance. Smaller is better, as the rank for each combination (one 
to 20) was summed up for all datasets. The best performance within a 
dataset was assigned rank one and the worst rank 20. Cells containing 
smaller values are colored brighter
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Several factors were kept constant in this benchmark. 
Varying the random seed, the number of folds, choosing a 
different set of fixed hyperparameters, or hyperparameter 
tuning would expectedly lead to minor performance 
differences on the level of individual models. Besides 
several alternative ks for k-fold CV, subsampling 
ensembles of 200 bootstrap samples were also tested for 
some of the datasets, but were found to perform similarly. 
See Section 2 in Additional file 1 for a discussion of the 
comparison between the two subsampling methods.

For neural network ensembles, the predictive 
performances fluctuated heavily within a dataset between 
featurizations. Although ensembles employing DNNs 
were closely the most successful modeling technique, 
they also accounted for some of the worst predictive 
performances in the whole study at the same time, e.g., 
R2 = 0.0 7 for dataset MMP2 [41], featurized by MACCS. 
Interestingly, MACCS was the only featurization that 
did not perform well in combination with the DNN. In 
contrast to traditional ML methods, the hyperparameter 
choices for DL are far more complex. E.g., the network 
architecture alone offers a huge number of reasonable 
settings, while most traditional ML techniques rely on 
a small set of hyperparameters. Generalizing settings 
for DNNs remains an active field of research  [42]. As 
“universal approximators”  [43], they have the capability 
to fit any function given sufficient data and proper 
hyperparameter settings. As a consequence, generic “off-
the-self” neural networks are not as robust as traditional 
ML techniques which bears the risk that they are not 
suited for a specific dataset/featurization combination. 
Some of RDKit’s descriptor values get extraordinarily 
large for a small number of molecules in the dataset [33], 
which causes a wide variation of neural network 
performance. If all of these extreme outliers happen to 
be part of the test split, a model might produce highly 
erroneous predictions for them. These predictions will 
be within the training output range when using RFs and 
RF ensembles since they are unable to extrapolate, which 
does not hold for DNNs. To deal with such extreme 
outliers, predictions outside two times the training 
output range were eliminated. A discussion about the 
issue of removing prediction outliers is provided in 
Section 3 in Additional file 1.

Ensembles of the tree-based methods RF and XGB 
predicted with rather constant performance. Single 
XGB models on default settings without any additional 
regularization might be overfitted, which is why they 
could benefit from being members of an ensemble. The 
steep rise in cumulative R2-values for several XGB models 
when accumulating more and more members confirms 
this assumption (data not shown here, but visualized 
for all datasets and combinations in  [44]). The success 

of the combination of XGB and MFC is particularly 
noteworthy because MFC is never the most performant 
featurization in the other combinations. Conversely, tree-
based methods were the only modeling techniques which 
did not result in the smallest (i.e., best) rank sums when 
combined with CDDD.

Performances of SVM ensembles were mostly 
located below those of neural networks and tree-
based techniques. In combination with MACCS, SVM 
ensembles showed the lowest performance, followed by 
MFC. To explain in detail why specific combinations do 
not lead to promising results, or why some modeling 
techniques lead to exceptionally good results for usually 
unfavorable featurizations, is not within the scope of 
this study. Nonetheless, other studies investigating 
performance differences noticed similar relationships. 
One example is the performance difference between 
MACCS and featurizations based on extended-
connectivities (albeit fingerprints and not counts)  [45, 
46].

Some datasets seem to be easier to model than others, 
e.g., Tetrahymena [47] constantly achieved an R2 of 0.71 
or higher. On the other hand, some datasets appear to be 
particularly hard to model. No predictive performance 
above 0.62 was achieved for MMP2, IL4, O60674, 
P18089, P28335, P28482, P41594, P61169, and Q05397, 
regardless of the setting. The success was therefore less 
dependent on the chosen combination but more on 
the dataset. Figure  3 illustrates this observation. While 
intra-dataset variability is typically small, inter-dataset 
variability spans a large range.

In general, the three datasets not related to bio-activity 
seemed to be relatively easy to model. As already pointed 
out in another study from this group [18], the endpoints 
of FreeSolv are based on simulations and were therefore 
computed instead of measured  [48]. This might explain 
why modeling FreeSolv usually turns out successfully. 
Bio-activity datasets were, on average, harder to model. 
For some of them, e.g., Q05397, the dependent values did 
not seem to be normally distributed, and many of them 
(roughly 18%) were also censored. The occurrence and 
severeness of activity cliffs adds to the modeling difficulty 
in general  [49], regardless of using ensembles or single 
models.

To support these explanations, patterns in the data 
were visualized by performing dimensionality reduction 
followed by coloring each embedded compound 
according to its target value (darker for lower values, 
brighter for higher values). Tetrahymena and IL4, 
featurized using RDKit descriptors, exhibit different 
output distributions when plotting the first two 
components after applying principal component analysis, 
as visualized in Fig.  4. While the plot for Tetrahymena 
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shows a color gradient, the plot for IL4 shows no gradient 
or areas that appear homogeneous in color distribution. 
This suggests that the relation between inputs and 
outputs could be easier to learn for Tetrahymena than for 
IL4.

Uncertainty quantification performance
The standard deviation of the 200 predictions made 
by the ensemble members was applied to quantify the 
uncertainty of the average prediction (i.e., the output 
of the ensemble). UQ performance was assigned using 
Spearman’s rank correlation coefficient ( ρ ), measuring 
how well UQ values reflect the magnitude in error 
(cf. Quality assessment in the Materials and methods 

section). Similar to R2 , larger values of ρ are desired, 
as they indicate a better ability of the UQ measure 
to rank the predictions according to their absolute 
prediction error. All individual ρ-values can be found in 
Additional file 1: Fig. S4.

As visualized in Fig.  5, UQ performances across 
featurizations and modeling techniques were comparable 
on average, although values of ρ appear more scattered 
than R2 values, as indicated by more outliers outside the 
range of the whiskers.

Again, the influence of the combination on the success 
of UQ was clarified using the sum of ranks, which are 
shown in Fig.  6. As can be seen from the rank sums, 
combinations involving MACCS mostly underperformed 

Fig. 3 Overview of all 200‑member ensemble predictive performances ( R2 ) for each dataset as box‑whisker plots, sorted by descending median. 
The only negative R2 , corresponding to MMP2, using RDKit descriptors and the SNN, was omitted for visual clarification

Fig. 4 Scatter plot of the first two components after applying principle component analysis to RDKit descriptors, colored according to the 
corresponding output value (brighter is larger), for Tetrahymena (a) and IL4 (b)
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in UQ, comparable to their relatively low predictive 
performance. The modeling technique with the lowest 
UQ performance was constantly SNN. In general, the 

difference in rank sums between lowest and highest 
performing combinations was lower for UQ performance 
than for predictive performances.

Ensembles of RFs, like XGB ensembles, did not only 
exhibit less variability for predictive performance, 
they were also more successful in quantifying the 
uncertainty than ensembles of most other techniques. 
Since the ensemble member disagreement is already the 
established uncertainty measure for RFs, it was expected 
that the corresponding uncertainty of ensembles of RFs 
will perform similarly. Overall, UQ performances of RF 
and XGB were better when using the two continuous 
featurizations RDKit descriptors and CDDD, instead of 
count-based featurizations.

The comparison of the performance of UQ summarized 
in Fig.  7 shows again the large influence of the dataset, 
rather than of featurization or modeling technique.

Tetrahymena is an example for a dataset whose models 
exhibited high predictive performances and high UQ 
performances alike. From the theoretical point of view, 
the ensembles therefore have relatively small prediction 

Fig. 5 Overview of all UQ performances ( ρ ) for the modeling techniques RF (a), XGB (b), SVM (c), SNN (d), and DNN (e) as box‑whisker plots. The 
featurization‑specific results (for MACCS, MFC, RDKit descriptors, and CDDD) are shown and colored separately within each plot

Fig. 6 Rank sums for each combination of featurization and 
modeling technique across all datasets, summed up for UQ 
performance. Smaller is better, as the rank for each combination (one 
to 20) was summed up for all datasets. The best performance within a 
dataset was assigned rank one and the worst rank 20. Cells containing 
smaller values are colored brighter

Fig. 7 Overview of all 200‑member ensemble UQ performances ( ρ ) for each dataset as box‑whisker plots, in the same order as in Fig. 3. The 
absence of a trend (as compared to Fig. 3) shows the lack of the correlation between median R2 and median ρ (see also Fig. 8)
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errors, i.e., the average of most ensemble predictions is 
close to the observed value. Moreover, in cases where 
the mean prediction is further away from the given 
output, there is also more variation in the vector of 
predictions. An example for a dataset that appears easy 
to model despite the fact that its uncertainties do not 
seem to reflect the magnitude of the prediction errors 
is Q16602. In theory, there are two possible underlying 
scenarios that account for low UQ performance despite 
reasonable predictive performance: First, although 
most mean predictions are reasonable estimations, 
the standard deviations could be comparable for all 
predictions, therefore making a distinction between 
certain and uncertain estimations impossible. Second, 
the phenomenon occurs when too many uncertainty 
values are misleading (i.e., low uncertainties for large 
errors and high uncertainties for small errors). P28482 
is considerably hard to model, yet the corresponding ρ
-values are among the highest in this study, making 
it the counterpart of Q16602. Here, larger standard 
deviations indicate more erroneous predictions, although 
these predictions are rather bad. Modeling IL4 results 
in low predictive performances as well as in low UQ 
performances. For very badly performing models yielding 
predictions that almost appear to be random, none of the 
two performance qualities are expected to be high.

The results indicate that for the ensemble method, 
there is no connection between predictive performance 
and UQ performance, i.e., better ensembles are not 
necessarily accompanied by better UQ performance, nor 

worse UQ performance. The lack of correlation between 
predictive performance and UQ performance is further 
highlighted by plotting the R2-values against the ρ-values, 
visualized in Fig. 8. Here, several examples of datasets are 
highlighted that predominantly populate corners of the 
plot.

Determining the smallest ensemble size for meaningful 
performance improvement
Both predictive performance and UQ performance are 
expected to improve when increasing the number of 
ensemble members. To validate whether this expectation 
holds, the performance was computed for growing 
ensembles, i.e., computing the performance of ensemble 
size one (single models), then of ensemble size two, 
ensemble size three, and so on. For UQ performance, the 
minimum number of members started at two, as at least 
two predictions are required to compute the standard 
deviation.

To reduce chance effects owing to the order in which 
the members were originally generated, cumulative 
member curves were computed by randomly permuting 
the original member order 200 times for each setting, 
followed by taking the median curve. Saturation 
functions were fitted through the median curves to 
estimate when the cumulative member curves have 
reached their plateau and the ensemble would not 
benefit from additional members. A detailed example 
of the curve processing steps is provided in Section 5 in 

Fig. 8 Predictive performances ( R2 ) vs. UQ performances ( ρ ) for all 200‑member 2‑fold CV ensembles. The outcomes for some datasets are colored 
according to the dataset
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Additional file 1. The distributions of the ensemble sizes 
where the saturation was reached are shown in Fig. 9.

It can be seen in Fig. 9 that improving UQ performance 
to the point of estimated saturation requires substantially 
more members than improving predictive performance. 
This is reflected in the median ensemble size at 
saturation, which ranges from 18 to 40.5 for predictive 
performance, and from 34.5 to 89.5 for UQ performance. 
The five datasets that required the smallest ensemble 
size to reach saturation for predictive performance 
(Tetrahymena, P42345, Q16602, ESOL, and FreeSolv) are 
also those for which the highest median R2 values were 
achieved for the full ensembles (see Fig. 3). Furthermore, 
the number of required ensemble members at saturation 
appears to be anti-correlated to the predictive 
performance of the full ensemble (see Additional  file  1: 
Fig. S6). An explanation could be that these datasets are 
already easy to model, so more members do not provide 
as much gain as for datasets that are harder to model. 
Figure  9 also shows that there is again no connection 

between predictive performance and UQ performance, 
i.e., datasets that require fewer members to reach the 
saturation for predictive performance do not necessarily 
also require fewer members to improve UQ performance.

To check whether the featurization or the modeling 
technique are influencing the rate of performance 
gain, the median number of ensemble sizes at their 
saturation were determined across all datasets, for each 
combination. The results are visualized as heatmaps in 
Fig. 10.

For predictive performance, RF and SVM ensembles 
reach the saturation earlier than the other techniques, 
independently of the featurization. Since RFs are 
already ensembles and SVMs are considered stable (i.e., 
showing little variance between individual SVM models), 
ensembles thereof will not provide much improvement, 
hence the saturation is reached after only a few members. 
For the SNN, it highly depends on the featurization. 
With MACCS and MFC, SNN ensembles require less 
members than when combined with RDKit descriptors 

Fig. 9 Overview of the ensemble sizes where the saturation was reached for each dataset as box‑whisker plots, for predictive performance (a) and 
UQ performance (b). The box‑whisker plots are sorted by descending median of the predictive performance
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or CDDD. Ensembles of XGB and DNN models show less 
variability in the size required to reach the saturation. In 
case of UQ performance, dependence on featurization 
or modeling techniques was less apparent. In contrast to 
predictive performances, there was no anti-correlation 
between ensemble sizes at saturation and full ensemble 
performances, but a slight correlation (see again 
Additional file 1: Fig. S6).

In some cases, ensembles turned out to be 
unsuccessful, i.e., they did not outperform single member 
models. Examples comprise cumulative member curves 
that remained constant, were too noisy to clearly detect 
an improvement even after the permutation approach, 
or even decreased. Ensembles ”fail entirely when bias 
is a dominant source of error”  [15]. In such cases, 
quantifying the uncertainty using ensembles becomes 
meaningless. The inclusion of more members will then 
lead to no improvement or even to deterioration of 
the UQ performance compared to smaller ensembles. 
The lack of improvement is also reflected in those box-
whisker plots in Fig. 9 where the saturation was detected 
already at the beginning of the fitted curve. One example 
for no improvement in UQ performance is using SNN 
ensembles and MFC to model the dataset F7. This should 
encourage practitioners to always validate the success of 
ensembles by visualizing cumulative member curves.

Despite the effort to cover most common practices in 
cheminformatic ML, the conclusion drawn might not 
hold for other sampling strategies, modeling techniques, 
and/or featurization methods that were not addressed 
here.

Benchmarking DNN ensembles against single DNNs
To evaluate how subsampling ensembles perform in 
comparison to the aforementioned built-in mechanisms 
for UQ, DNN ensembles of 200 2-fold CV members were 
benchmarked against single model DNNs. Single model 
DNN uncertainty was quantified using MC dropout. To 
perform MC dropout, each test object was predicted 

with 100 different dropout masks. From the resulting 
100 predictions per object, the final prediction was 
obtained by averaging, the uncertainty was quantified 
by the standard deviation. To obtain predictions from 
single DNNs, a single 10-fold CV was run for each 
combination of datasets and featurizations. As can be 
seen in Fig. 11, the predictive performance of single DNN 
models is comparable to those of DNN ensembles. In 
direct comparison for each of the 128 cases (32 datasets 
* four featurizations), 23 achieved a higher R2 than DNN 
ensembles in the single model case. The differences 
were mostly marginal, ranging from 0.001 up to 0.242, 
with a median of 0.009. For the other 105 cases in which 
DNN ensembles succeeded, the differences in R2 ranged 
from below 0.001 to 0.181, with a median of 0.021. UQ 
performance was, on average, higher when using the 
ensemble uncertainty of 200 members. When comparing 
UQ for each dataset and featurization pairwise for both 
approaches, standard deviations of ensembles based on 
200 2-fold CV members constantly outperformed MC 
dropout, with the exception of two cases (namely for IL4, 
using CDDD, and F7, using MACCS). The differences 
were again marginal ( �ρ of 0.041 and 0.026, respectively). 
All single DNN predictive performances and UQ 
performances are visualized in Additional file 1: Fig. S7.

The findings that ensemble uncertainties are more 
effective than uncertainties obtained by MC dropout are 
consistent with the results that Scalia et  al. presented 
for message passing neural networks  [50]. A possible 
reason they consider is that DNN ensembles, in contrast 
to “weight-sharing” MC dropout ensembles, provide a 
better coverage of the function space which induces more 
diversity and thus leads to the observed result [51].

Benchmarking RF ensembles against single RFs
RF ensembles of 200 2-fold CV members were also 
benchmarked against single RF models (which are 
already ensembles) in terms of predictive performance 
and UQ performance. Predictions and uncertainties 

Fig. 10 Median ensemble sizes where the saturation was reached across all datasets for each combination of featurization and modeling 
technique, for predictive performance (a) and UQ performance (b). The cells are colored according to their values (smaller is brighter)
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of a single RF correspond to the average and standard 
deviation, respectively, of the predictions of all 
decision trees which are members of the respective 
RF. To obtain predictions from single RFs, a single 
10-fold CV was run for each combination of datasets 
and featurizations. Figure 12 outlines the performance 
comparison between single RF models and 200 2-fold 
CV RF ensembles. In contrast to the benchmark of 
ensembles against single models for DNNs, the success 
of one method over the other is less apparent for RFs. 
For predictive performance, ensembles succeeded 
closely in 12 out of 128 cases, with differences in R2 
between 0.002 and 0.074 and a median of 0.024. For 
UQ performance, single RFs succeeded in 75 out 
of 128 cases, exhibiting differences in ρ from below 
0.001 up to 0.149, with a median of 0.036. All single 
RF predictive performances and UQ performances are 
visualized in Additional file 1: Fig. S7.

It was expected that computing ensembles of an 
already ensemble-based method does neither harm nor 
improve its performance noticeably. The plots for most 
cumulative predictive performances confirm these 
observations, as the increase in R2 was, in many cases, 

barely noticeable for RF ensembles (data not shown 
here, but visualized for all datasets and combinations 
in  [44]). The marginal differences between the results 
of single models and ensembles are likely by chance.

Conclusions
The following four main statements and 
recommendations are concluded from this study:

(1) Practitioners who use ensembles for UQ should 
first check whether a single model benefits from 
more members, instead of trusting the consensus 
predictions and/or UQ without any further analysis. 
For that, visualizing the change in performance 
when accumulating more and more members 
proves beneficial.

(2) When using ensembles to increase predictive 
performance, a smaller ensemble size suffices, while 
substantially more ensemble members are required 
for improving UQ performance.

(3) The observation that UQ by subsampling ensembles 
prevails over UQ by MC dropout was already 
made for message-passing neural networks and 

Fig. 11 Comparisons between single DNNs and DNN ensembles of 200 members obtained by 2‑fold CV. Single DNN performances are colored 
in blue, performances by DNN ensembles in orange. The upper row shows the comparisons between predictive performances ( R2 ) for MACCS (a), 
MFC (b), RDKit descriptors (c), and CDDD (d). The lower row shows the comparisons between UQ performances ( ρ ) for MACCS (e), MFC (f), 
RDKit descriptors (g), and CDDD (h)
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is now also confirmed for DNNs in combination 
with various featurizations. For RFs, uncertainties 
obtained by ensembles performed comparably to 
the built-in uncertainties.

(4) For techniques that do not provide UQ estimates by 
design, the applicability of UQ by ensembles could 
be demonstrated. While the method worked very 
well with XGB for predictive performance and best 
for UQ performance, regression SVMs and SNNs 
were usually the least successful techniques in this 
benchmark.

Because ensembles can be compiled for every modeling 
technique, they are expected to remain the default for 
UQ in regression. As an empirical study, the conclusions 
drawn are valid only for the settings studied.

Methods
Datasets
From the 32 datasets used in this study, 29 were taken 
from the supplementary information of a study by 
Cortes-Ciriano  [41], of which 26 required additional 
filtering steps (considering only those that are of the 

”Small molecule” type, with an assay score confidence 
of ≥ 8, and ”nM” as measured activity unit). The other 
three datasets, Tetrahymena  [47], FreeSolv  [48], 
and ESOL  [52], are not related to activity data, 
but to inhibitory growth concentration, hydration 
free energies, and aqueous solubility, respectively. 
Some of the datasets are included in the DeepChem 
framework [53]. For the sake of consistency, all datasets 
were first exported (when coming from DeepChem) 
or converted (when extracted from a publication’s 
supplementary material) to table files containing 
SMILES before any filtering or featurization took place. 
After extracting the SMILES and their target values, 
each dataset was run through the recently published 
chemical structure curation pipeline  [54] that was 
developed to standardize molecules before entering 
ChEMBL  [55]. Steps of the pipeline include typical 
chemical data curation operations, e.g., removal of 
counterions and neutralization of ionized compounds. 
In the rare case where several isomers occurred in the 
same SMILES, stereoinformation was removed and only 
one structure was kept. In any case, only one connected 
SMILES was considered. Multiple outputs for a single 
compound were averaged. From the identifiers (mostly 

Fig. 12 Comparisons between single RF models and RF ensembles of 200 members obtained by 2‑fold CV. Single RF model performances are 
colored in blue, performances by RF ensembles in orange. The upper row shows the comparisons between predictive performances ( R2 ) for 
MACCS (a), MFC (b), RDKit descriptors (c), and CDDD (d). The lower row shows the comparisons between UQ performances ( ρ ) for MACCS (e), 
MFC (f), RDKit descriptors (g), and CDDD (h)
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the compound ChEMBL ID) of the averaged entries, 
the first one was kept. Additional file 1: Table S1 lists all 
datasets, including their sizes before and after filtering.

Molecular featurizations
Classical descriptors
The first three featurizations correspond to well-known 
structural and physicochemical descriptors, namely 
MACCS counts, circular fingerprint counts  [56], and 
RDKit descriptors. All were computed using RDKit [39]. 
For MACCS counts, multiple substructure occurrences 
were summed up, due to performance improvement 
over the original MACCS binary vectors  [38]. For 
convenience, they will be referred to as MACCS, although 
implying MACCS counts. When generating circular 
fingerprint counts, the GetHashedMorganFingerprint-
function was called with an atom neighbor radius of 
three, while all other parameters were kept in their 
default state, resulting in integer vectors of length 
2048. The occurrences per bin were added to obtain 
counts instead of binary vectors and are referred to as 
Morgan fingerprint count (MFC). RDKit descriptors 
were computed with all parameters on default, yielding 
a diverse collection of 208 physicochemical but also 
fragment-based descriptor values.

Learned representations
The pretrained CDDD encoder model from the 
associated GitHub repository was used  [57], generating 
512 continuous values between −1 and 1. Instead 
of running each input SMILES through the encoder 
once, every SMILES was randomized 100 times using 
100 random permutations of the atom indices and 
the RenumberAtoms-function of RDKit to generate 
a varying non-canonical SMILES. Subsequently, the 
column average of the resulting 100 values was taken 
for each feature of each compound. This procedure was 
recommended by the creators of CDDD as it improves 
the performance when used for ML by enhancing 
generalization.

Feature scaling
For the training partition of each split, MACCS and 
MFC, being entirely count-based integer features, were 
normalized to unit norm (such that all values ∈ [0, 1] ) 
prior to fitting. RDKit descriptors and CDDD were 
standardized such that all feature columns have a mean 
of 0 and a standard deviation of 1.

Modeling algorithms
No hyperparameter tuning was involved to compare the 
models at their baseline performance.

Techniques not related to neural networks
Implementations of RFs and SVMs were taken from 
scikit-learn [58], with the default parameters. As RFs are 
already ensembles by construction, the ensembles of 200 
members which were used in the conducted experiments 
correspond to ensembles of ensembles in case of RFs. 
For the implementation of XGB, the XGBoost Python 
Package was used [59].

Neural networks
The SNN architecture has 128 neurons in its hidden 
layer, while the DNN architecture has layers of 256, 128, 
and 16 neurons, in the direction of forward propagation. 
Each hidden layer uses ReLU activation. The output 
neuron uses a linear activation for regression. Modeling 
tasks related to neural networks were performed using 
TensorFlow  [60]. To make the results comparable, 
dropout was used for all hidden layers in the DNN, with a 
dropout rate of 20%. All neural networks were trained for 
1000 epochs.

Cross‑validation for generating subsampling ensembles
The size of ensembles generated by CV was set to 
200 in order to lower the variance of the ensemble 
derived estimates ( R2 , ρ ). The number of repetitions 
was determined by preliminary experiments (data not 
shown here), where several settings were tested on a few 
selected datasets. A custom implementation was built 
for convenient evaluation of sampling-based ensemble 
uncertainties [61]. An overview of each Python package, 
together with its version number, can be found in 
Additional file 1: Table S2.

A balanced splitting scheme, i.e., each test object is 
in the test set exactly once, allows for estimation of 
the model quality with lower variability, which is why 
k-fold CV   [62] was applied to generate subsamples 
for ensemble construction. To ensure diversity of the 
resulting ensemble members on the one hand but also 
reasonable model quality on the other, k was set to 2. 
This choice has also turned out to be successful in the 
preliminary experiments, requiring less CPU time than 
larger ks and showing a comparable model performance 
at the same time. Therefore, 400 (= 200 repetitions * 
two folds) models were fitted and evaluated per dataset, 
featurization, and modeling technique. The complete 
prediction of all compounds in a dataset requires two 
folds (i.e., two models).

Performance measures based on random sampling 
from the entire dataset do not account for specific 
shifts in the chemical space, i.e., shifts that may 
occur in project work. The impact of such shifts on 
predictive and UQ performance can only be estimated 
when time stamps for each molecule in the dataset 
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are available, e.g., by splitting the dataset in training 
and test set based on the time stamps (so-called 
time splits). Usually, predicting the outputs of actual 
future compounds turns out considerably harder 
than predicting compounds of a random subsample. 
Since no reliable time stamps were available for the 
benchmark datasets used, the more realistic simulation 
of future predictions by time splits was unfortuantely 
not possible here. It should be recalled that changing 
the sampling scheme for subsampling likely changes 
the results, in particular, if the sampling schemes differ 
substantially.

Benchmarking uncertainty measures
For subsampling ensembles, the standard deviation 
of ensemble predictions was computed across the 
predictions of all members to quantify the ensemble 
uncertainty. The two modeling techniques that come 
with specific uncertainty measures were RFs and 
DNNs, namely with the standard deviation of the 
individual decision trees of the respective RF, and the 
standard deviation of MC dropout predictions. These 
two algorithms were also evaluated in addition to the 
ensembles generated by subsampling. Hereby, a single 
10-fold CV was performed to produce one prediction 
per compound, with again all other parameters on 
default settings. The default technique-specific UQ 
measure was used for this single prediction. In the 
case of DNNs, MC dropout was implemented with 
dropout in every hidden layer and a dropout rate of 
20%. The output of each compound was predicted 100 
times with different weights randomly dropped out of 
the fitted network.

Quality assessment
The predictive performance was assessed by R2

test 
(the cross-validated coefficient of determination, 
abbreviated as R2 here) as it is a relative metric 
that allows for comparison between different 
models  [63]. Since hyperparameter tuning was 
omitted, CV corresponds to actual estimation of test 
set predictivity. R2 can also become negative, namely 
in cases where the sum of squares of prediction errors 
becomes larger than the total sum of squares.

Predictions of higher uncertainty are expected 
to be accompanied by larger prediction errors. UQ 
performance was therefore determined by the ability 
of the uncertainty measure to rank the predictions 
according to the magnitude in error. A ranking 
metric that was successfully applied to evaluate UQ is 
Spearman’s correlation coefficient ρ  [14]. Effectively, 

ρ measures the order similarity between two lists of 
ranks by computing Pearson’s correlation coefficient 
on the ranks instead of on the raw values. A perfect 
rank correlation is indicated by 1, where a perfect 
anti-correlation will yield a ρ of −1 . For uncorrelated 
data, ρ will be close to 0. Even though the coefficient 
meaningfully captures the ranking ability, values 
of ρ appear rather low. Due to the assumed normal 
distribution of prediction errors, a perfect ranking 
ability of ρ = 1 is unrealistic [14].

Growing ensembles for cumulative member curves
The changes in R2 and ρ were inspected member-wise. 
Hereby, more and more members were aggregated, 
starting with only the first one, then the first and the 
second one, and so on, resulting in cumulative values 
for R2 . For the evaluation of ρ , the number of members 
starts at two, as it is the minimum required number to 
calculate standard deviations. The arithmetic mean 
served as the single-valued prediction at each step, and 
the standard deviation as UQ measure. However, the 
level of improvement might be biased by the order in 
which the members were generated, i.e., the random 
seed. To remove this potential bias and to give an 
estimate of the average performance at each ensemble 
size, the 200 members were shuffled 200 times and 
the cumulative member curves for each setting were 
computed from each of the shuffled orders, followed 
by taking the average performance at each ensemble 
size. Additionally to giving an estimation of the median 
performance that can be achieved for a given ensemble 
size and setting, this procedure also smooths the curves. 
Next, a Michaelis–Menten function  [64, 65] was fitted 
through each median curve. Although the data were not 
generated by enzymatic kinetics, the Michaelis–Menten 
function fits the median curves well and allows for an 
automated detection of the saturation. The first member-
wise step in the fitted curve from one size to the next that 
yielded a performance gain below 0.0001 was considered 
the point of saturation. The threshold of 0.0001 expresses 
the point where the improvement becomes irrelevantly 
small, namely making changes in the fourth decimal 
place.
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 Additional file 1: Figure S1. Overview of the predictive performances 
(R2) of the 200‑member ensembles, for all datasets and each combination 
of featurization and modeling technique. Brighter colors correspond 
to larger values. Figure S2.1. Differences in predictive performances 
between subsampling by 2‑fold CV and by bootstrapping for the eight 
selected datasets. Each row corresponds to the comparisons between 
results of one dataset, each plot in a row shows the results for a specific 
modeling technique. Within each plot, a pair of bars represents the 
results for a specific featurization, also indicated by the color. The left 
bar of each pair shows R2 when generating 200 members by 2‑fold, the 
right bar when using bootstrapping. Figure S2.2. Differences in UQ 
performances between subsampling by 2‑fold CV and by bootstrapping 
for the eight selected datasets. Each row corresponds to the comparisons 
between results of one dataset, each plot in a row shows the results for 
a specific modeling technique. Within each plot, a pair of bars represents 
the results for a specific featurization, also indicated by the color. The 
left bar of each pair shows ρ when generating 200 members by 2‑fold, 
the right bar when using bootstrapping. Figure S3.1. Raw predictions. 
Figure S3.2. Predictions after removing those that are outside the 
acceptable interval. Figure S3.3. Predictions when removing ’Kappa3’ 
from the dataset featurized as RDKit descriptors before machine learning. 
Figure S4. Overview of the UQ performances (ρ) of the 200‑member 
ensembles, for all datasets and each combination of featurization and 
modeling technique. Brighter colors correspond to larger values. Figure 
S5.1. Raw cumulative member curves for predictive performance (a) 
and UQ performance (b), for all descriptors, modeling P03372, using 
SNN ensembles. Figure S5.2. Median cumulative member curves for 
predictive performance (a) and UQ performance (b), for all descriptors, 
obtained from 200 permutations of the 200 members per setting. Figure 
S5.3. Michaelis‑Menten functions, fitted to the median cumulative 
member curves for predictive performance (a) and UQ performance (b), 
for all descriptors. The median cumulative member curves are shown as 
thin black lines. The estimated saturation point for each fitted curve (i.e., 
the first ensemble size where the corresponding gain in performance falls 
below 0.0001) is depicted as vertical bar. Figure S6. Median ensembles at 
saturation against full ensemble performance, for predictive performance 
(a) and UQ performance (b), for all datasets (32 points in each plot). 
Figure S7. Overview of the predictive performances (R2) and UQ 
performances (ρ) of the 10‑fold CV single DNN models, for all datasets and 
each featurization. Brighter colors correspond to larger values. Figure S8. 
Overview of the predictive performances (R2) and UQ performances (ρ) 
of the 10‑fold CV single RF models, for all datasets and each featurization. 
Brighter colors correspond to larger values. Table S1. All data sets used 
for evaluation. The original number of compounds refers to the number 
of measurement points in the raw files, the number of compounds 
after pipeline to the preprocessed files of which descriptor values were 
computed from. Table S2. Python packages with versions used for this 
study.
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