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Abstract 

Descriptor generation methods using latent representations of encoder–decoder (ED) models with SMILES as input 
are useful because of the continuity of descriptor and restorability to the structure. However, it is not clear how the 
structure is recognized in the learning progress of ED models. In this work, we created ED models of various learning 
progress and investigated the relationship between structural information and learning progress. We showed that 
compound substructures were learned early in ED models by monitoring the accuracy of downstream tasks and 
input–output substructure similarity using substructure-based descriptors, which suggests that existing evaluation 
methods based on the accuracy of downstream tasks may not be sensitive enough to evaluate the performance of 
ED models with SMILES as descriptor generation methods. On the other hand, we showed that structure restoration 
was time-consuming, and in particular, insufficient learning led to the estimation of a larger structure than the actual 
one. It can be inferred that determining the endpoint of the structure is a difficult task for the model. To our knowl-
edge, this is the first study to link the learning progress of SMILES by ED model to chemical structures for a wide range 
of chemicals.
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Graphical Abstract

Introduction
The numerical representation of chemicals is useful for 
grasping their properties and is roughly divided into two 
approaches: phenotype-based and structure-based rep-
resentation [1–3]. The latter is often called a descriptor, 
and determining how to generate a good descriptor is 
one of the big topics in the field of chemoinformatics [4, 
5]. Since the report by Gómez-Bombarelli et al. in 2016, 
descriptor generation methods using latent representa-
tions of encoder–decoder (ED) models with simplified 
molecular input line.

Entry Specification (SMILES) as input have attracted 
much attention [6]. The ED model in natural language 
processing (NLP) is a model that encodes strings into 
numerical information once and decodes them into 
strings again [7, 8]. The numeric information has rich 
information describing the strings and is called the latent 

representation [9]. Therefore, numerical information of 
chemical structures (descriptors) can be obtained by ED 
models learning SMILES, with the string representation 
of chemical structures as the input. In particular, the idea 
of neural machine translation (NMT) was introduced by 
Winter et al. in 2019 [10]. For example, to translate Japa-
nese to English correctly, the ED model must understand 
not only the characters of both Japanese and English but 
also the context of the strings [11, 12]. The latent repre-
sentation of NMT models learning SMILES includes the 
context of SMILES, i.e., the entire chemical structure 
[13–15].

Descriptor generation methods based on ED models 
with SMILES as input have two characteristics: they pro-
vide continuous descriptors and can transform numeri-
cal information back into structures. Most conventional 
descriptors in the field of chemoinformatics, such as 
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Extended Connectivity Fingerprint (ECFP), are binary 
vectors based on substructures, restricting the descrip-
tive ability of structures and restoration to the original 
structures [16, 17]. The machine learning-based meth-
ods before ED models, such as mol2vec and Neural 
FingerPrint (NFP), are continuous representations and 
relatively high structure representability, but none of 
them can restore chemical structures from descriptors 
[18, 19]. Because of their ability to convert numerical 
information into a structure, ED models, together with 
other generative models such as generative adversarial 
networks (GANs) [20], are used in de novo drug design 
[21–24]. In contrast, models in the context of de novo 
drug design are often end-to-end models and do not 
cover as wide a variety of chemical structures as descrip-
tor generation methods do [25].

Many descriptor generation methods based on ED 
models with SMILES as input have been developed [6, 10, 
26]. As with other descriptor generation methods, many 
of these studies discuss the merits of the methods based 
on the accuracy of some prediction model (e.g., mode of 
action prediction) using the generated descriptors based 
on the idea that “Good representation leads to good 
downstream results.” In contrast, the structure restor-
ability has not been examined well and is only ensured 
by confirming the input–output consistency is higher 
than a certain level. Thus, descriptor generation methods 
based on ED models have been investigated in an indi-
rect fashion with chemical structures. The relationship 
between the ED models fed with SMILES for descriptor 
generation (not for end-to-end tasks) and chemical struc-
tures, such as how the ED models learn and recognize 
the structures of various chemicals, is currently unknown 
despite the widespread use of models with SMILES.

The purpose of this study is to clarify how the struc-
tures of various compounds are recognized in the learn-
ing progress of ED models for descriptor generation. 
Recognition of chemical structures by the ED model is 
defined here as the ability to obtain numerical informa-
tion reflecting the chemical structure and to reconstruct 
the chemical structure from the numerical information 
(structural representation and restoration). We created a 
model set consisting of ED models with various learning 
progress and investigated the relationship between learn-
ing progress and chemical structures.

Methods
Data preparation
The chemical data set containing SMILES representations 
was obtained via ZINC15 [27], and 30 million chemi-
cals were randomly extracted for training the ED model. 
The following criteria were used to filter the chemicals 
inspired by Le et al. [16] (1) only containing organic atom 

set, (2) The number of heavy atoms between 3 and 50. 
Note that these filtrations were employed simply to facili-
tate modeling, but can introduce bias into the ED model 
results (an investigation into their impact is beyond the 
scope of this study). The salts were stripped and only 
the largest fragments kept. A random SMILES variant 
was generated using the SMILES enumeration proce-
dure [28]. For the evaluation of the descriptor, the high 
throughput screening (HTS) assay data set was obtained 
via EPA [29]. The data were processed via an R library, 
ToxCast-tcpl [30]. The transcriptome profile data set of 
MCF7 was obtained via iLINCS [31]. The SMILES repre-
sentations of chemicals in the transcriptome profile data 
were obtained from PubChem [32] using PubChemPy 
1.0.4, PubChem API used in Python. In this study, we 
used RDKit (ver. 2022.03.02) for handling molecules such 
as SMILES generation [33].

Model preparation
When creating the model, we referenced the model 
architecture developed by Winter et  al. [10], however, 
we modified the bucketing strategy to handle stereo-
chemistry, which is removed in Winter’s model (refer to 
the Availability section for details). The encoder network 
consists of the 3-layer gated recurrent unit (GRU) with 
256, 512, and 1024 units, followed by a fully connected 
layer that maps the concatenated cell states of the GRU 
to the latent space with 256 neurons and hyperbolic tan-
gent activation function. The decoder network takes the 
latent space as input and feeds it into a fully connected 
layer with 1792 neurons. This output is split into three 
parts and used to initialize 3-layer GRU cells. The com-
plete model is trained on minimizing the cross-entropy 
between the output of the decoder network, the sequence 
of probability distributions over the different possible 
characters, and the one-hot encoded correct characters 
in the target sequence. For the decoder GRU, we utilized 
teacher forcing [34]. For a robust model, a 15% dropout 
was applied, and noise sampled from a zero-centered 
normal distribution with a standard deviation of 0.05 
was added to concatenated cell states of the GRU in the 
encoder.

Thirty million chemicals extracted from the ZINC data 
set were applied as a training set for training the mod-
els. The model was trained on translating from random 
SMILES to canonical SMILES. The Adam optimizer was 
used with a learning rate of 5 × 10–4, and an exponen-
tial scheduler was used that decreases the learning rate 
by a factor of 0.9 every 250 epochs. The batch size was 
set to 1024. To handle sequences of different lengths, we 
trained models for 6, 13, 104, 260, 338, and 598 epochs to 
obtain models of varying accuracy. We used the frame-
work PyTorch 1.8.0 to build and execute our proposed 
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model. To evaluate the model accuracy, as an evaluation 
index, we defined perfect accuracy and partial accuracy, 
represented by the following equations:

where n is the number of chemicals in the evaluation set, 
t is the correct SMILES, p is the predicted SMILES, ti is 
the ith letter of the correct SMILES, l(t) is the length of t , 
and I(x) is the function in which I(x) is 1 if the prediction 
is correct and 0 otherwise.

The bottleneck layer of the ED model is regarded as the 
low-dimensional representation of chemicals with 256 
dimensions and can be regarded as the descriptor. Chem-
ical descriptors are obtained by feeding SMILES to the 
encoder of the trained model.

Training HTS data
ToxCast assay data were predicted with descriptors 
obtained from encoders as inputs. We selected XGBoost 
as a representative machine learning method, and hyper-
parameters were optimized using Optuna for each assay 
and threefold cross validation was applied [35, 36]. Opti-
mized hyperparameters and the conditions for optimiza-
tion are provided in Additional file 1.

The HTS assay was filtered by the following criteria: (1) 
containing more than 7000 experimental chemicals, (2) 
the ratio of active chemicals to total is higher than 5%, 
and we extracted 113 assays (listed in Additional file 2). 
25% of each assay data was split for the test set and used 
to evaluate the trained model. We used two evaluation 
indexes of model accuracy, the area under the receiver 
operating characteristic curve (AUROC) and the Mat-
thews correlation coefficient (MCC).

Visualization of chemical space
To visualize the distribution of chemicals formed by 
descriptors, dimensionality reduction was performed 
using UMAP [37], and descriptors of 292 CMap chemi-
cals were subjected to the algorithm. To understand the 
difference of chemical spaces obtained from models with 
different accuracies, the ECFP of each chemical and the 
Tanimoto coefficient of any two ECFPs were calculated 
[38]. Based on the Tanimoto coefficient, we defined three 
chemical groups with similar structures: (1) coefficient 
with estradiol is higher than 0.25 (estrogens) except for 
Fluvestrant because of the long hydrocarbon chain that 
is inappropriate for a similar structure with estradiol, 
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(2) coefficient with apigenin is higher than 0.25 (flavo-
noids), (3) coefficient with isoconazole is higher than 0.25 
(azoles). A scatter plot of chemicals embedded by UMAP 
was formed and chemicals in the three groups were high-
lighted. The chemicals in each group are listed in Addi-
tional file 3.

Investigation of substructure learning
Using one of the 100  K compounds set used for model 
evaluation, we extracted structures that generated valid 
structures in all models whose accuracy was higher than 
Model_0.1. MACCS Key and 2048-bit ECFP were cal-
culated for the input and generated structures for each 
compound, and the agreement was evaluated using the 
Tanimoto coefficient [17].

Investigation of structure incorrectly decoded
Using one of the 100  K compounds set used for model 
evaluation, the string length and molecular weight of 
actual SMILES versus that of predicted SMILES that 
were not correctly decoded during the evaluation of each 
model were calculated. These are shown in a scatterplot, 
together with a straight line with y = x (the value of actual 
SMILES is equal to that of predicted SMILES).

Results and discussion
Preparation of encoder–decoder model with various 
accuracy: various ED model set
To investigate how the learning progress of ED models is 
related to the recognition of chemical structures, we first 
constructed a set of models with different learning pro-
gress. We randomly selected 30 million compounds from 
the ZINC database and prepared several models with 
different translation accuracies by controlling the learn-
ing progress [27]. As a negative control, we also prepared 
a set of 0-epoch models that were not trained at all and 
constructed a set of models together.

Five sets of 10  K, 100  K, and 1  M compounds other 
than those used in the training were randomly selected 
from the ZINC database as well, and we evaluated the 
translation accuracy of each model on these sets. In addi-
tion to perfect accuracy, which evaluates the perfect 
agreement between input and output for easy interpreta-
tion as translation accuracy, partial accuracy, which eval-
uates partial recognition, was also employed as a measure 
of model accuracy (Fig. 1a). The results showed that both 
accuracy indices increased as the training progressed, as 
expected. Notably, even when perfect accuracy was as 
low as 0.1% and 29%, partial accuracy was relatively high 
at 26% and 63%, respectively (Fig.  1b). The presented 
results indicate that even when the whole string is not 
correctly restored, learning of substrings progresses at a 
relatively early stage.
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In the following, the set of ED models with various 
translation accuracies will be referred to as the “various 
ED model set,” and each model in the various ED model 
set will be denoted by its perfect accuracy. For example, 
the 598 epoch model showed 94% complete accuracy, so 
it will be denoted as “Model_94.”

Relationship between learning progress and downstream 
tasks with latent representation
I In general, the performance of descriptor generation 
methods is evaluated based on the accuracy of down-
stream tasks using descriptors. To evaluate the relation-
ship between the learning progress of ED models and 
their structure representability, we constructed models to 
estimate the properties of chemicals in ToxCast data sets 
using descriptors generated by each model in the various 
ED model sets and compared the accuracy of the prop-
erty prediction. Figure 2a shows the AUROC and MCC 
[39] for 10 representative assays out of 113 assays derived 
from ToxCast (refer to the Methods section for details). 
The average of the AUROC of all 113 assays is shown in 
Additional file  4. Model_0 has an AUROC close to 0.5, 
indicating that these end-to-end tasks cannot be solved 
by the descriptors generated by the models without 
learning. On the other hand, the remaining models with 
learning all showed similar and relatively high prediction 
accuracy. Similar relationships with learning progress 
tasks were also confirmed in other datasets: two regres-
sion tasks (lipophilicity and solubility prediction) with 

Lipiphilicity and FreeSolv datasets (Additional file 5) and 
three classification tasks in MoleculeNet dataset (Addi-
tional file  6). The representative 10 assays of ToxCast 
HTS data were predicted using conventional descriptors, 
ECFP and Mordred, with accuracy comparable to the 
most accurate ED model descriptors, which is consistent 
with previous reports (Additional file 7).

Next, we worked on the evaluation of structure repre-
sentability in terms of chemical space. The connectivity 
map data set (292 compounds) was selected as a relatively 
small-size chemical set and visualized after dimensional-
ity reduction with UMAP [31, 37]. To evaluate visually 
the closeness of chemical space of structurally similar 
chemicals, we prepared groups of similar chemical struc-
tures based on the Tanimoto coefficient, which is a simi-
larity index of representative compound structures, and 
information on compound classes (Additional file 3). As 
a result, in model_0, similar chemical structure groups 
were scattered, and no clear trend was observed. On the 
other hand, the remaining models with training showed 
that similar chemical structure groups were distributed 
in each specific region (Fig. 2b).

These results suggest that among the properties of 
ED model-based descriptor generation methods, struc-
ture representability such as downstream task accuracy 
and chemical space are acquired early in the learning 
progress.

Fig. 1  Preparation of encoder–decoder model with various accuracies. a Methodology of encoder–decoder model evaluation. b Comparison of 
evaluation metrics for evaluation data set by each model
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Relationship between learning progress and substructure 
recognition
Considering the correlation between the partial accuracy 
in Fig. 1 and the accuracy of downstream tasks in Fig. 2 
with respect to the learning progress, it is inferred that 
ED models recognize substructures of chemicals in the 
early stage of learning progress. Next, focusing on sub-
structures, we evaluated the relationship between learn-
ing progress and structural restorability of the ED model.

Conventional descriptors such as MACCS and ECFP 
are discrete representations of binary vectors based on 
the presence or absence of substructures. Therefore, the 
similarity of these descriptors reflects the substructure-
based similarity. We obtained the pairs of inputs and 
outputs of each model in the various ED model sets and 
compared their similarity based on substructures. The 
results show that the similarity of inputs and outputs 
(Tanimoto coefficients) of both MACCS and ECFP show 
a saturating curve with respect to the learning progress 

(Fig.  3). This trend is correlated with the partial accu-
racy in Fig. 1 and the accuracy of the downstream task in 
Fig. 2. These results suggest that ED models with SMILES 
as input recognize the substructures of chemicals that 
contribute to the downstream tasks in the early stage of 
learning.

Tendency of wrongly restored structures by ED model
A as shown in Fig. 1, the progress of perfect accuracy is 
slower than that of partial accuracy. Taking Figs. 2 and 3 
into account as well, this suggests that sufficient learn-
ing is required to understand the entire chemical struc-
ture, compared with the understanding of substructures. 
Therefore, we worked on the evaluation of how ED mod-
els misrecognize structures when learning is insufficient. 
To capture the properties of misrecognized chemicals, 
we plotted the relationship between molecular weights 
of the input and the output chemicals that were wrongly 
restored (not matched perfectly with the inputs) by each 

Fig. 2  Relationship between learning progress and downstream tasks with latent representation. a AUROC and MCC of 10 representative assays 
prediction by XGBoost. b Scatter plots of 292 compounds obtained from CMap with dimension reduction by UMAP. Orange, green, and blue points 
indicate compounds with Tanimoto coefficients of 0.25 or greater with estradiol, apigenin, and isoconazole, respectively
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model in the various ED model sets (Fig. 4a). The results 
showed that molecular weights of wrongly restored 
chemicals were relatively large compared with the origi-
nal structures. Then, we plotted the relationship between 
the true and predicted lengths of the strings of wrongly 
restored chemicals (Fig. 4b). The results showed that the 
ED models tended to incorrectly restore the structure 
increasing the string length when the learning was insuf-
ficient and that this tendency was corrected as the learn-
ing progressed. This suggests that the ED model is unable 
to determine at which point the structure restoration is 
completed when learning is insufficient.

Conclusions
In this work, we analyzed how the structure of chemicals 
is recognized (acquisition of numerical representation 
reflecting the structure and reconstruction of the struc-
ture) during the learning progress in ED models, in which 
SMILES of various compounds are learned for descriptor 
generation.

The main contributions of this study are as follows:

•	 We showed that compound substructures are 
learned early in ED models and that existing evalu-
ation methods based on the accuracy of down-

Fig. 3  Tanimoto coefficient of MACCS key and ECFP for input and output structures. Bar height and error bar indicate mean and standard deviation, 
respectively

Fig. 4  Scatterplot of a Molecular weight and b SMILES length of incorrectly decoded structures. yellow line indicates y = x (value of actual SMILES is 
equal to that of predicted SMILES)
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stream tasks may not be sensitive enough to evalu-
ate the performance of ED models as descriptor 
generation methods.

•	 In addition, we showed that structure restoration 
is time-consuming, and in particular, insufficient 
learning leads to an estimation of a larger structure 
than the actual one. It can be inferred that deter-
mining the endpoint of the structure is a difficult 
task for the model.

•	 To our knowledge, this is the first study that connects 
the learning progress of SMILES representation and 
various chemical structures.

In this study, we employed the GRU model, inspired 
by the work of Winter et al., who first introduced NMT 
for SMILES. On the other hand, since 2017, Trans-
former has become the de facto standard in the field of 
NLP, and Transformer-based methods for generating 
chemical descriptors have also been developed [40–44]. 
It is an interesting future task to elucidate how Trans-
former-based methods recognize the chemical structure, 
although we focused on the GRU model in this study 
because of large differences between networks between 
Transformer and recurrent neural networks such as GRU 
and Long Short Term Memory (LSTM). Neural network 
models handling SMILES establish a field, and many 
models are devised not only for descriptor generation but 
also for de novo drug design and reaction prediction [25, 
45, 46], whereas there are still many black boxes in the 
relationship between the model and the chemical struc-
ture. We hope that this study will help to improve the 
explainability of neural network models in that field.
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