
Chen et al. Journal of Cheminformatics           (2023) 15:43  
https://doi.org/10.1186/s13321-023-00715-x

RESEARCH Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Journal of Cheminformatics

MetaRF: attention-based random forest 
for reaction yield prediction with a few trails
Kexin Chen1, Guangyong Chen2*, Junyou Li2, Yuansheng Huang3, Ercheng Wang2,3, Tingjun Hou3 and 
Pheng‑Ann Heng1,2 

Abstract 

Artificial intelligence has deeply revolutionized the field of medicinal chemistry with many impressive applications, 
but the success of these applications requires a massive amount of training samples with high‑quality annotations, 
which seriously limits the wide usage of data‑driven methods. In this paper, we focus on the reaction yield prediction 
problem, which assists chemists in selecting high‑yield reactions in a new chemical space only with a few experi‑
mental trials. To attack this challenge, we first put forth MetaRF, an attention‑based random forest model specially 
designed for the few‑shot yield prediction, where the attention weight of a random forest is automatically optimized 
by the meta‑learning framework and can be quickly adapted to predict the performance of new reagents while given 
a few additional samples. To improve the few‑shot learning performance, we further introduce a dimension‑reduction 
based sampling method to determine valuable samples to be experimentally tested and then learned. Our methodol‑
ogy is evaluated on three different datasets and acquires satisfactory performance on few‑shot prediction. In high‑
throughput experimentation (HTE) datasets, the average yield of our methodology’s top 10 high‑yield reactions is 
relatively close to the results of ideal yield selection.

Keywords Few‑shot, Yield prediction, Random forest, Meta‑learning

Introduction
Computer-aided synthesis planning (CASP)   [1], which 
aims to assist chemists in synthesizing new molecule 
compounds, has been rapidly transformed by artificial 
intelligence methods. Given the availability of large-scale 
reaction datasets, such as the United States Patent and 
Trademark Office (USPTO) [2], Reaxys [3], and SciFinder 
[4], CASP has become an increasingly popular topic in 
pharmaceutical discovery and organic chemistry with 
many impressive breakthroughs achieved [5]. The current 
CASP systems can be divided into two critical aspects, 

retrosynthetic planning and forward-reaction prediction 
[6]. Retrosynthetic planning, including template-based 
and template-free methods, can help generate possible 
synthetic routes of target molecules [7]. Forward-reac-
tion prediction is mainly used to evaluate the strategies 
proposed by retrosynthetic planning and increase the 
likelihood of experimental success [8]. However, with-
out considering reaction yield or reaction conditions, the 
synthetic strategies proposed in the CASP systems would 
be difficult to be implemented. It still remains a big chal-
lenge to predict the reaction yield. Due to the complexity 
of chemical experiments, few solid theories can help pre-
dict the reaction yield of a new chemical reaction given 
a specific condition, let alone optimize a reaction con-
dition, which heavily depends on expertise, knowledge, 
intuition, numerous practices, extensive literature read-
ing and even the luck of chemists [5, 9].
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Some pioneer efforts have been contributed to pre-
dict the reaction yield, and then find the optimal reac-
tion condition. Note that the optimal reaction selection 
problem can be naturally treated as a classical out-of-dis-
tribution (OOD) problem, since the optimal reaction is 
often not included in the training set. Ahneman et al. [10] 
reported that the random forest model achieved the best 
performance on OOD yield prediction due to its good 
generalization ability. Zuranski et  al. [11] reviewed and 
examined the OOD performance of different machine 
learning algorithms and reaction embedding techniques. 
Dong et  al. [12] used the XGBoost model and achieved 
satisfactory OOD performance. Zhu et  al. [13] demon-
strated that regression-based machine learning had great 
application potential in OOD yield prediction.

[R2–4] Studying the experimental results in previ-
ous work, we found that the predicting performance 
will deteriorate dramatically when there exists relatively 
large difference between training and testing data. For 
instance, in the experiments of [10, 14, 15], when the 
testing data do not contain any new reagents that are 
different from the training set (testing data is randomly 
selected from the whole dataset, and the rest of the data 
is used as training set), the R2 of random forest model 
is 0.92. When the testing data includes new additives 
that are not contained in the training data (testing data 
includes reactions with some additives, while training 
data includes reactions with other additives), the R2 of 
random forest model will drop to 0.19 in the worst case 
(the size of training set is almost same). This performance 
deterioration problem will be very common when using 
yield prediction model to explore new reaction chemi-
cal space, as the size of unknown chemical space to be 
predicted can be huge. Enlarging training set with huge 
amount of data may solve this performance deteriora-
tion problem, but it is not practical due to the high cost 
of experimental data and huge size of unknown chemical 
space.

In this paper, we follow a more relaxed but practical 
setting, where we are allowed to add a few data of new 
reagents or conditions into the training set. Considering 
the limited amount of reaction condition data, few-shot 
yield prediction has great potential in solving this prob-
lem. Few-shot yield prediction adds very few reaction 
samples(e.g. around five samples) from new reagents or 
conditions into training data. It is reasonable to hypoth-
esize that using data of a new reagent can improve pre-
diction results. Questions yet to be explored are how to 
use these new samples, which sample to select, and how 
much data from the new reagent leads to a satisfactory 
result.

To bridge this gap, we proposed MetaRF, an atten-
tion-based random forest model with a meta-learning 

technique applied to determine attention weights adap-
tively. The random forest has been proved as an ensem-
ble method with outstanding performance on datasets 
with small sample size [16, 17]. Since the size of reaction 
condition datasets are relatively small (e.g. 781 reactions 
in Buchwald-Hartwig electronic laboratory notebooks 
dataset [18]), random forest models have shown excellent 
performance on reaction yield prediction task and out-
performed other machine learning approaches [10, 11, 
19]. Few-shot learning techniques, such as meta-learning, 
have great potential in helping chemists explore the new 
reaction chemical space. However, the structure of ran-
dom forest is non-differential, which is hard to combine 
with the gradient-based techniques in few-shot learn-
ing. Thus random forest cannot be directly optimized by 
few-shot learning techniques. To solve this problem and 
achieve robust performance on new reagents, we design a 
attention-based random forest, adding attention weights 
to the random forest through a meta-learning frame-
work, Model Agnostic Meta-Learning (MAML) algo-
rithm [20]. The key idea of MAML is to train the model’s 
initial parameters so that the model can quickly adapt 
to a new task after the parameters have been updated 
through a few gradient steps computed with few-shot 
data from that new task [20]. MAML is applied to deter-
mine the attention weights of decision trees in the ran-
dom forest so that the model can quickly adapt to predict 
the performance of new reagents using few-shot training 
samples. In our method, Density Functional Theory [10] 
(DFT) descriptor is used to represent molecules due to 
its enhanced interpretability and feature generalization 
ability in yield prediction task.

Besides, the choice of few-shot training samples also 
has a significant influence on model performance. Few-
shot learning can have better-predicting performance if it 
is allowed to choose the training samples [21]. To tackle 
this challenge, we use Kennard-Stone (KS) algorithm [22] 
to select the most representative samples which cover the 
experimental space homogeneously. Since the KS algo-
rithm is based on Euclidean distance, which suffers from 
the curse of dimensionality [23], T-distributed stochastic 
neighbor embedding (TSNE) [24] is applied for unsuper-
vised nonlinear dimension reduction.

Our methodology is comprehensively evaluated on 
Buchwald Hartwig high-throughput experimentation 
(HTE) dataset [10], Buchwald-Hartwig electronic labo-
ratory notebooks (ELN) dataset [18], as well as Suzuki 
Miyaura HTE dataset [25]. In Buchwald-Hartwig HTE 
dataset, our method achieves R2=0.648 using 2.5% of the 
dataset as the training set. To reach a comparable result, 
the baseline method (random forest) needs to use at least 
20% of the dataset as the training set. With the help of 
5 additional samples, our method can effectively explore 
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unseen chemical space and select high-yield reactions. 
The 10 reactions, which are predicted to have the high-
est yield, reach an average yield of 93.7%, relatively close 
to the result of ideal yield selection (95.5%). In contrast, 
the top 10 high-yield reactions selected by the baseline 
method have an average yield of 86.3%, and the average 
yield of random selection is 52.1%.

The overview framework of this research is presented 
in Fig.  1. More details of methodology are in Section-
Methods. The methodology in this paper can predict the 
effect of a new reagent structure with few reaction data, 
and our sampling method can help chemists choose the 
order of experiments.

Methods
Reaction encoded with DFT
Density Functional Theory (DFT) descriptor is widely 
used in molecular embedding owing to its strong and 
effective feature generalization ability [26]. Previ-
ous research [11] shows that the DFT descriptor pro-
vides transferable chemical insight and sheds light on 
the underlying mechanism. Compared with molecu-
lar fingerprints and various learned representations, 
DFT descriptor is more closely associated with physi-
cal and chemical attributes of molecules, thus providing 
enhanced interpretability and mechanistic understand-
ings [27]. Using DFT descriptor, chemists can draw 
insights about the feature importance of each atom and 
each functional group. Previous work [19] on experi-
mental comparison also shows that DFT descriptor 
outperforms RDKit’s (a cheminformatics tool) chemi-
cal reaction fingerprints [28] and deep-learning RXNFP 

method [29] on yield prediction task. Thus we use DFT 
descriptors to represent molecules in our experiments.

We followed the DFT descriptor calculation in [10], 
which includes molecular, atomic, and vibrational prop-
erty descriptors. As in [10], we generate the numeri-
cal encoding of each reaction by concatenating the DFT 
descriptor of each chemical component. For example, the 
encoding of experiment i in Buchwald-Hartwig reaction 
is

where ⊕ denotes concatenation and xAryl halide , xPd catalyst , 
xAdditive , xBase denotes DFT descriptor vector of the cor-
responding Aryl halide, Pd catalyst, Additive and Base.

MetaRF: attention‑based random forest
Although the random forest is a robust algorithm in yield 
prediction, it remains a challenge to combine random 
forest with few-shot learning techniques in yield predic-
tion of new reagents or conditions. Meta-learning intro-
duces a model that can quickly adapt to new tasks with 
few additional samples. Model Agnostic Meta-Learning 
(MAML) framework [20] is a well-known meta-learning 
approach with both simplicity and effectiveness. How-
ever, the non-differential characteristic of the random 
forest makes it difficult to integrate with the gradient-
based meta-learning framework. To tackle this problem, 
we solve different attention weights to decision trees in 
the random forest using MAML framework, which con-
sists of a meta-training phase and a few-shot fine-tuning 
phase.

To explore the OOD predicting ability, the testing 
set and validation set must include at least one unseen 

(1)xi = xAryl halide ⊕ xPd catalyst ⊕ xAdditive ⊕ xBase

Reaction Encoding of  

Buchwald–Hartwig reaction 5-shot Fine-tuning

Meta-training

Yield prediction on 

Additives 6-23

Model adapts to new reagent

5 trails per additive

Random Forest

Random Forest

180 trails per additive

Selected samples Other samples

Reaction Encoding of  

Buchwald–Hartwig reaction

Additives 1-5

New Additive

Dimension-reduction 

based Sampling Method

Dimension-reduction 

based Sampling Method

Selected samples Other samples

Fig. 1 Workflow of this research that includes reaction encoding, dimension‑reduction based sampling method, and attention‑based random 
forest model. Buchwald‑Hartwig HTE dataset is taken as an example
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reagent in the training set. For example, among the 22 
different additives in Buchwald-Hartwig HTE dataset, 
4 additives are used for training, 1 additive is used for 
validation, and 17 for testing. In this way, the training set 
and validation set take 22.7% of the dataset. To further 
reduce the size of the training set, we use the sampling 
method in Section-Dimension-reduction based Sam-
pling Method. The random forest model is trained on the 
reduced training set.

In the random forest model, forest F  is a collection of 
decision trees:

where M is the total number of decision trees, 
� = {�1,�2, . . . �M} represents parameters in F  , which 
includes splitting variables and their splitting values. F  
is fitted by the training data L =

{

(x1, y1), · · ·(xN , yN )
}

 , 
where xi is the embedding of reaction i (defined in the 
former section) and yi represents the yield of the reaction.

The decision tree is a simple predictive model. It has 
the form

where J is the number of its leaves. The tree partitions the 
input space into J disjoint regions R1m, . . . ,RJm and pre-
dicts a constant value in each region. bjm is the value pre-
dicted in Rjm.

At each tree node, part of the variables are randomly 
selected as a subset. The splitting variable is chosen from 
this subset. This random selection of features at each 
node decreases the correlation between the trees in the 
forest and thus reduces the error rate of the random 
forest.

Concating the results of each decision tree hm(x) , we 
have

Then we assign attention weights to the results of each 
decision tree xi ′ . In this step the parameters inside these 
decision trees will not be changed. The attention weight 
of each decision tree will be updated through a meta-
training phase and a few-shot fine-tuning phase.

[R2–2]In the meta-training phase (illustrated in Fig. 2A), 
MAML provides a good initialization of parameters in 
deep networks. Assume θ is the parameters that need to 
be optimized and fθ is the parametrized function. In each 
training iteration, the updated θ is computed using one 
gradient descent update on task Ti , and the loss function is 

(2)F(�) = {hm(x;�m)},m = 1, 2, . . .M

(3)hm(x) =
∑J

j=1
bjmI(x ∈ Rjm)

(4)xi
′ =









h1(xi)
h2(xi)
...
hM(xi)









computed using the updated θ . Sampling task Ti includes 
two steps. An additive Si is randomly sampled from the 
training additive set. Then K reactions with additive Si are 
randomly sampled to form task Ti . More concretely, the 
loss function is defined as follows:

where L is the mean square error between the prediction 
fφ(xj

′) and true value yj in task Ti.

xj
′ represents the list of decision tree values in former 

section. As in Finn et al. [20], the regressor fθ is a neural 
network with 2 hidden layers of size 40 with ReLU non-
linearities. During training, Equation (5) is minimized 
using gradient descent algorithm Adam [30] to acquire 
the parameter θmeta−train.

[R2–2]In the few-shot fine-tuning phase (illustrated in 
Fig. 2B), the model is fine-tuned with a few samples from 
each testing additive. One iteration of gradient descent is 
performed to achieve θfew−shot suitable for the new task 
Ttest:

For each additive in the testing set, the fine-tune sam-
ple in Ttest is selected using dimension-reduction based 

(5)min
θ

∑

Ti∼T

LTi(fθ−α∇θLTi (fθ )
)

(6)LTi(fφ) =
∑

(xj ′,yj)∼Ti

∥

∥fφ(xj
′)− yj

∥

∥

2

2

(7)
θfew−shot = θmeta−train − α∇θmeta−trainLTtest (fθmeta−train)

Fig. 2 A Meta‑training Phase. B Few‑shot fine‑tuning Phase. C 
Testing Phase
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sampling method in Section-Dimension-reduction based 
Sampling Method. The number of fine-tune samples is 
altered in our experiments.

Dimension‑reduction based sampling method
For the few-shot learning problem, the few-shot train-
ing samples have a significant influence on the training 
performance. If we preferentially select the most repre-
sentative samples as training samples, the performance of 
few-shot learning can be dramatically improved [31]. We 
use Kennard-Stone (KS) algorithm [22] to select the most 
representative samples by selecting a new sample that has 
relatively large distances from previously selected sam-
ples. However, the KS algorithm uses Euclidean distance 
to represent the distances between samples, which is 
less effective in the high-dimensional reaction data [32]. 
Thus we propose to add T-distributed stochastic neigh-
bor embedding (TSNE) [24] before the KS algorithm to 
reduce the dimension of reaction data. TSNE is a widely 
used unsupervised nonlinear dimension reduction tech-
nique owing to its advantage in capturing local data char-
acteristics and revealing subtle data structures [24, 33, 
34].

Figure 3 use the “Swiss roll” dataset as an illustrating 
example for the effect of nonlinear dimension reduction 
method [35]. Figure  3A shows that Euclidean distance 
in the high-dimensional input space may not reflect 
the true low-dimensional geometry of the manifold. 
Figure  3B show the sampling result of KS algorithm 
without nonlinear dimension reduction method. KS 
algorithm is based on Euclidean distance and does not 
sample the central area. Figure  3C show the sampling 
result of KS algorithm when the dimension of data is 
reduced to two. KS algorithm will sample the central 
area after nonlinear dimension reduction. This example 
shows that nonlinear dimension reduction method can 
help our sampling method explore the intrinsic geom-
etry of the data.

Given a set of high-dimensional reaction embed-
ding data x1, x2, . . . , xN  , TSNE will map the data to low 
dimension, while retaining the significant structure of 
the original data [24, 36]. It is based on probabilistic 
modeling of data points in the original space and the 
projection space [37].

The TSNE algorithm is based on the SNE frame-
work [38], which converts high-dimensional Euclidean 
distances into conditional probabilities, representing 
similarities for every data pair. Typically the gradient 
descent technique is used for optimization.

After the high-dimensional reaction embedding data 
x1, x2, . . . , xN  is mapped to the low-dimensional data 
z1, z2, . . . , zN  , Kennard-Stone (KS) algorithm is used to 
select the few-shot training samples in low-dimensional 
space. KS algorithm is a well-known method to select 
the most representative samples from the whole dataset 
[22, 39, 40]. The algorithm aims at choosing a subset of 
samples that cover the experimental space homogene-
ously [41]. First, the Euclidean distance between each 
pair of samples is calculated, and a pair of samples with 
the largest distance is chosen. Then the following sam-
ples are selected sequentially based on the distances 
to the already selected samples. The remaining sample 
with the largest distances is chosen and added to the 
subset. This procedure is repeated until a certain num-
ber of samples are selected.

From a chemical perspective, our dimension-reduc-
tion based sampling method can explore the intrin-
sic geometry of chemical structure and properties 
contained in the DFT descriptors. KS algorithm can 
distinguish the discrepancies and select representa-
tive samples with very different chemical structures 
and properties, which may shed light on the design of 
chemical experiments.

Fig. 3 Example of nonlinear dimension reduction on the “Swiss roll” dataset. A Euclidean distance (dashed line) in the high‑dimensional input 
space may not reflect the true low‑dimensional geometry of the manifold (Solid line). B Using KS algorithm to select the most representative 
samples on the high‑dimensional input space, samples in the central area (dashed square) will not be selected. C Using KS algorithm after the 
nonlinear dimension reduction, samples in the the central area (dashed square) will be selected
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Results
Performance benchmarking
We evaluate our method with Buchwald-Hartwig elec-
tronic laboratory notebooks (ELN) dataset [18], Buch-
wald-Hartwig HTE dataset [10] and Suzuki-Miyaura 
HTE dataset [25]. Buchwald-Hartwig HTE dataset is 
the HTE results of the Pd-catalysed Buchwald-Hartwig 
cross-coupling reaction. This dataset consists of 3955 
reactions as shown in Fig. 4A, and the reaction space is 
the combination of 15 aryl halides, 4 Buchwald ligands, 
3 bases, and 22 isoxazole additives. Buchwald-Hartwig 
ELN dataset disclosed a real-world dataset from 

electronic laboratory notebooks (ELN) at AstraZeneca. 
The dataset covers a large reaction space. 340 aryl halides, 
260 amines, 24 ligands, 15 bases, and 15 solvents should 
have covered 4.7 ∗ 108 possible combinations. While in 
fact, the dataset only includes 781 reactions in Fig.  4B, 
resulting in a rather sparse coverage. HTE dataset greatly 
differs from the ELN dataset in the coverage of chemical 
space and characteristics. HTE dataset covers the entire 
search space of reaction condition while ELN dataset has 
a sparse coverage of wider chemical space. We also evalu-
ate our methodology on Suzuki-Miyaura HTE dataset 
[25] to show that our methodology can be easily adapted 

Fig. 4 A Buchwald‑Hartwig HTE dataset. B Buchwald‑Hartwig ELN dataset. C Suzuki‑Miyaura HTE dataset



Page 7 of 12Chen et al. Journal of Cheminformatics           (2023) 15:43  

to other reactions. Suzuki-Miyaura reaction means that 
aryl halide reacts with an organoboron compound to 
form a new C-C bond in the presence of Pd catalyst, 
ligand, and base. The mechanism of the Suzuki-Miyaura 
reaction is close to the Buchwald-Hartwig reaction, they 
all include an oxidative addition step and reductive elimi-
nation step in the catalytic cycle mechanism. The dataset 
includes 15 pairs of electrophiles and nucleophiles(R1a−d 
with R2a−c and R1e−g with R2d ), 12 ligands, 8 bases, and 
4 solvents, resulting in 5760 reactions in Fig. 4C. Experi-
ments show that our methodology possesses outstanding 
performance on few-shot yield prediction.

Tables 1,2,3 shows the performance comparision results 
in Buchwald-Hartwig HTE dataset, Suzuki-Miyaura HTE 
dataset and Buchwald-Hartwig ELN dataset, respectively. 
For a fair comparison, we enlarge the training set of other 
method with the additional fine-tune samples to guaran-
tee that our method shares the same quantity of train-
ing data as other method. Our method has outstanding 
performance for few-shot yield prediction task in all 
three datasets. For example, in Buchwald-Hartwig HTE 
dataset, our method reaches R2=0.7738 while the R2 of 
the random forest [10, 16], DRFP [42], RXNFP [43, 44], 
neural network [45], support vector machine [46], linear 
model [47] and GemNet [48] are 0.6538, 0.6470, 0.0032, 
0.6179, 0.5322, 0.5928, 0.5245, respectively. Among other 
methods, random forest has relatively good performance, 
which is consistent with results in previous research [10, 
11, 19]. Thus random forest is chosen as the baseline 
method in the following analysis.

Experiments show that our method has satisfying 
performance when the size of training data is relatively 
small. As shown in Fig.  5, our model outperforms the 
baseline method in all three datasets when the size of 
training data increases gradually. Experiments show 
that our method possesses enhanced predictive power 
with markedly fewer training samples, which means that 
our method is an effective tool in few-shot yield predic-
tion problem. For example, when trained on only 2.5% of 

Buchwald-Hartwig HTE data, MetaRF acquires compa-
rable results with the baseline method using 20% of the 
same reaction data. 2.5% of the Buchwald-Hartwig HTE 
data includes only 90 reactions. Using 2.5% of the data 
as the training set, our method reaches R2=0.648 while 
the R2 of the baseline method is 0.571. When the train-
ing set increases to 20% of the data, the R2 of the baseline 
method is only 0.654. This comparison is similar to the 
results on Buchwald-Hartwig ELN and Suzuki-Miyaura 
HTE datasets. These results indicate that our method has 
great application potential in few-shot yield prediction. 
In our experiments, 80 training iterations are performed, 
and we use one gradient update with K = 40 examples 
and learning rate α = 0.0001 . More details about the 
splitting of the training set, validation set, and testing 
set are in Section -MetaRF: Attention-based Random 
Forest..

Then we test our method on the ability to search for 
reactions with the highest yield. This ability is valu-
able because it helps chemists explore unseen chemi-
cal space and select high-yield reactions [49, 50]. We 
train our models with a relatively small training set 
(2.5% of the Buchwald-Hartwig HTE data, 5% of the 
Suzuki-Miyaura HTE data, 50% of the Buchwald-
Hartwig ELN data) and use them to predict the yields 
of the remaining reactions. The top 10 high-yield reac-
tions are selected according to the prediction results. 
Then we calculate the average and standard deviation 
of 10 high-yield reactions. Figure 6 presents the average 
and standard deviation of the yields for the top 10 reac-
tions predicted to have the highest yields in the three 
datasets. Besides our method and baseline method, 
the result of ideal reaction selection and random reac-
tion selection are presented. In all three datasets, our 
method has a higher average yield and lower standard 
deviation than baseline selection and random selection. 
For example, in the Buchwald-Hartwig HTE dataset, 
using MetaRF trained on 2.5% of the dataset, the pre-
dicted top 10 high-yield reactions from the remaining 

Fig. 5 Comparison of test set performance of MetaRF and baseline on three datasets. R2 performance increases gradually as the size of training 
data increases. MetaRF outperforms the baseline with markedly fewer training samples
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dataset have an average yield of 93.7±4.1%, compared 
to the ideal selection of 95.5±1.8%. In contrast, base-
line selection has an average yield of 86.3±5.4% and 
random selection has an average yield of 52.1±24.9%. 
The selection works similarly for the Buchwald-Hartwig 
ELN and Suzuki-Miyaura HTE dataset.

Ablation study
To validate the effects of each component in MetaRF, 
we conduct an ablation study on the Buchwald-Hartwig 
HTE dataset, with 20% of the data as the training set. 
The number of fine-tune samples is five in the abla-
tion study. For the baseline method (random forest), 
five fine-tune samples are randomly selected and then 
added to the training set.

The first ablation replaces the dimension-reduction 
based sampling with random sampling. The random 
sampling experiment is repeated 10 times, and average 
performance is recorded. The second ablation removes 
the random forest structure, using MAML to replace 
the MetaRF framework. The third ablation keeps the 
random forest structure and uses a standard pretrain-
ing and fine-tuning framework in transfer learning [20] 
to replace MAML.

Table  4 presents the comparison results of predicting 
performance in terms of R2 and RMSE. When dimen-
sion-reduction based sampling is replaced with random 
sampling, the R2 decreases from 0.7738 to 0.7003, dem-
onstrating the effectiveness of the dimension-reduction 
based sampling method. The results of the ablation study 
also clearly demonstrate the importance of random for-
est structure in MetaRF. Removing random forest causes 
R2 performance to decrease from 0.7738 to 0.3730, which 
shows that random forest can tackle the overfitting prob-
lem in few-shot prediction. Regarding the results of the 
third ablation test, R2 decreases by 10% when MAML is 
replaced with transfer learning, and transfer learning has 
minor improvement compared to the baseline.

Analysis on fine‑tune sample number
The time-consuming chemical experiments raise the 
cost of new reaction yield data. Thus the few-shot set-
ting and the specific number of fine-tune samples is very 
important in reducing the cost of empirical screening. 
We analyze the effect of adjusting the number of fine-
tune samples on the Buchwald-Hartwig HTE dataset 
[10], using 20% of the data as the training set. The few-
shot yield predicting ability is tested by root mean square 
error (RMSE) and R2 performance.

When the number of fine-tune samples is 5, we 
obtain an 18.82% relative improvement in the R2 per-
formance and an 19.25% relative improvement in the 
RMSE performance. Our method reaches R2=0.7738 
and RMSE=12.6401, while the R2 and RMSE of baseline 
method (random forest) is 0.6538 and 15.6535, respec-
tively. More evaluation results of relative improvement 
are listed in Table 5. When the number of fine-tune sam-
ples varies, the RMSE relative improvement is still around 
20%, which demonstrates the stable and satisfactory per-
formance of MetaRF on few-shot yield prediction.

Predicting performance on each additive
For Buchwald-Hartwig HTE dataset, when using 20% of 
the data as the training set, the predicting performance of 
each additive in the testing set is shown in Fig. 7. In this 
experiment, the number of fine-tune samples is 5. For 
each additive, the predicted yield and observed yield are 
presented in a subplot. From Fig. 7, we can see that our 
model has satisfactory performance on new additives in 
the testing set, which shows that our model can quickly 
adapt with only 5 data points.

Interpretability analysis
For interpretability analysis, we visualize the most 
important DFT (Density Functional Theory) descrip-
tors in the model trained on different sizes of Buch-
wald-Hartwig HTE data in Fig.  8. One measure of 

Fig. 6 Average and standard deviation of the yield for the top 10 reactions predicted to have the highest yields
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feature importance is the decrease in the model’s R2 
performance when the values of that feature are ran-
domly shuffled, and the model is retrained [10]. The 
feature importance results of models trained on differ-
ent sizes of data have a slight difference. Generally, the 
most important descriptors are aryl halide’s *C3 nuclear 
magnetic resonance (NMR) shift (the asterisk indicates 
a shared atom), aryl halide’s vibration frequency, addi-
tive’s *C3 NMR shift and additive’s *C3, *O1, *C4 elec-
trostatic charges.

Discussion
The advantage of our method is that it can quickly 
adapt to predict the yield performance of new reagents 
while few additional samples are given. The underly-
ing mechanism of this advantage is the adaption of the 
DFT feature importance. When MetaRF is fine-tuned 
with few additional samples, the importance of each 
decision tree model will change accordingly. Different 
tree models represent different distribution of DFT fea-
ture importance. Thus our model can change the DFT 

Fig. 7 The prediction results on different additives. For each additive in the testing set, the predicted yield and observed yield is presented in a 
subplot. The title of each subplot is the index number of the additive
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Fig. 8 Most important DFT descriptors of the model trained on different sizes of data. Feature importance is determined by the decrease in R2 
upon reshuffling the values of the feature. * indicates a shared atom. E indicates energy; HOMO indicates the highest occupied molecular orbital; V 
indicates vibration

Table 1 Method comparison results on Buchwald‑Hartwig HTE 
dataset

The bold values represent the performance of the proposed method

RMSE ↓ R
2 ↑ MAE ↓

MetaRF 12.6401 0.7738 8.6850
Random forest [10, 16] 15.6535 0.6538 11.1477

DRFP [42] 15.7849 0.6470 10.9302

RXNFP [43, 44] 27.4131 0.0032 23.8348

Neural network [45] 16.4294 0.6179 12.4626

Support vector machine [46] 18.1927 0.5322 14.2696

Linear model [47] 16.9791 0.5928 13.3449

GemNet [48] 18.6455 0.5245 14.0498

Table 2 Method comparison results on Suzuki‑Miyaura HTE 
dataset

The bold values represent the performance of the proposed method

RMSE ↓ R
2 ↑ MAE ↓

MetaRF 18.3102 0.6350 13.8344
Random forest [10, 16] 20.9239 0.5494 15.7090

DRFP [42] 21.0017 0.5158 15.1841

RXNFP [43, 44] 30.8297 0.0083 27.2992

Neural network [45] 23.3947 0.3961 19.8382

Support vector machine [46] 23.6997 0.3794 19.6562

Linear model [47] 24.3001 0.3480 19.9089

GemNet [48] 26.4485 0.2642 22.2841

Table 3 Method comparision results on Buchwald‑Hartwig ELN 
dataset

The bold values represent the performance of the proposed method

RMSE ↓ R
2 ↑ MAE ↓

MetaRF 22.2252 0.3782 17.4771
Random forest [10, 16] 26.0472 0.2511 20.8230

Neural network [45] 30.4522 ‑0.1197 23.2965

Support vector machine [46] 30.2837 ‑0.1283 23.0017

GemNet [48] 26.7396 0.1732 21.1857

YieldGNN [18] / 0.1180 22.5000

Table 4 The results of ablation study(in Buchwald‑Hartwig HTE 
dataset)

The bold values represent the performance of the proposed method
a The first ablation test, replacing the dimension-reduction based sampling with 
random sampling
b The second ablation test, removing the random forest structure
c The third ablation test, replacing MAML with transfer learning framework

RMSE ↓ R
2 ↑

Baseline 15.6535 0.6538

MetaRF + Dimension‑reduction 12.6401 0.7738
MetaRF + Randoma 14.5454 0.7003

MAML + Dimension‑reductionb 21.0006 0.3730

MAML + Random 21.0204 0.3753

Transfer learning + Dimension‑reductionc 14.4575 0.7038

Transfer learning + Random 15.2232 0.6705
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feature importance according to few reaction samples 
from the new reagent.

A limitation of our method is that, it relies on histori-
cal data of the same reaction to train the model. Accord-
ing to the experimental results in Section-Performance 
Benchmarking, the training set should contain about 90 
samples from the same reaction. In the actual usage, the 
reaction yield data from chemical literature may acts as 
training set. Considering the huge amount of reaction 
types, a possible future direction is cross-reaction predic-
tion, which use some reaction data to predict the yield of 
another type of chemical reaction.

Conclusions
This paper proposes an attention-based random forest 
model to solve the few-shot yield prediction problem. 
The workflow includes using the DFT feature to encode 
chemical reactions and using the meta-learning frame-
work to decide the attention weights of random forest. 
In the fine-tuning phase, we only need several samples to 
acquire satisfactory performance on new reagents. Our 
method obtains about 20% lower RMSE when the fine-
tune sample varies from 4 to 10. The effective few-shot 
prediction demonstrates that our method can predict 
the effect of a new reactant structure with few additional 
data. The methodology in this paper brings benefits to 
future work on few-shot yield prediction.
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