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Abstract 

Background The increasing amount of chemical reaction data makes traditional ways to navigate its corpus less 
effective, while the demand for novel approaches and instruments is rising. Recent data science and machine learn-
ing techniques support the development of new ways to extract value from the available reaction data. On the one 
side, Computer-Aided Synthesis Planning tools can predict synthetic routes in a model-driven approach; on the other 
side, experimental routes can be extracted from the Network of Organic Chemistry, in which reaction data are linked 
in a network. In this context, the need to combine, compare and analyze synthetic routes generated by different 
sources arises naturally.

Results Here we present LinChemIn, a python toolkit that allows chemoinformatics operations on synthetic routes 
and reaction networks. Wrapping some third-party packages for handling graph arithmetic and chemoinformat-
ics and implementing new data models and functionalities, LinChemIn allows the interconversion between data 
formats and data models and enables route-level analysis and operations, including route comparison and descrip-
tors calculation. Object-Oriented Design principles inspire the software architecture, and the modules are structured 
to maximize code reusability and support code testing and refactoring. The code structure should facilitate external 
contributions, thus encouraging open and collaborative software development.

Conclusions The current version of LinChemIn allows users to combine synthetic routes generated from various 
tools and analyze them, and constitutes an open and extensible framework capable of incorporating contributions 
from the community and fostering scientific discussion. Our roadmap envisages the development of sophisticated 
metrics for routes evaluation, a multi-parameter scoring system, and the implementation of an entire “ecosystem” of 
functionalities operating on synthetic routes. LinChemIn is freely available at https://github.com/syngenta/linchemin.
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Graphical Abstract

Introduction
Chemists are paying a renewed interest in chemical reac-
tion data [1, 2] and seek novel ways to extract value from 
them. The accurate prediction of retrosynthetic routes 
[3, 4], the analysis [5] and optimization [6, 7] of exist-
ing reaction classes, or the discovery [8–11] of new ones 
are just few examples that highlight the impact of reac-
tion analytics and reactivity modeling on chemical sci-
ence. Such fundamental shift in how scientists consume 
and use this data creates a demand for innovative ways 
to shape raw data points, excerpt insightful information, 
and build actionable knowledge. Moreover, on the one 
side, the traditional combination of visual inspection and 
databases searches is made progressively less effective by 
the increased amount of available reaction data. On the 
other side, some innovations in data science and machine 
learning provide more efficient instruments to navigate 
the available information to support scientists in making 
data-informed decisions faster.

CASP (Computer-Aided Synthesis Planning) [3, 12–18] 
tools constitute model-driven approaches to navigating 
the corpus of reaction data and have proven to be able 
to predict retrosynthetic routes even for completely new 
compounds. The usage of these tools can be considered 
complementary to the conventional construction of syn-
thetic procedures via iterative database searches. The 
experimental reaction data available from the literature, 
from electronic lab notebooks, etc., as well as computa-
tionally generated reaction data [19, 20], can be arranged 

in a network in which sequences of chemical reactions 
are linked through common molecular intermediates, 
generating the so-called Network of Organic Chemistry 
(NOC) [8, 21]. The NOC is often instantiated as graph 
databases to leverage graph arithmetic [16] for uncon-
ventional search procedures, such as extracting chemical 
routes [22–25]. This arrangement of the data allows sci-
entists to efficiently navigate the preexisting knowledge 
and to enrich it by identifying new potential routes for 
known target compounds.

From these premises, a natural need arises to com-
bine the routes predicted from CASP tools with those 
extracted from NOC, to perform comparison, validation, 
consensus, and diversity analyses across different sources 
and methods.

Synthetic chemists seek a better balance between per-
formance and sustainability in chemical processes [26–
28]. Synthetic biologists and systems chemists analyze 
biotic reaction networks [29, 30] to understand or design 
new bio-inspired reactive systems [31–38]. Scientists 
in these disciplines need a representation of chemical 
reaction data that explicitly accounts for the connec-
tivity between chemical reactions. Moreover, with the 
emphasis shifting from individual reactions to reaction 
sequences, scientists’ requirements increase accordingly, 
creating a pressing demand for route-level analytic based 
on quantitative descriptors and multi-parameter met-
rics. In addition to a general data model, they need tools 
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(software, databases, etc.) to manipulate and investigate 
sequences and networks of chemical reactions.

While only a few tools are publicly available for query-
ing NOC databases [22, 25, 39], the number of available 
CASP tools is rapidly increasing [3, 4, 39–41], includ-
ing those accounting for bio-catalyzed reactions [36]. 
Whether predicted or extracted, synthetic routes come 
in different formats, often holding mutually incompat-
ible data models, depending on the source (NOC/CASP) 
and origin (specific CASP platform or tool). Given the 
rapid evolution of the field and the growing number of 
method developers, imposing any unified standard of 
format and data model across applications and platforms 
appears daunting. As a lightweight alternative, we envi-
sion bespoke software that operates translations between 
data formats and conversion between data models, allow-
ing third-party applications to consume the output of 
multiple NOC and CASP tools.

To fill this gap in the chemoinformatics landscape, we 
present a chemical expert system that will take for chem-
ical routes and networks the role that toolkits like Open-
Babel, RDKit, and CDK play for molecules. LinChemIn 
captures the Linked Chemical Information that under-
lies chemical reaction data and allows managing entities 
of chemical relevance, such as the synthetic chemical 
route. Besides the interconversion of file formats and 
data models, the toolkit enables route-level analysis and 
operations, including network editing, descriptor cal-
culations, topological and chemical route comparisons, 
and searches. On the one hand, application scientists can 
conveniently access the toolkit functionalities via com-
mand-line interfaces (CLIs) and front-facing high-level 
software components. On the other hand, developers 
of third-party applications can access lower-level mod-
ules to obtain complete control of the toolkit function-
alities. Besides these two user categories, we designed 
the toolkit architecture to encourage scientists and devel-
opers to contribute to its code base. The first release of 
LinChemIn constitutes an open and extensible frame-
work capable of incorporating contributions from the 
scientific community. Following the AGILE approach to 
software development, the early publication of a mini-
mal viable product should stimulate scientific discussions 
and provide valuable steers to further improvements. 
While pursuing an active development roadmap, we 
will progressively release new modules that enable new 
functionalities.

This introductory article describes the LinChemIn 
toolkit and its benefits to different potential user catego-
ries. First, we report the domain analysis, where a for-
mal representation of the domain knowledge leads to a 
series of scientific and technical requirements. Next, we 
provide some implementation details, discussing our 

software architecture choices while translating the sci-
entific requirements into computational procedures. 
Then, we present some applicative examples to demon-
strate the functionalities implemented in the toolkit and 
discuss the outcome of some illustrative analyses. After 
that, we exemplify how developers could extend the code 
to incorporate new functionalities. Finally, we offer a 
glimpse of the LinChemIn development roadmap, high-
lighting the most significant functionalities planned for 
future releases.

Domain modeling
In our development work, we adopt Domain-Driven 
Design (DDD) principles to ensure a close match between 
the scientific domain (in this case, synthetic chemistry) 
and the structure and language of the LinChemIn soft-
ware code. This approach fosters constructive collabora-
tion between technical and domain experts by placing 
the project’s primary focus on domain logic. The domain 
modeling of the LinChemIn project captures the rela-
tionships between distinct chemical reactions, whose 
most common cases are represented in Fig.  1. Interme-
diates are chemicals produced by one reaction and con-
sumed by another (Fig.  1A, M2). The chemical shared 
as a product by two or more reactions (Fig. 1B, M1) is a 
convergence point, indicating alternative ways to deliver 
a compound. The chemical shared as a reactant by two or 
more reactions (Fig. 1C, M4) is a common intermediate, 
a divergence point. Together these reaction links define 
the Network of Organic Chemistry, described in detail in 
several works [8, 21].

This section describes the data models we created to 
map a subset of the concepts relevant to chemical syn-
thesis. We build a list of operations necessary to map the 
business logic of the scientific domain into algorithms 
and software.

The most granular concepts we encounter are those of 
chemical compounds and chemical reactions, mapped 
as Molecule and Chemical Equation1. We select a set of 
immutable properties that define their identity so that we 
can treat them as value objects. In the case of Molecule 
entities, we use an attribute derived from the molecular 
structure like SMILES or the InChiKey strings. If we for-
malize chemical reactions as chemical compounds that 
have a role (reactants, products, reagents), the set of Mol-
ecule entities and a reaction role map suffice to define the 

1 Here, the term Chemical Equation only refers to the structural part of a 
Chemical Reaction. We realized that the term Reaction, or Chemical Reaction 
hosts a range of different meanings, depending on the context, on the source, 
and the usage. Thus, we decided to reserve the term Chemical Reaction for 
a different ontological level, which includes other layers of information (e.g., 
reaction condition, experimental details, etc...)



Page 4 of 17Pasquini and Stenta  Journal of Cheminformatics           (2023) 15:41 

nature of a Chemical Equation. As value objects, Mol-
ecule and Chemical Equation instances constitute the 
nodes of a graph representation of the reaction network. 
The SynGraph (synthetic graph) is the central data object 
in LinChemIn. It contains Chemical Equations and Mol-
ecules alongside their relationships. Relevant scientific 
concepts map onto particular SynGraph sub-types, as 
shown in Fig.  2. For instance, we define the synthetic 
route as a set of unique (mutually exclusive) chemical 
reaction steps that, arranged into a (possibly branched) 
sequence, are necessary and sufficient (collectively 
exhaustive) to assemble a target compound from starting 
material. We distinguish the synthetic route from simple 
synthetic paths, connecting the target compound to a 
starting material through a linear sequence. In addition, 
we envision aggregative data models such as the synthetic 
tree (collection of synthetic routes) and the synthetic for-
est (collection of synthetic trees), which are necessary to 
collect and compare routes from different sources (CASP, 
NOC, etc.) for one or more targets.

SynGraph represents the connectivity between Chemi-
cal Equation and Molecule instances as a graph-like 
object. In a typical embodiment, based on a monopartite 
graph, directed edges connect Chemical Equation nodes, 
implying the reaction intermediates (Fig.  3 A). Alterna-
tively, directed edges of a monopartite graph connect 
Molecule nodes, implicitly suggesting chemical reactions 
(Fig. 3 B). As a third alternative, Chemical Equations and 
Molecules are nodes of a bipartite graph where directed 
edges map role relationships (reactant, product, etc.) 

(Fig. 3 C). While containing the same information, these 
and other graph data models might serve as alternative 
data representations fitting specific applications.

We represent the domain logic through the following 
formal operations, acting on the SynGraph data model.

Translation Transforming SynGraph into other kind 
of graph objects is a crucial prerequisite for other opera-
tions. This provides an alternative to adapting the (poten-
tially complex) application (algorithm, database, etc.) to 
accept the SynGraph data format and, thus, lowers the 
barrier to integrating third-party software.

Identification SynGraphs are value objects, and their 
immutable properties entirely define their nature. In the 
most general case, this includes the overall graph’s topol-
ogy and the nodes’ properties. This means that multiple 
experimental synthetic routes map onto the same Syn-
Graph (specifically, a SynRoute) if they share the same 
arrangement of identical reaction steps (Chemical Equa-
tions and Molecules). SynRoutes constitute complex 
labels for entities such as real-life synthetic routes.

Comparison SynGraph natively supports structural 
equality since it is a value object: to tell apart two Syn-
Graphs is necessary and sufficient to compare the graph 
topology and the node properties (see above). Besides 
equality, SynGraph supports the calculation of structural 
similarity by projecting node properties across a topo-
logical distance between graphs. The following sections 
provide implementation specifics from a chemoinformat-
ics standpoint.

Fig. 1 Types of connections between reactions. A M2 is a molecular intermediate produced by reaction R1 and consumed by reaction R2. B M1 
is a chemical produced by both R1 and R2, and represents a convergence point. C M4 is a chemical acting as reactant for both R1 and R2, and 
represents a divergence point
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Merging Merging SynGraphs corresponds to a union 
operation between the underlying graphs by an equal-
ity operation on the nodes. This operation is essential 
when creating SynTrees by merging SynRoutes, and cor-
responds to creating a route catalog from different CASP 
tools.

Extraction Extraction procedures yield a new Syn-
Graph by selecting a set of nodes and edges from an 
existing SynGraph. Among the extraction procedures 
that have a scientific value, identifying distinct SynRoutes 
from a SynGraph is possibly the most important because 
it is the basis of identifying chemical routes from a route 
catalog (a SynTree) or the NOC.

Implementation
Development and deployment
The implementation information reported here provides 
a rationale for our software architecture choices. We 
refer the interested reader, the user, and the developer 
to the documentation enclosed with the software, where 
they can find more details and material aligned with code 
releases.

LinChemIn is a software package written in Python 3. 
The source code is available to the scientific community 
at https://github.com/syngenta/linchemin and is open to 
external contributions through standard git workflows. 
LinChemIn depends on a handful of common and relia-
ble third-party python modules. For instance, RDKit [42] 

is the chemoinformatics workhorse of this application, 
while graph arithmetic leans mostly on NetworkX [43]. 
We actively manage the package dependency map, aim-
ing at a low coupling with applications or modules that 
are not compatible cross-platform (e.g., GraphTools), that 
bring potentially conflicting second-tier library depend-
encies (e.g., RXNmapper [44]) or that require licenses 
incompatible with the MIT one. However, whenever it is 
not possible to avoid such applications, we prefer to wrap 
them into containers and expose their functionalities via 
dedicated REST APIs (Application Program Interfaces), 
letting LinChemIn satisfy their dependencies via an SDK 
(https://github.com/syngenta/linchemin_services).

The Object-Oriented Design (OOD) principles inspire 
the LinChemIn software architecture. In particular, 
modules and functions follow the “single-responsibility” 
principle, thus maximizing code reusability, facilitat-
ing testing, and supporting code refactoring. The usage 
of appropriate architectural patterns (e.g., the fac-
tory method pattern) ensures that the code is open for 
extension but closed for modification (“open-closed” 
principle). This approach aims to lower the barrier of 
incorporating external contributions to the code, thus 
fostering open and collaborative software development.

LinChemIn is a python library. As such, it provides 
front-facing interfaces to the developers of third-party 
applications. Several internal APIs (facades pattern) mask 
the complexity of the underlying code, improving its 

Fig. 3 Schematic representation of different graph data models. A Monopartite, Chemical Equations only. B Monopartite, Molecules only. C 
Bipartite Molecules and Chemical Equations
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readability, reducing the coupling between the main code 
and applications dependent on it and decreasing the risk 
of breaking functionalities as the software evolves. The 
downside of this approach is that the high-level functions 
are quite large and require many parameters. To mitigate 
this potential burden, a set of general-purpose default 
values that should be suitable for many different use-
cases was encoded. Moreover, each API exposes a use-
ful helper functionality, that lists options and default for 
each argument, and usage examples are reported in the 
software documentation, helping users to navigate these 
large functions. In addition, LinChemIn provides a Com-
mand Line Interface (CLI) exposing high-level function-
alities (e.g., route format conversion) to end-users with 
no software development background.

SynGraph
The SynGraph python class, implementation of the hom-
onym data model, is the backbone of the overall pack-
age, used as the underlying data structure for most of the 
code functions. It contains a graph-like structure imple-
mented as a dictionary of sets: the key encodes a “par-
ent” node having out edge(s), and the value is a python 
set containing all its “children” nodes. Using a set ensures 
no duplicates among the “children” nodes. While nodes 
are explicit, the edges stay implicit, and their direction 
is presumed to always be from the “parent” node to the 
“children” nodes (Fig.  4). This data model captures only 
the first mandatory ontological layer of the NOC, link-
ing chemical reactions together via reactants and prod-
ucts. We leave the business logic of constructing other 
(optional) layers of the NOC (including reagents, pro-
cedures, etc.) to dedicated translation procedures. This 
approach leaves the code open to the extension to any 
other data models that include other objects and rela-
tionships. It reduces the need to modify the SynGraph 
class, thus risking breaking any of its many dependencies.

Instances of the Molecule class hold information 
about chemical species involved in the route. The 
instantiation process starts from a molecular input 

string (SMILES, MOL, etc.) and creates a canonicalized 
RDKit Mol instance as class attribute. This attribute is 
easily accessible for the dynamic calculation of molecu-
lar properties such as descriptors and fingerprints. A 
structure-derived molecular identifier (e.g., SMILES 
or InChikey string) calculated from the Mol attribute 
makes a Molecule into a value object, thus enabling 
equality assessment.

Instances of the ChemicalEquation class hold infor-
mation about chemical reactions. The instantiation 
process starts from an input string (SMILES, RDMOL, 
etc.) and proceeds with a role attribution process and 
canonicalization. Ultimately, each instance contains a 
set of unique Molecule instances and a map containing 
information about each chemical’s roles in the reaction 
(reactant, reagent, product, etc.). Although the Chemi-
calEquation features other optional attributes (e.g., 
stoichiometry), the attribute that turns it into a value 
object is a hash of the Molecule instances having the 
role of reactants and products.

The choice of the identity attributes of Molecule 
and ChemicalEquation univocally echoes the identity 
attribute of SynGraph and defines the equality opera-
tions between its instances. For example, the same 
SynGraph maps two distinct routes having identical 
reactants and products for each reaction step, irrespec-
tive of the reagents, physical conditions, operative pro-
cedures, etc. This data model layer maps the business 
logic’s first layer and is open to extensions to deeper 
layers by including other properties of the Molecule or 
ChemicalEquation. Additional types of nodes and rela-
tionships can extend the data model to enable different 
equivalence assessments between SynGraph instances 
that include other aspects of the chemical reaction.

Transformations
We map the synthetic chemistry domain into a graph-
like data model to leverage algorithms initially devel-
oped and optimized in other fields, like social networks 

Fig. 4 Example of SynGraph instance. SynGraph instance and the graphical representation of the corresponding graph.
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and sentiment analysis. Instead of adapting these algo-
rithms to our particular scientific area’s needs (and 
language), LinChemIn contains flexible machinery 
to morph the SynGraph model to suit the technical 
requirements of specific graph libraries. This approach 
allows the LinChemIn user and developer to focus on 
the chemistry domain rather than modifying or reim-
plementing graph algorithms.

A key objective of the LinChemIn project is to read and 
compare synthetic routes predicted from several different 
CASP tools or extracted from NOC databases. Although 
these data are all similarly structured, with a graph-based 
representation, the content, the format detail, and the 
data model differ from case to case. The first challenge to 
be overcome has been to build a coherent framework in 
which routes generated by different sources are homo-
geneous and can thus be compared. A machinery to 
transform routes was needed. However, the route trans-
formation has actually two components: on the one hand, 
it must be possible to “translate” graph objects between 
data formats (e.g., from the output format of a CASP tool 
to a Networkx object) and, on the other hand, the pos-
sibility to “convert” graph objects between data models 
(e.g., from a monopartite - molecules only representa-
tion to a bipartite - molecules and reactions one) is also 
needed. In LinChemIn, these two types of transforma-
tion are treated independently, so that the combinato-
rial explosion of the number of possible combinations 
deriving from mixing and matching data formats and 
data models is avoided, while keeping full flexibility in 
selecting the most suitable combination. The overall 
transformation proceeds through a sequence of changes 
of format, from the selected input to the selected output, 

that always includes SynGraph. The latter is the only for-
mat that handles the conversion between data models, 
while also guaranteeing the standardization of chemical 
information. A schematic representation of the orthogo-
nal handling of translation and conversion is shown in 
Fig.  5. The architecture of the module allows the devel-
oper to easily expand the list of supported data formats, 
that already includes popular third parties formats, such 
as Networkx and Pydot, with additional formats and eas-
ily project the existing data models onto the new formats. 
Conversely, the user can create bespoke data transforma-
tion workflows by combining available data formats and 
models to suit specific applicative or visualization needs.

Operations on routes
Besides data I/O and data transformation, LinChemIn 
enables operations on connected synthetic datasets. For 
instance, the design of SynGraph natively supports smart 
data set merging, leveraging the node equality properties 
to identify duplicates and super-/sub-sets. This is impor-
tant while integrating the output of different CASP tools 
to yield synthetic trees that can include human input and 
experimental data extracted from NOC. The identifica-
tion of the intersection between SynGraph instances is 
enabled by the equality properties of the nodes (Molecule 
and ChemicalEquation) underlying the graph represen-
tation of the synthetic routes. It is possible to configure 
these properties to obtain different behavior upon merg-
ing. For instance, the tautomeric differences between 
molecules are ignored by switching the equality property 
from a canonical isomeric SMILES string to an InChi key 
string. Alternatively, removing the isomeric information 
leads to different streoisomerically related compounds 
collapsing as the same node. This functionality relies on a 
set of molecular hashes available in RDKit, and the devel-
oper can extend this set to suit specific needs.

In addition, LinChemIn allows the calculation of route-
level descriptors and the comparison between routes. In 
the next section, we discuss both cases with illustrative 
examples. The first release of the code features a small 
number of route descriptors, and while we are developing 
more complex ones, we look forward to the user commu-
nity feedback and contribution.

Route descriptors
We extend the definition of descriptors from the mole-
cule [45] to the synthetic route. Thus, the route descrip-
tor is “the final result of a logical and mathematical 
procedure, which transforms chemical information 
encoded within a symbolic representation of a synthetic 
route into a useful number or the result of a standard-
ized experiment.” This definition encompasses computed, 
modeled, and experimental descriptors. An example is 

Fig. 5 Translation and Conversion of routes. Schematic 
representation of the architecture relation between the LinChemIn’s 
modules responsible respectively for translation between format and 
conversion between data models
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the LogP, a quantitative representation of the lipophilicity 
of the molecules that can be measured in an experiment 
or predicted with a model. Similarly, the overall chemi-
cal yield can be the outcome of an experimental synthetic 
procedure or a route projection of the yield predicted for 
the single steps [46–50]. Here, we describe our approach 
to calculate route descriptors. In a future code release, we 
will include methods to combine descriptors and con-
struct hybrid experimental/modeled route metrics.

LinChemIn features an extensible factory of meth-
ods that take as an input the SynGraph and return 
numerical or Boolean values of route descriptors. Each 
descriptor captures a particular aspect of the route 
composition and structure, leveraging the graph-like 

architecture underlying the SynGraph instances used to 
represent routes. In Table  1, we list the main descrip-
tors currently implemented in the LinChemIn library, 
while Fig.  6 highlights how each descriptor is able to 
discriminate between particular graph structures.

Comparison between routes
Equivalence From a chemical standpoint, we call “iden-
tical” two synthetic routes that share the same synthetic 
steps arranged in the same order. However, this sim-
ple definition depends on the level of detail adopted to 
describe each step. For example, we can tell apart two 
identical reactions (same reactants/products) if we con-
sider reagents, procedures, or operational aspects (user, 

Table 1 Descriptors currently implemented in LinChemIn and how they are measured

Descriptor What is measured How it is measured

Number of Steps Overall size of the route Number of unique ChemicalEquation nodes in a monopartite 
reaction-only SynRoute

Longest Linear Sequence Length of the longest synthetic branch connecting the 
root with a starting material.

Number of unique ChemicalEquation nodes included in a 
monopartite reaction-only SynPath

Number of Branches Number of times a synthetic route departs from linearity Number of ChemicalEquation nodes whose ChemicalEquation 
“child” node is also a “child” of other ChemicalEquation nodes.

Convergence [51] Degree of branching of a route Ratio between the longest linear sequence and the number of 
steps in a monopartite reaction-only SynRoute.

Average Branching Factor Degree of branching of a route Ratio between the number of non-root nodes and the number 
of non-leaf nodes in a monopartite reaction-only SynRoute.

Fig. 6 Route descriptors. The value of structural descriptors calculated on representative graphs illustrates their discriminative capability
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date, chemical batches, etc.); this difference also echoes 
at the route level. For this reason, we prefer the term 
route equivalence to that of identity and link it to the 
level of detail each route holds. As described above, 
we arbitrarily align the SynGraph equality property 
to the route equivalence level that captures the single 
reactions’ reactants and products. This decision aligns 
with the formal treatment of retrosynthesis provided by 
Corey [52] and Hoffman [53] and ensures the best com-
patibility across CASP tools and NOC databases. The 
SynGraph (a value object) is thus a label for synthetic 
routes (entities). The other layers of route equivalence 
find their place in the data model but do not contrib-
ute to the route “label.” We build the route identity logic 
on the equality of the dictionaries of sets that constitute 
SynGraph. Two dictionaries are identical when they 
have the same key-value pairs. Since both keys and val-
ues are Molecule or ChemicalEquation instances (value 
objects), the SynGraph equivalence conveniently relies 
on standard python compassion functions.

Sub-/Super-Set We consider a synthetic route (SR2 in 
Fig. 7) to be a subset of another synthetic route (SR1) if 
it shares only a portion of the synthetic steps. The case 
where the target compound is shared is chemically rel-
evant, and it represents the case when upon truncating 
a route branch, an intermediate is sourced rather than 
synthesized. The sub-set assessment between routes effi-
ciently leverages the underlying dictionary data structure 
of SynGraph rather than relying on potentially expensive 
graph isomorphism algorithms.

Similarity The equivalence (and the identity) is a 
Boolean response obtained by an equality function. 
On the contrary, the similarity is a numerical response 

obtained by comparing the numerical properties of two 
objects. By extending the molecular similarity approach 
to routes, we could compare the numerical values of 
route descriptors or hash the descriptors into route fin-
gerprints and compare these instead. Unfortunately, the 
number of route descriptors is still limited, and their 
importance is still unclear. For this reason, we privi-
lege a definition of similarity that depends explicitly on 
the structure of the route and the chemical nature of its 
steps.

LinChemIn leverages the Graph Edit Distance (GED) 
to compute the similarity between synthetic routes. The 
GED between two graphs, G1 and G2, is the cost of the 
optimal edit path needed to transform G1 into a graph 
isomorphic to G2. The edit path may involve three types 
of operations, node insertion, node deletion, and node 
substitution, each associated with a specific ’cost.’ The 
GED is a graph arithmetic operation analogous to the 
Levenshtein distance between strings [43], and it does 
not take into direct consideration the chemical informa-
tion, which however is essential when comparing syn-
thetic routes. Genheden et  al. [54] introduced chemical 
information in the GED by enabling the GED cost func-
tions to include calculations of chemical similarity at 
molecular and reaction levels.

Inspired by this approach, we implemented a simple 
framework of route similarity relying on the NetworkX 
GED algorithm. The NetworkX GED functionality 
accepts a bespoke cost function for the node substitu-
tion through the parameter ’node_subst_cost’ of the 
’graph_edit_distance’ or ’optimized_graph_edit_distance’ 
functions. Here, the cost for deleting and inserting nodes 
was set to unity, as this is common in literature and cor-
responds to swapping a node with one of a different type 
(e.g., Molecule with a Chemical Equation). Otherwise, 
the cost for node substitution derives from fingerprint-
based molecular or reaction similarity, as implemented in 
RDKit. Since the LinChemIn module exposes the RDKit 
options, the user can select the most appropriate combi-
nation of reaction/molecular fingerprint and similarity 
metric. By restricting the application to rooted graphs 
(such as synthetic routes), the ’roots’ parameter of the 
GED function increases the computational efficiency of 
the algorithms.

To our knowledge, the only currently available open-
source package to compute the similarity between Syn-
thetic Routes is the one developed by Genheden et  al. 
[54] using the APTED algorithm [55, 56]. We pro-
vide a comparison between that approach and the one 
described here. However, it is worth noticing that the 
absence of a reference ground truth for synthetic routes 

Fig. 7 Sub- and Super-set. Depiction of the subset concept: the SR2 
on the right is a subset of SR1 on the left
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similarity does not allow one to determine whether one 
implementation is more accurate than the other. We 
took 100 routes among those used by Genheden et  al. 
[57, 58] and we computed the distance matrix with both 
the APTED and the NetworkX algorithms using the 
monopartite representation (chemical reaction only) of 
the routes. To make the results comparable, we used a 
set of parameters for the chemical similarity calculations 
analogous to the one used by Genheden et al.: difference 
fingerprints for chemical reactions, Morgan fingerprints 
for the molecules, and the Tanimoto algorithm for the 
similarity. Figure  8 shows a good correlation between 
the values computed with the two algorithms, although 
the APTED values are generally lower than those calcu-
lated with NetworkX, and the agreement decreases as the 
values increase, suggesting a variance accumulation. On 
the one hand, the difference in the absolute values could 
depend on the actual algorithm. Also, in the approach 
by Genheden et  al., some heuristics were imposed over 
the APTED algorithm to compensate for the fact that the 
routes are not ordered trees. On the other hand, small 
differences in the RDKit parameters used lead to differ-
ent values of chemical similarity and, in turn, to differ-
ent values of GED. Even though the absolute values are 
not identical, the overall Spearman correlation between 
the two sets of APTED and GED values is good, namely 
0.87. For what concerns computational efficiency, we 
compared the time required by the two algorithms to 
compute the distance matrix for an increasing number of 
routes. The distance matrix is an n× n symmetric matrix, 

where n is the number of routes in the considered set. As 
shown in Fig.  9, the algorithm by Genheden et  al. out-
performs the NetworkX GED: although both algorithms 
have an approximately linear dependency on the distance 
matrix dimensions, the slope for the APTED approach is 
about two orders of magnitude smaller than the one for 
the GED NetworkX. The performance of the NetworkX 
algorithm can be improved by using the parallelization 
option for calculating the distance matrix available in 
LinChemIn.

Clustering LinChemIn allows to cluster synthetic 
routes based on their similarity matrix. Currently, two 
clustering algorithms are available: Agglomerative Clus-
tering [54] as implemented in sklearn, and Hdbscan [59]. 
Since the agglomerative clustering algorithm needs the 
number of clusters as input, we followed the strategy of 
Genheden et al. [54] and implemented a process to opti-
mize this parameter based on the Silhouette score. The 
default linkage is single, but users can modify it accord-
ing to their needs. The ’clustering’ module has a factory 
structure to enable scientists to experiment with other 
clustering algorithms.

Results and discussion
In this section, we present some code snippets provid-
ing practical applications of LinChemIn and an example 
of how a user could implement the calculation of a cus-
tom metric. A high-level facade function wraps the main 
functionalities and simplifies their usage; a convenient 
helper supports interactive usage (e.g., via Jupyter) by 
exposing detailed information about available methods, 
parameters and their default values. Moreover, an appli-
cative case study is provided as Additional file 1.

Fig. 8 GED vs APTED correlation. Relation between the GED values 
computed with the NetworkX algorithm and with the APTED 
algorithm. The Spearman correlation between the two sets is 0.87

Fig. 9 GED vs APTED computational efficiency. Computational time 
needed to compute the distance matrix for an increasing number of 
routes with APTED and NetworkX algorithms
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Translation and conversion functions
Using LinChemIn, the users can handle the outputs of 
various CASP tools and transform the format and the 
data model of the predicted routes. The following code 
shows how to exploit the main facade function ’pro-
cesss_routes’ to handle the predictions of two different 
CASP tools, AiZynthFinder [17] and IBMRXN [18], pro-
vided as JSON files, translate them into a list of SynGraph 
instances, while also changing the type of graph; the 
routes are then written into a json file as lists of diction-
aries containing nodes and edges.

The input files are passed to the function alongside the 
names of the CASP tools that generated them through 
a dictionary of the form {’file_path’: ’casp_name’} By 
default, a json file containing the bipartite representation 
of the routes is created. However, it is possible to change 
the output file format to csv through the ’output_format’ 
argument and to select a different data model by specify-
ing the ’out_data_model’ parameter. The ’process_routes’ 
function also creates an output object, whose attributes 
store the outcomes of the calculation as object.

Routes operations
The ’process_routes’ function allows users to select one 
ore more operations to be performed on the routes, such 
as the calculating descriptors or clustering, by specifying 
the ’functionalities’ argument as a list of strings.

Routes Descriptors The code below shows how to com-
pute some descriptors of routes generated by different 
CASP tools. This is done by specifying the ’compute_
descriptors’ string in the ’functionalities’ list. By default 
all the available descriptors are calculated, however it 
is possible to specify the desired ones by passing their 
names to the ’descriptors’ parameter as a list of strings. 
The output is stored in the ’descriptors’ attribute of the 
output object as a pandas Dataframe, and it is also writ-
ten to the ’descriptors.csv’ file. Moreover, it is possible to 
use parallel computing by setting the argument ’paralleli-
zation’ to True and selecting the number of CPUs to be 
used through the ’n_cpu’ parameter.
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Routes Clustering
Another available functionality is the one for clustering 

the routes based on their GED. Once again, the facade 
function ’process_routes’ is the simplest way to access 
this functionality.

The input json files are passed to the function through 
a dictionary, as previsouly shown, while the functionality 
to be specified is ’clustering’. The clustering algorithm can 
be selected through the ’clustering_method’ argument; by 
default the Agglomerative Clustering algorithm is used 
when there are less than 15 routes in the input list and 
Hdbscan otherwise. The ’ged_method’ parameter deter-
mines which algorithm is used to compute the similarity 
matrix; by default, the standard GED algorithm provided 
by NetworkX is selected. It is also possible to specify the 
type of fingerprints and similarity method for both mol-
ecules and chemical reactions by setting the ’ged_params’ 
parameter.

Code customization
The module ’route_descriptors’ dedicated to the calcula-
tion of route descriptors has been implemented as a fac-
tory pattern and the functions computing the metrics are 
methods of subclasses of the abstract class Descriptor-
Calculator. Thus, to introduce a new metric, the first step 
is to define a new subclass, for example CustomMetric(De
scriptorCalculator), and its method ’compute_descriptor’. 
The latter should contain the code necessary to compute 
the new metric and return its value. As can be seen in 
the snippet below, there are no requirements for the type 
of input of the method and the developer can build it as 
they prefer.
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The second step is to add the new metric among the 
available ones. This can be done by adding a new key in 
the ’route_descriptors’ dictionary of the DescriptorCal-
culatorFactory class, which maps a string identifying a 
metric into the relative subclass; the string is then used 
to access the metrics through the descriptor_calculator 
function, as shown below.

The usage will then simply be:

Most of the modules in the package have the same fac-
tory structure as the ’route_descriptors’, so that the pro-
cedure to add new functionalities also in other parts of 
the code (format conversion, ged calculation and cluster-
ing) is the same as the one shown above.
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Conclusions
We introduced LinChemIn, an open-source python 
toolkit to work with synthetic routes generated by a vari-
ety of different sources, such as CASP tools and NOC. 
The toolkit enables interconversion between data formats 
and data models, as well as route-level analysis and oper-
ations. The Object-Oriented Design principles inspire 
the software architecture so that functions and modules 
are structured using appropriate architectural patterns to 
maximize code reusability and support code testing and 
refactoring. This also aims to minimize the effort needed 
to incorporate external contributions and to encourage 
open and collaborative software development. Moreover, 
the Domain-Driven Design principles were adopted to 
ensure a close match between the scientific domain (i.e., 
synthetic chemistry) and the structure and language of 
the code, fostering a constructive collaboration between 
technical and domain experts.

We presented the data models created to map concepts 
relevant for the synthetic chemistry domain, as well as 
the main functionalities that have been implemented so 
far. The current version of LinChemin represents the first 
step of a much bigger project, aiming to build an entire 
“ecosystem” of data models and functionalities to manip-
ulate and operate on synthetic routes, similar to what 
RDKit and other tools created for molecules.

In future releases of the code, we aim to include more 
sophisticated synthetic routes metrics integrating experi-
mental and modeled data, a multi-parameter score sys-
tem and a plug-in to directly connect LinChemIn to an 
NOC database.

Availability and requirements
LinChemIn is available at https://github.com/syn-
genta/linchemin Programming language: Python >=3.9 
License: MIT Other requirements:

• rdkit ≥ 2022.3
• rdchiral
• pydot
• networkx
• pandas
• numpy
• hdbscan
• scikit-learn
• joblib == 1.1.0

Scripts and data used to generate the plots are available 
at https:// github. com/ synge nta/ LinCh emIn_ publi catio ns 
Services accessible via API are available at https:// github. 
com/ synge nta/ linch emin_ servi ces

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s13321- 023- 00714-y.

Additional file 1: Fig S1. Molecular structure of Amenamevir. Fig 
S2. Example of identified subset. On the right, the route predicted by 
AiZynthFinder and on the left one of those generated by IBMRXN. The red 
circle highlights the portion of the IBM route identical to the route from 
AiZynthFinder. Fig S3. Distance matrix heatmap for the 64 routes in the 
considered set. Fig S4.Pair of routes that are not identical but for which 
the GED weighted with the chemical similarity is zero. Fig S5.Dendrogram 
for the clustering of the routes. Fig S6.Clustering visualization of the 
routes. The axes have been arbitrarily chosen as the distances of each 
route from the first, the 33rd and the 61st route in the distance matrix. 
Fig S7.Representative route for cluster 0. Fig S8.Most representative 
route for cluster 1. Fig S9.Most representative route for cluster 2. Fig 
S10.Most representative route for cluster 3. Fig S11.Most representative 
route for cluster 4. Fig S12.Most representative route for cluster 5. Fig 
S13.Most representative route for cluster -1 (route classified as "noise"). 
Table S1.Parameters used in computing the clustering of the routes. 
Table S2.Information about the routes’ clusters. For each cluster the 
number of routes, the average number of steps and the average number 
of branches are reported.
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