
Guha and Velegol  
Journal of Cheminformatics           (2023) 15:54  
https://doi.org/10.1186/s13321-023-00712-0

RESEARCH Open Access

© The Author(s) 2023. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Journal of Cheminformatics

Harnessing Shannon entropy-based 
descriptors in machine learning models 
to enhance the prediction accuracy of molecular 
properties
Rajarshi Guha1* and Darrell Velegol2 

Abstract 

Accurate prediction of molecular properties is essential in the screening and development of drug molecules and 
other functional materials. Traditionally, property-specific molecular descriptors are used in machine learning mod-
els. This in turn requires the identification and development of target or problem-specific descriptors. Additionally, 
an increase in the prediction accuracy of the model is not always feasible from the standpoint of targeted descrip-
tor usage. We explored the accuracy and generalizability issues using a framework of Shannon entropies, based on 
SMILES, SMARTS and/or InChiKey strings of respective molecules. Using various public databases of molecules, we 
showed that the accuracy of the prediction of machine learning models could be significantly enhanced simply by 
using Shannon entropy-based descriptors evaluated directly from SMILES. Analogous to partial pressures and total 
pressure of gases in a mixture, we used atom-wise fractional Shannon entropy in combination with total Shannon 
entropy from respective tokens of the string representation to model the molecule efficiently. The proposed descrip-
tor was competitive in performance with standard descriptors such as Morgan fingerprints and SHED in regression 
models. Additionally, we found that either a hybrid descriptor set containing the Shannon entropy-based descriptors 
or an optimized, ensemble architecture of multilayer perceptrons and graph neural networks using the Shannon 
entropies was synergistic to improve the prediction accuracy. This simple approach of coupling the Shannon entropy 
framework to other standard descriptors and/or using it in ensemble models could find applications in boosting the 
performance of molecular property predictions in chemistry and material science.
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Introduction
Prediction of the physicochemical properties of mol-
ecules is one of the most widely used applications in 
machine learning and is central to the field of chemistry 

and material science. The characteristic feature of the 
molecules or descriptor-based machine learning to pre-
dict physicochemical properties faces trade-offs between 
performance accuracy, interpretability of the results and 
generalizability to different datasets [1, 2]. Developing 
novel descriptors could partially address such limitations. 
However, they suffer from target specificity and therefore, 
generalizability [3]. Deep heterogeneous ensemble learn-
ing, on the other hand, could partially address predictive 
performance and generalizability issues at the expense 
of interpretability [4, 5]. Therefore, a combination of 
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novel descriptors along with deep ensemble learning 
might be able to address the shortcomings more effec-
tively. One of the widely available sources of descriptor 
design is the representation of the molecule itself. It not 
only provides structural information but grammatically 
describes motifs, subtle arrangements, bonds and atomic 
proximities.

In the last few decades, considerable development 
took place in representing molecules in various string 
formats such as SMILES (simplified molecular-input 
line-entry system), SMARTS (SMILES arbitrary tar-
get specification), InChiKey (International Chemical 
Identifier Key), SYBYL line notation (SLN) [6], SMIRKS 
(SMIles ReaKtion Specification) [7], SELFIES (Self-refer-
encing embedded strings) [8] etc. Different grammatical 
or representational aspects were encoded by these strings 
and therefore, could serve as a source rich in molecu-
lar and structural information content for potential use 
in machine learning applications. Additionally, SMILES 
representations have several different variants like 
canonical, isomeric, randomized, DeepSMILES [9] etc. It 
was demonstrated that depending on the type of SMILES 
representation, a neural network based on models such 
as RNNs (Recurrent Neural Networks), could learn and 
perform more accurately [10]. It implies the possibility of 
using molecular representations to enhance the accuracy 
as well as the overall prediction performance of neural 
network models. Despite some limitations of conven-
tional SMILES strings in representing molecules [11], 
SMILES-based models could be on par with graph-based 
models for QSAR-related (Quantitative Structure–Activ-
ity Relationship) applications [12]. However, a gener-
alized and simpler approach is required to use string 
representation in any machine learning model.

Tokenization utilized string representations of mol-
ecules efficiently in natural language processing (NLP) 
models, reduced the dimensionality of embedding 
space and also helped in the interpretability aspect of 
the machine learning models by providing attention 
scores [13]. However, converting molecular representa-
tion to vectors using word embedding was only margin-
ally effective or ineffective in terms of machine learning 
performance, apart from computing bulky matrices and 
resulting in higher computational costs [14]. Addition-
ally, comparison between different molecules is not 
straightforward while using tokenized embedding. In this 
context, the information content of molecules could be 
represented by Shannon entropies [15, 16] of the tokens 
referenced to a standard vocabulary of all possible tokens. 
This information-theoretic approach [16–18] could yield 
a unique numerical value that is easier to use and com-
pare with other molecules and thereby, could avoid bulky, 
high-dimensional, computationally expensive matrix 

processing. In this context, SHED (SHannon Entropy 
Descriptors) descriptors are relevant which extract the 
entropy associated with specific features of atom pair dis-
tribution over the topology of the molecule [19].

Though topological descriptors are computationally 
faster to evaluate, the abstractions and interpretations 
are often not straightforward [20]. On the other hand, 
entropy-based descriptors estimated from graph-based 
information indices were computationally complex to 
evaluate [21]. It was demonstrated that descriptor-based 
machine learning models could be competitive and 
execute even faster than graph neural network (GNN) 
models [22]. Interestingly, it was also shown that simple 
machine learning models, such as kNN (k-nearest neigh-
bor), are competitive and often perform better than GNN 
models in predicting the QSAR space of various targets 
of pharmacological importance [23]. Therefore, an effi-
cient descriptor could be engineered to adopt tokeniza-
tion which has the advantage of interpretability and is 
expected to be more explainable than traditional topo-
logical or information-theoretic descriptors [24]. The 
descriptor should be simple to define, computationally 
faster to evaluate and should demonstrate effectiveness 
across different model types.

Here, we describe a simple framework of Shan-
non entropies (abbreviated as SEF: Shannon entropy 
framework) associated with the tokenized and/or char-
acter representation of molecules analogous to a molec-
ular descriptor in deep neural networks and in general 
machine learning models to predict or classify molecu-
lar properties more efficiently (Table 1). SEF features are 
based on estimates of Shannon entropies generated from 
the tokens and characters relevant to string notations 
using (i) SMILES tokens (Additional file  1: Table  S1a), 
(ii) SMARTS tokens, (iii) InChiKey strings, (iv) frac-
tional Shannon entropies of atoms which are total Shan-
non entropy of the respective molecular representation 
weighted by the frequency of atoms of the molecule 
(Additional file 1: Table S1b) and (v) frequency of differ-
ent types of bonds present in the molecule or the associ-
ated Shannon entropy of bonds (“Methods”). Fractional 
Shannon entropy was assumed to be the total Shannon 
entropy distributed among the constituent atoms analo-
gous to the distribution of total pressure among the com-
ponent species as partial pressures in a gas mixture. In 
this case, each atom of the molecule gets an estimate of 
Shannon entropy. As SEF descriptors of the molecule, 
either a specific type of previously mentioned entropy 
or a combination of such entropies could be used to 
enhance the performance of machine learning models.

In this study, facile multi-layer perceptron (MLP) based 
deep neural networks were used to demonstrate the 
applicability of the concept and then extended to hybrid 
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deep neural networks to test the adaptability and general-
izability of the SEF  as a descriptor set. We have also used 
an ensemble of MLP and graph convolutional neural 
network (GCN) as hybrid neural network-based models, 
random forest regression as a traditional machine learn-
ing model and kNN regression/classification as baseline 
models in this article. Comparison of SEF to Morgan 
fingerprint [25] and SHED descriptors [26] across differ-
ent datasets and using different machine learning mod-
els were also investigated to assess the applicability of the 
proposed descriptor framework.

Results
Shannon entropies based on string notations of molecules 
are useful descriptors for property predictions
There are a few advantages of using numerical reduction 
of a molecule in the form of the SEF descriptors such as 
(i) unique numerical representation of each molecule: it 
facilitates sensitivity to stereochemistry as well as mini-
mal change in numerical value with structural changes of 
the molecule (Additional file 1: Table S2), (ii) low correla-
tion to other descriptors: Shannon entropies have lower 
correlation to other standard descriptors (Additional 
file 1: Fig. S1). Therefore, a combination of such descrip-
tors could be used in specific applications, (iii) target/
problem-specific usage: ease of estimation of different 
Shannon descriptors allows optimized use of the descrip-
tor set for the target-specific performance of the machine 
learning model. Overall, descriptors of the Shannon 
framework satisfy several criteria for successful applica-
tion in QSAR-type problems [20, 27].

We tested the performance of the deep neural network 
model for regression-type problems using the following 
metrics- (i) MAPE (mean absolute percentage error), (ii) 
 R2 of fit and (iii) MAE (mean absolute error) or RMSE 
(root mean squared error) depending on the target. To 
predict the half-maximal inhibitory concentrations or 
 IC50 values of binding molecules (in pCheMBL format) to 
the protein tissue factor pathway inhibitor (Table 1), we 
designed a deep neural network primarily composed of 
MLPs with 4 layers. Among the 3382 data points of this 

dataset, 2705 data points were used for training and 677 
data points were used for validation or testing under the 
same conditions. We observed an average improvement 
of 25.5% in MAPE in  IC50 prediction of binding mol-
ecules when a combination of molecular weight (MW), 
Shannon entropies based on SMILES, SMARTS and 
InChiKey strings were used compared to only MW as the 
descriptor (Fig. 1a, Additional file 1: Fig. S2a and Addi-
tional file  1: Table  S3). However, in this case, the high-
est comparative improvement in prediction metrics was 
observed when the Shannon framework was composed 
of Shannon and fractional Shannon entropies based on 
SMILES (Fig. 1a). We observed an average improvement 
of 56.5% in MAPE alone compared to the previous case 
with Shannon entropies based on SMILES, SMARTS and 
InChiKey strings (Additional file  1: Fig. S2a and Addi-
tional file  1: Table  S3). The model performance in this 
case also excelled kNN-based model (Additional file  1: 
Table S3 and “Methods”).

Additionally, we used the previous dataset to predict 
the binding efficiency index (BEI) of ligand molecules 
(ligands BEI) as the target following the same model. In 
this case, we observed the best performance while using a 
combination of MW, Shannon entropy based on SMILES 
strings (or SMILES Shannon) and fractional Shannon 
entropies based on total entropy as SMILES Shannon 
(Fig. 1b, Additional file 1: Fig. S2b and Additional file 1: 
Table S4). The average improvements in target prediction 
were 64%, 62% and 25% in MAPE, MAE and  R2 of fit (%), 
respectively compared to only MW as a descriptor. It was 
observed that the SEF descriptor set comprising SMILES 
Shannon and fractional Shannon, in principle, showed 
similar or better performance in comparison to other 
standard molecular descriptors like Morgan fingerprints 
and also outperformed the kNN-based machine learn-
ing model. The prediction of the network was even more 
accurate when the SEF was used to predict the target BEI 
than the Morgan fingerprints as descriptors (Additional 
file 1: Fig. S2c and Additional file 1: Table S4). Following 
this, we found further enhancement of network perfor-
mance when both the Shannon framework and Morgan 

Table 1 List of datasets used in neural/graph-based models to evaluate SEF

Dataset Target Model type Source/reference

IC50 values of binding molecules to tissue factor pathway inhibitor pCheMBL/MW Regression EMBL-EBI

BEI values of binding molecules to the tissue factor pathway inhibitor BEI/MW Regression EMBL-EBI

Ki values of binding molecules to coagulation factor 11 pCheMBL/MW Regression EMBL-EBI

Toxicity classification as per Ames mutagenicity Toxicity Classification TU-BERLIN

Partition coefficient values of binding molecules to the p53-binding protein 
Mdm2

logP Regression OPEN BABEL/EMBL-EBI
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fingerprints were used as molecular descriptors. The syn-
ergy between the descriptors caused an average decrease 
in MAPE ~ 42% compared to the case when only Mor-
gan fingerprints were used. Note that the MW was used 
as a base descriptor in all the aforementioned cases for 
comparison purposes only and similar performance was 
obtained with the SEF descriptors without using the MW 
(Additional file 1: Table S4).

It is now obvious that the prediction of  IC50 of the mol-
ecules of the dataset could be carried out in a step-by-
step sequential manner- (i) first predicting ligands BEI 
with high efficiency using SEF, and (ii) then using the 
ligands BEI as a descriptor along with the SEF to finally 
predict  IC50 of ligand molecules (Fig. 1c and Additional 
file 1: Table S5) with higher accuracy. The optimized SEF 
features consisted of SMILES Shannon and fractional 
Shannon entropies of atoms based on SMILES. This tan-
dem approach improved the overall prediction accuracy 
when compared to several one-pot type methods which 
predicted the  IC50 of molecules directly using the MW 
and the corresponding SEF features. The  R2 of fit (%) was 
99% for the tandem case.

Shannon entropies boost performance as descriptors 
in both regression and classification‑type machine 
learning models
To assess the applicability of the Shannon entropy 
approach to other datasets, we tested the prediction of 
inhibition constants or  Ki values (pCheMBL format) of 

Fig.1 Shannon entropies based on standard tokens and characters 
derived from a string representation of molecules are efficient 
descriptors for deep neural network-based property predictions. a 
Comparison of network performance with the addition of different 
Shannon entropies in the descriptor set.  IC50 values of tissue factor 
pathway inhibitor were predicted and analyzed using MAPE, MAE 
and  R2 of fit metrics. The descriptor set containing MW, Shannon 
and fractional Shannon entropies extracted from SMILES showed 
the best performance in comparison to other descriptors in the 
triangular radar graph. b Cumulative enhancement of network 
performance using Shannon descriptors depicted in the radar graph. 
The target was MW normalized BEI of ligands to the tissue factor 
pathway inhibitor, i.e. in the form of BEI/MW. The SEF set containing 
MW, Shannon (SMILES) and fractional Shannon (SMILES) showed the 
best comparative performance in all metrics. c Comparison of direct 
one-pot vs tandem approach to predict  IC50 values of molecules to 
the tissue factor pathway inhibitor protein. The tandem approach 
first predicted BEI as an intermediate step and then predicted  IC50 
values at higher accuracy with the BEI as an input. The model was 
based on MLP-based deep neural networks and all prediction metrics 
were averaged over at least 5 independent runs. The scaling factors of 
metrics were listed in Additional file 1: Table S3

◂
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ligand molecules that could bind to the protein human 
coagulation factor 11 (or F11). The dataset contained 
618 data points among which 525 values were used for 
training and 93 values were used for testing. Our objec-
tive was to achieve cumulative improvement in network 
performance by using several SEF features as descriptors, 
including bond frequency information. Bond frequency 
refers to the occurrence of types of bonds of the molecule 

as frequency estimates (Additional file  1: Table  S6 and 
“Methods”). On average, the  R2 of fit (%) was improved 
by 82.4% when the combination of MW, Shannon entro-
pies based on SMILES, SMARTS, InChiKey, fractional 
Shannon and bond frequency information were used as 
descriptors compared to only MW and Shannon entropy 
based on SMILES (Fig. 2a and Additional file 1: Table S6). 
The use of the bond frequency feature also enabled the 
SEF to rival the performance of the kNN-based machine 
learning model. This observation also demonstrates the 
importance of frequency information as a molecular 
descriptor.

Efficiency improvement of the prediction of the net-
work with Shannon entropy was also achieved when 
‘ligands BEI’ was used as one of the descriptors (Fig. 2b). 
To predict  Ki values of the dataset mentioned above, BEI 
is arguably one of the most useful features. When Shan-
non entropy based on SMILES was used in conjunction 
with MW and BEI of ligands in the descriptor set, net-
work performance was improved in all metrics (Fig.  2b 
and Additional file  1: Table  S7). We tested this trained 
model with the anticoagulant drug Milvexian which has 
a reported  Ki of 0.11 nM [28]. This data was not present 
in the training dataset. Upon querying our model with 
Milvexian as input, the prediction of  Ki of Milvexian 
was ~ 0.15 nM which was close to the reported value.

The Ames mutagenicity dataset was used to assess the 
performance of the SEF descriptors in classification-
type models [29]. The dataset contained 6506 usable 
data points which were divided into 5530 training and 
976 testing data. Here also our objective was to observe 
cumulative improvements in two metrics—(i) ROC_
AUC (area under the curve for receiver operating char-
acteristic) and (ii) accuracy by using different Shannon 

Fig. 2 Cumulative performance boost of either regression or 
classification type problems was attained using the SEF descriptors. 
a Comparison of network performance with cumulative addition of 
different Shannon entropies in the descriptor set. Ki values of binding 
molecules to the human coagulation factor 11 were analyzed using 
the metric  R2 of fit (%). b The addition of the Shannon (SMILES) 
entropy to the descriptor set consisting of MW and BEI of ligands 
(ligands BEI) improved the overall performance of the deep neural 
network. The scaling factors of metrics were listed in Additional 
file 1: Table S6. c The cumulative increase in ROC_AUC and accuracy 
of the toxicity classification of Ames mutagenicity dataset by 
cumulative addition of different Shannon entropy-based descriptors. 
The used descriptor sets were 1. Shannon (SMILES), 2. fractional 
Shannon (SMILES), 3. fractional Shannon (InChiKey), 4. Shannon 
(SMILES) + Shannon (SMARTS) + Shannon (InChiKey) + fractional 
Shannon (InChiKey) + bond freq, and 5. Other descriptors + Shannon 
(SMILES) + fractional Shannon (SMILES). The other descriptors were 
listed in Additional file 1: Table S8. All prediction metrics were 
averaged over at least 5 independent runs

◂
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entropies as descriptors. The average performance 
increase was the highest in both the metrics when a com-
bination of Shannon and fractional Shannon entropies 
were used as features of the descriptor (Fig.  2c, case 4) 
compared to only Shannon entropy based on SMILES 
(Fig.  2c, case 1). In this case, the fractional Shannon 
entropies of atoms were evaluated from Shannon entropy 
based on the InChiKey string. However, a kNN-based 
classification model outperformed the MLP-based classi-
fication model using only the SEF descriptors (Additional 
file 1: Table S8). Therefore, a set of other descriptors were 
evaluated which could work in combination with SEF to 
result in better performance than the kNN-based model 
(Additional file  1: Table  S8). Improvement of model 
performance (ROC_AUC ~ 0.88 and accuracy ~ 0.8) 
was achieved when the combined descriptors (Addi-
tional file  1: Table  S8), estimated using the rdkit pack-
age and MHFP encoder [30], were used along with the 
SEF descriptor set.

We have also assessed the performance of a hybrid 
network using a combination of MLP and CNN mod-
els on both the pCheMBL F11 and Ames mutagenicity 
datasets. The MLP part of the network was trained with 
the discussed SEF features for respective datasets, i.e. a 
combination of Shannon entropies based on SMILES, 
SMARTS, InChiKey strings and fractional Shannon 
entropies based on SMILES in the case of the former 
dataset (Additional file 1: Table S9). In the MLP part of 
the network of the later dataset, we used the descrip-
tors mentioned previously (Additional file  1: Table  S8). 
The CNN part of the network was trained on two-
dimensional images of molecules constructed from their 
respective SMILES strings in the case of both datasets. 
We found comparable performance between models with 
only MLP-based deep neural networks and hybrid MLP 
and CNN-based deep neural networks for both datasets 
(Additional file 1: Fig. S3a, b), implying that no synergy 
and performance gain upon using hybrid MLP and CNN-
based models.

MLP and GNN ensemble models using Shannon entropies 
are synergistic in enhancing the prediction accuracy 
of molecular properties
To further generalize the applicability of the Shannon 
entropy approach, we used another dataset consist-
ing of partition coefficient (logP) values of ligand mole-
cules that could bind to the p53-binding protein Mdm2. 
The dataset contained 440 data points out of which 374 
training and 66 testing splits were performed to assess 
the usefulness of SEF using the MLP-based model. Sig-
nificant performance improvement resulted while using 
fractional Shannon entropy based on SMILES (Fig.  3a 

and Additional file  1: Table  S10). For example,  R2 of fit 
(%) increased from 33.72 ± 4.43 to 73.78 ± 4.58 simply by 
incorporating fractional Shannon entropy in the descrip-
tor set. Further improvement in performance metrics 
was achieved by incorporating Shannon entropy based 
on SMILES into the previous descriptor set (Fig. 3a).

Extending the Shannon framework to GNNs, we first 
used a simplified GNN model composed of nodes rep-
resenting the atomic mass and the fractional Shannon 
entropy (SMILES-based) of atoms of a molecule. An 
array of elements from the periodic table covering the 
dataset was used as an input to estimate the frequency of 
occurrence and fractional Shannon entropy of that par-
ticular atom (“Methods”). The edge features were simply 
bond connectivity and edge weights were normalized 
bond order. We defined this model as 2D (2-dimensional) 
GNN as no 3D (3-dimensional) or conformational infor-
mation was used in the node features of graphs. We used 
a GCN network using the StellarGraph package [31] to 
implement the GNN model.

We compared the results of the 2D GNN model to the 
3D GNN model where 3D information of the local den-
sity of atoms based on pairwise distance was used cor-
responding to the lowest energy conformer (Additional 
file 1: Fig. S4). This topological descriptor was used along 
with the atomic mass and fractional Shannon entropies 
(SMILES-based) as node features. As expected, there was 
significant performance improvement with the 3D GNN 
as compared to the 2D GNN model (Fig.  3b). Further 
improvement in the performance of the 3D GNN model, 
for example, ~ 10% improvement in MAPE was achieved 
when Shannon entropy based on the SMILES was used 
as a node feature along with the previous features of the 
descriptor set (Fig. 3b).

Unlike the case of hybrid MLP and CNN-based mod-
els, we observed performance improvement from a 
synergy between MLP and 3D GNN-based deep neural 
network models. The hybrid of MLP and 3D GNN archi-
tecture was able to perform better than either MLP or 3D 
GNN model under the same training and testing condi-
tions (Fig. 3c). This was partly because the output of the 
individual network i.e. outputs of the MLP and GNN 
models were ensembled and further passed through a 
deep neural network to train the dataset more efficiently. 
Similar performance enhancement was also observed for 
models containing hybrid MLP and 2D GNN architec-
tures (Additional file 1: Fig. S5a).

We further investigated the dependency of model per-
formance on network connections between MLP and 
GNN architectures. We define the final model as part 
of the hybrid model after the final dense layers (Fig. 3d). 
While the output from the GNN layers to the final model 
was kept constant, we skipped a few final layers from the 
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MLP network to connect to the final model and observed 
that the overall performance of property prediction was 
improved (Fig.  3d). For example, connecting (− 2, − 4) 
layers of the MLP branch to the final, hybrid model was 
found to be more accurately predictive than connect-
ing (− 2, − 3) layers to the final model (Additional file 1: 
Fig. S5b). Similarly, connecting (− 2, − 3) layers was more 
accurately predictive than connecting (− 2, − 2) layers 
(Additional file 1: Table S10). Here, ‘− 1’ refers to the final 
dense layers, ‘− 2’ refers to the layer before the dense and 
so on. The format of notation used, for example, (− m, 
− n) refers to the layer numbers of the MLP network 

connected to the dense layer and the final model, respec-
tively. Specifically, ‘− m’ refers to the output of the MLP 
layer to the dense layer for estimating the output to fit the 
final model and ‘− n’ refers to the output of the MLP layer 
as one of the inputs to the final model (Fig. 3d and Addi-
tional file 1: Fig. S6). The other input to the final model 
was the output of the penultimate layer of the GNN net-
work which was kept constant as mentioned earlier. This 
strategy of tweaking the inputs to the final, hybrid model 
from one of its constituent networks (MLP for exam-
ple) to enhance the overall prediction performance was 

Fig. 3 Ensemble models of MLP and GNN architecture-based deep neural networks using the SEF descriptors to increase the prediction 
accuracy of molecular properties. a Comparison of model performance of MLP-based deep neural network with cumulative addition of different 
Shannon entropies to the descriptor set. Predictions of partition coefficient (logP) values of binding molecules to the p53-binding protein Mdm2 
were analyzed in the triangular radar plot. A combination of MW, and Shannon entropies based on SMILES Shannon and fractional Shannon 
(SMILES) showed the best comparative performance (blue dash). b The 3-dimensional (3D) GNN (GCN-based) model performed better than the 
2-dimensional (2D) GNN (GCN-based) model under the same training and testing conditions. When SMILES Shannon was used as an additional 
node feature, the performance of 3D GNN improved further. c The hybrid model of MLP and 3D GNN architectures performed better than the 
individual MLP or 3D GNN-based model with the same set of Shannon entropy-based node features. The relevant connection was (− 2, − 4) from 
MLP layers. d Schematic of the MLP-GNN hybrid network architecture which used the (− m, − n) connections from MLP layers to the dense and final 
model, respectively. The scaling factors of all metrics were listed in Additional file 1: Table S10 and all prediction metrics were averaged over at least 
5 independent runs
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applied to architectures using both 2D and 3D GNN with 
consistent results (Additional file 1: Table S10).

However, it is to be noted that an optimized kNN 
model could rival the performance of combined MLP and 
GNN models in predicting the logP values. We found that 
only ensemble architectures of 3D GNN, where (− 2, − 4) 
layers of MLP were connected, could excel in the per-
formance demonstrated by the kNN model (Additional 
file 1: Table S10). Ensemble architecture of 3D GNN and 
MLP-based neural networks using the SEF descriptors 
also outperformed the kNN model when a different data-
set (CHEMBL4691) and target values (pCheMBL) were 
used (Additional file 1: Table S10).

SEF descriptors across different tested datasets 
for regression models rivaled Morgan fingerprints 
and SHED descriptors in performance
To demonstrate the applicability of SEF descriptors 
across different datasets and models, we tested them 
on several datasets using (a) deep neural network archi-
tecture comparing Morgan, SEF and SHED descriptors 
(Table  2) and (b) random forest ensemble architecture 
comparing Morgan, SEF, SHED, a hybrid of Morgan and 
SEF and hybrid of SHED and SEF descriptors (Table 3). 
The kNN baseline for each dataset is also provided as a 
comparison. Table 2 lists the MAE values from the kNN 

baseline models and also the comparison mentioned in 
(a). We primarily used Shannon entropy and fractional 
Shannon entropies based on SMILES representation as 
features of SEF in the deep neural network models. As 
noted by Janela and Bajorath [23], we also found that a 
simple kNN model could rival deep neural architecture-
based models using different descriptors (Table  2 and 
Additional file  1: Table  S11). However, among neural 
network-based architectures, SEF descriptor-based mod-
els performed better across the different  datasets tested 
(Additional file 1: Table S11).

Similar results were obtained when random for-
est regression models were used to compare differ-
ent descriptors mentioned in (b). We noticed two 
interesting aspects of SEF descriptors comparing across 
different datasets using the random forest model- (i) 
other descriptor-based models (Morgan and SHED) 
could perform better when used in combination with 
SEF descriptors (Additional file 1: Table 3 and Additional 
file  1: Table  S12) and (ii) SEF descriptor-based models 
were computationally faster under the same conditions 
across the tested datasets, except for the case of the tar-
get CHEMBL3713062. In this case, the average molecu-
lar weight of binding molecules was higher compared 
to other datasets. We used an optimized set of features 
in constructing the SEF descriptors depending on the 

Table 2 List of the used datasets and comparison of descriptors in MLP-based deep neural network models

a The scaling factor of MAE was  105 and for the rest of the Target IDs the scaling factor was  103

Dataset (Target ID) Target variable Sample size kNN (MAE) Morgan (MAE) SEF (MAE) SHED(MAE) Source/reference

CHEMBL  3713062a BEI 3382 6.47 5.00 ± 0.13 3.70 ± 0.15 10.74 ± 0.48 EMBL-EBI

CHEMBL 204 BEI 1777 4.20 5.03 ± 0.20 4.23 ± 0.05 10.41 ± 0.30 EMBL-EBI

CHEMBL 2842 BEI 4164 4.90 4.50 ± 0.14 4.07 ± 0.08 9.76 ± 0.24 EMBL-EBI

CHEMBL 274 BEI 1950 2.64 3.54 ± 0.24 2.90 ± 0.05 4.95 ± 0.02 EMBL-EBI

CHEMBL 3974 BEI 725 3.80 5.00 ± 0.35 3.52 ± 0.11 9.23 ± 0.03 EMBL-EBI

CHEMBL 2820 BEI 663 2.70 3.33 ± 0.25 2.92 ± 0.11 4.58 ± 0.13 EMBL-EBI

CHEMBL 2815 BEI 3182 3.90 4.21 ± 0.21 3.84 ± 0.07 7.25 ± 0.02 EMBL-EBI

CHEMBL 4691 pCheMBL 859 2.25 2.14 ± 0.08 1.94 ± 0.03 2.70 ± 0.02 EMBL-EBI

Table 3 Comparison of Morgan, SEF, SHED and hybrid descriptors in random forest regression-based models

(i) aThe scaling factor of MAE was  105, bthe scaling factor was 1 and for the rest of the Target IDs the scaling factor was  103 and (ii) bMAE with the kNN-based model was 
0.50

Dataset (Target ID) Target variable Morgan (MAE) SEF (MAE) SHED (MAE) SEF + Morgan (MAE) SEF + SHED (MAE)

CHEMBL  3713062a BEI 4.75 ± 0.01 2.92 ± 0.03 4.51 ± 0.02 2.36 ± 0.02 2.92 ± 0.03

CHEMBL 204 BEI 4.60 ± 0.05 3.65 ± 0.03 7.10 ± 0.05 3.23 ± 0.00 3.60 ± 0.00

CHEMBL 2842 BEI 4.10 ± 0.02 3.61 ± 0.00 8.35 ± 0.05 3.13 ± 0.01 3.60 ± 0.01

CHEMBL 274 BEI 2.20 ± 0.04 2.10 ± 0.01 3.85 ± 0.01 1.85 ± 0.00 2.10 ± 0.00

CHEMBL  5023b logP 0.51 ± 0.00 0.43 ± 0.01 0.63 ± 0.01 0.43 ± 0.00 0.40 ± 0.00
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specific dataset used in random forest regression mod-
els (Additional file  1: Table  S13). In the context of the 
used datasets, SEF-based random forest ensemble mod-
els outperformed all other descriptor-based models and 
kNN models, in comparison, as well (Additional file  1: 
Table S12).

We also investigated the performance of the SEF 
descriptors in comparison to other descriptors by ran-
dom shuffling of target values of the dataset for a few 
cases (Additional file 1: Table S14) using the random for-
est models. We observed quite similar results when such 
randomized structure-target space was used as compared 
to the original space. The standard deviation values were 
higher in randomized cases as compared to the original.

Conclusions
We have described a method to use material informa-
tion content to enhance the performance of deep neu-
ral networks and general machine learning models. We 
tapped the Shannon entropies associated with material 
representation in various string formats and used them 
as molecular descriptors, defined as SEF, to increase the 
prediction accuracy of deep neural networks, hybrid 
neural architectures, and also general machine learning 
models. Total Shannon entropy of molecules, atom-wise 
fractional Shannon entropies and frequency information 
of molecular structures such as type of bonds or Shannon 
entropy of bonds were effective as descriptors in machine 
learning applications. These descriptors had a relatively 
lower correlation to other standard descriptors, were sen-
sitive to the stereochemistry and caused a lower change 
in values in response to smaller structural variations. 
Additionally, SEF descriptors were found to be competi-
tive with standard descriptors such as Morgan finger-
prints and SHED as well as kNN-based machine learning 
models in the QSAR space [23]. Various datasets and 
target types encompassing molecules of pharmaceutical 
significance were used to demonstrate the applicability 
of the SEF descriptors in QSAR modeling. We observed 
performance enhancement in both regression and clas-
sification-type problems when the SEF descriptors were 
used in the defined representations. Interestingly, we 
found synergy between MLP and GNN architectures 
using SEF and the resulting hybrid networks performed 
more accurately than their constituent counterparts. SEF 
also demonstrated synergy with other descriptors, which 
could further boost the performance of machine learning 
models. As features of SEF could readily reduce the mate-
rial information to simple, distinct numerical representa-
tion, it could potentially be used in material informatics, 
screening, design and optimization.

Methods
SEF descriptors

1. Generate tokens from atom-wise or SMILES pair 
encoding tokenizer [32]. For InChiKey strings, use a 
character-wise tokenizer to extract the tokens. The 
generated token set is: xi ∈ X

2. Estimate the frequency of the token xi as: fxi = n/N  . 
Where n is the number of occurrences of a token xi 
and N  is the total occurrence of all the tokens. The 
number of unique tokens generated is k.

3. The estimated Shannon entropy of the m-th mol-
ecule ( Sm ) of the dataset is based on the token fre-
quencies:Sm = −

∑k
i fxi log2fxi (Additional file  1: 

Table S1a). Note that Sm could be evaluated not only 
from SMILES representation but from any other 
structural or scientific notations, for example, SELF-
IES [8], BigSMILES [33] etc.

4. For estimating fractional Shannon entropy, the fol-
lowing steps were followed:

a. Define the set of atoms present in the dataset,
b. Construct a dictionary of atoms and their occur-

rence in the molecule,
c. Estimate the Shannon entropy based on steps 

1–3 above,
d. The fractional Shannon entropy ( saj ) of the atom 

aj within a molecule is calculated analogously 
to the partial pressure of a component in a gas 
mixture: saj = faj Sm . Where faj is the ratio of the 
number of atoms aj of a species to the total num-
ber of atoms within the molecule of the dataset. 
For the same atomic species within a molecule, all 
atoms have the same fractional Shannon entropy 
similar to the partial pressure of a component in a 
gas mixture.

e. Since fractional Shannon entropy represents 
atom-wise entropy, appropriate padding is 
required to account for the varying number of 
atoms per compound of the dataset. For exam-
ple, if a dataset has N as the maximum number of 
atoms in a molecule, the array of fractional Shan-
non entropy of any molecule with m atoms would 
have padding (N-m)/2 on each side (Additional 
file 1: Table S1b). We used padding with zeros.

5. For estimation of bond frequency and Shannon 
entropy of bonds, predefine a list covering differ-
ent types of bonds in the dataset, for example:btype 
= [’SINGLE’, ’DOUBLE’, ’TRIPLE’, ’QUADRUPLE’, 
’AROMATIC’, ’HYDROGEN’, ’IONIC’]. Then the 
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bond frequency could be estimated as an array where 
each element is the number of occurrences of the 
bond type to the total number of pre-defined bonds 
present in the compound. A reduction of the bond 
frequency ( fbi ) to the Shannon entropy of bonds 
( Sbf  ) could also be used: Sbf = −

∑l
i fbi log2fbi , where 

‘ l ’ is the number of unique bond types ( btype).

Evaluation of kNN baseline: the k-nearest neighbor 
model was developed by considering k average property 
values based on a similarity metric between the test sam-
ple and the training dataset. The similarity metric was 
estimated based on the Tanimoto similarity and was cal-
culated using an extended connectivity fingerprint with 
diameter 4 (ECFP4) utilizing the RDKit package. For per-
formance optimization, a sweep over k = 1, 2 and 3 was 
carried out and the best possible model was chosen.

Random forest ensemble models: an ensemble of 
decision trees was used as a regression model using the 
scikit-learnpackage. The grid search method of optimi-
zation was used over the following search parameters: 
(i) the number of decision trees: [25, 100, 200], (ii) the 
minimum number of samples per leaf node: [1,2,5] and 
(iii) the minimum number of samples during split: [2,3,5]. 
A minimum of 5 cross-validations were used for each 
model.

Evaluation of SHED descriptors: unfolded version of 
SHED descriptors was generated using a custom script 
using jCMapper and utilizing the executable java file 
‘jCMapperCLI.jar’ [26]. The SHED descriptor data for 
each dataset was saved in.csv file format and later used in 
different machine learning models, separately or in com-
bination with other descriptors.

Refer to the shared repository https:// github. com/ 
Shann onDes cript ors? tab= repos itori es and follow the 
below links in the Availability of data and materials sec-
tion for implementation and examples.
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Additional file 1. Figures and Tables: Fig.S1. Lower correlation of Shan-
non entropy (SMILES) to other standard descriptors. Fig.S2. Shannon 
entropies based on standard tokens derived from string representations 
(SMILES, SMARTS, INCHIKEY etc.) of molecules are efficient descriptors for 
deep neural network-based property predictions. Fig.S3. A hybrid neural 
network combining MLP and CNN models shows comparable predic-
tion performance to only MLP-based models in both classification and 
regression problems. Fig.S4. Schematic with a stepwise depiction of the 
used algorithm of the hybrid MLP + 3D GNN-based model to predict the 
logP values of binding molecules to the p53-binding protein Mdm2. Fig.
S5. Deep neural network model with MLP and 2D GNN architectures in 
an ensemble performs better than only the 2D GNN based model and the 
prediction accuracy depends on the connections from MLP layers to the 
final, hybrid model. Fig.S6. Schematic presentations of (-2,-4) and (-2,-3) 
connections from the last few MLP layers to the final model of the hybrid 

MLP + 2D/ 3D GNN-based deep neural network. Table S1a. An example 
of numerical reduction of a molecule in the form of Shannon entropy. 
Table S1b. An example of numerical reduction of a molecule in the 
form of fractional Shannon entropy. Table S2. Stereochemistry-sensitive 
numerical reduction of molecules in the form of Shannon entropies by 
using a combination of SMILES and InChiKey strings. Table S3. Network 
performance metrics for prediction of  IC50 values of binding molecules to 
tissue factor pathway inhibitor (target: pCheMBL/MW, MLP-based deep 
neural model). Table S4. Network performance metrics for prediction 
of BEI values of binding molecules to the tissue factor pathway inhibitor 
(target: BEI /MW, MLP-based deep neural model). Table S5. Network per-
formance metrics for prediction of  IC50 values of binding molecules to tis-
sue factor pathway inhibitor in tandem approach (target: pCheMBL/MW, 
MLP-based deep neural model). Table S6. Network performance metrics 
for prediction of  Ki values of binding molecules to coagulation factor 11 
(target: pCheMBL/MW, MLP-based deep neural model). Table S7. Network 
performance metrics for prediction of  Ki values of binding molecules to 
coagulation factor 11 (target: pCheMBL/MW, MLP-based deep neural 
models). Table S8. Network performance metrics for toxicity classifica-
tion as per Ames mutagenicity (target: toxicity binary classification, 
MLP-based & CNN&MLP –based deep neural models). Table S9. Network 
performance metrics for prediction of  Ki values of binding molecules to 
coagulation factor 11 (target: pCheMBL/MW, MLP-based and CNN&MLP 
–based deep neural models). Table S10. Network performance metrics 
for prediction of partition coefficient (logP) values of binding molecules to 
the p53-binding protein Mdm2 (target: logP) and  IC50 (pCheMBL) values of 
target ID CHEMBL4691. Table S11. Network performance metrics for pre-
diction of BEI and pChEMBL values across different target datasets using 
MLP-based deep neural network architecture. Table S12. Comparison of 
Morgan, SEF, SHED, SEF+Morgan and SEF+SHED descriptors in random 
forest regression-based models. Table S13. Features used in constructing 
SEF descriptors for optimum performance in random forest regression-
based models. Table S14. Comparison of Morgan, SEF and SHED descrip-
tors in random forest regression-based models with completely random 
y-label targets.
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