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Abstract 

High throughput screening (HTS) is widely used in drug discovery and chemical biology to identify and characterize 
agents having pharmacologic properties often by evaluation of large chemical libraries. Standard HTS data can be 
simply plotted as an x–y graph usually represented as % activity of a compound tested at a single concentration vs 
compound ID, whereas quantitative HTS (qHTS) data incorporates a third axis represented by concentration. By virtue 
of the additional data points arising from the compound titration and the incorporation of logistic fit parameters that 
define the concentration–response curve, such as EC50 and Hill slope, qHTS data has been challenging to display 
on a single graph. Here we provide a flexible solution to the rapid plotting of complete qHTS data sets to produce a 
3-axis plot we call qHTS Waterfall Plots. The software described here can be generally applied to any 3-axis dataset 
and is available as both an R package and an R shiny application.
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Graphical Abstract

Introduction
Quantitative high-throughput screening (qHTS) was 
established over a decade ago as an approach to enable 
large-scale pharmacological analysis of chemical librar-
ies [1]. The method, an advance over the long-standing 
practice of testing compound libraries at a single con-
centration, was made possible by developments in 
assay technology, instrumentation, microtiter plate 
designs, and both commoditization and academic inter-
est in chemical library generation [2–5]. qHTS has been 
applied to enzymes, receptors, and biological processes 
using diverse libraries [6–8]. For example, the National 
Center for Advancing Translational Sciences (NCATS), 
within the National Institutes of Health (NIH), has used 
qHTS in various aspects of drug and chemical probe 
discovery, including the evaluation of natural product 
extracts, drug repurposing, and drug combination testing 
[9–11].

The large-scale acquisition of concentration–response 
curve (CRC) profiles has allowed a detailed study of 
the extent and structure–activity relationships (SAR) of 
chemotypes responsible for several confounding artifacts 

encountered in drug development [12–14]. The tech-
nique has also formed the basis of library toxicological 
profiling used in programs developing toxicity assess-
ment methods [15, 16]. Furthermore, by exploring a 
chemical library spanning 4–5 orders of magnitude in 
concentration (e.g., nM to μM) relatively low potency 
starting points can be identified by including test concen-
trations far higher than previously considered [6].

In addition to establishing a nascent library-wide SAR 
among the chemotypes in each library for the enzyme 
or phenotype under study, qHTS can provide insights 
related to a compound’s pharmacology. For example, in 
the work of Kinder et  al., the CRC-derived Hill slopes 
from the qHTS of 4500 drugs and investigational agents 
could be correlated with graded hyperbolic vs. ultrasensi-
tive “switch-like” responses revealing a mechanistic basis 
for activity such as cooperativity or signal amplification 
(Fig. 1A–C) [8].

Nevertheless, despite the increased use of this tech-
nique, delineating qHTS data remains challenging 
compared to the pairwise or two-axis graph types 
representing standard HTS data usually plotted as % 
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activity vs compound ID [17]. While large-scale and 
efficient two-dimensional analysis for qHTS screen-
ing data has been developed, there remains a lack of 
3-dimensional visualization tools for such libraries 
[18–20]. In addition to providing a high-level overview 
of a qHTS experiment, three-dimensional graphs can 
allow the observation of patterns from thousands of 
CRCs not visible in two dimensions. For example, the 
output can be arranged and coded to highlight specific 
chemical and pharmacological properties embodied by 
the data, such as overall response efficacy (Fig. 1D) as 
depicted in waterfall plot formats [21–24] or related by 
structural chemotypes within the library (Fig. 1E).

While the usage of qHTS has been increasing, few 
software packages can process the data to create three-
dimensional graphs straightforwardly for chemical 
libraries on the order of 10 to 100  s of thousands of 
members. With this in mind, we have developed an R 
package and associated application that creates three-
dimensional graphs more efficiently than what is cur-
rently available in the market.

Implementation
Development
The 3D qHTS Waterfall Plot has been implemented in 
the R statistical programming language, using RStu-
dio, and is developed as an R package to ease instal-
lation and use within developed R scripts and data 
analysis pipelines. The qHTSWaterfall package is also 
implemented as an R Shiny application so that in addi-
tion to R command line use, the application can be 
run through a user interface. The implementation can 
be installed on a user’s machine or hosted on a central 
Shiny Server instance as shown in Fig. 2.

Results/discussion
Installation and modes of operation
The qHTSWaterfall package is implemented as an R 
package and as an R shiny application, having a user 
interface. Instructions for installation of the package 
can be found at our GitHub site in the readme section 
[25] and are included in Additional file 1: Fig. S1.

Fig. 1 Various outputs for 3D visualization algorithm. A–C Multiple graph options obtained using a single readout dataset covering 5191 
compounds. A Active compounds are displayed using data points and the corresponding concentration response curve (CRC) fit, while inactive 
compound data responses are plotted as gray dots only. Compounds are randomly ordered in this representation. B Data and CRCs are grouped 
according to qHTS curve classification (CC) criteria which take into consideration the nature of the pharmacological response as described in ref. 
[1]. Inactive responses are not shown. For A and B, colors correspond to CC criteria ranging from a fully efficacious sigmoidal response (red curve) to 
partial or incomplete responses (yellow, green, and blue) described in detail in ref. [1]. C Illustration of data demonstrating the ability to rotate the 
view to better appreciate differences in potency. Here, white curves are a combination of the yellow, green, and blue curves represented in A and B. 
D Gain-of-signal (blue), loss-of-signal (red) and inactive compound (grey dots) outputs plotted from a 51,441 compound qHTS assessing the library 
effect on the enzymatic activity of pyruvate kinase. E Chemotypes a, c and e are associated with loss-of-signal response output, while chemotypes 
d and e display a gain-of-signal response as discussed in Martinez et al. [26]. Data for graphs was obtained from the following PubChem AIDs, for 
plots in A–C: 1,347,405, 1,347,407 and 1,347,411; for plot D: 361; for plot E: 1,508,643
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Starting the application using runQHTSWaterfallApp() 
in R will bring up a window with the application interface 
in the default application window. A button at the top of 
the interface allows users to move the application into an 
internet browser window, if desired. Clicking on the but-
ton labeled Plot Our Sample Data will access an included 

sample data set and plot the results. Note that the mouse 
scroller wheel or the zoom buttons in the upper right 
will allow one to zoom in and out. Other controls within 
the upper right context menu on the view, supported by 
the plotly package in R, allow one to pan and rotate the 
waterfall plot as well as capture the plot to a png image 

Fig. 2 qHTSWaterfall code repository and operating environments

Fig. 3 qHTSWaterfall interface showing a plot of sample data, hiding inactive results. The green and blue curves are individual coincidence reporter 
responses
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file [26]. Figure  3 shows the view of the qHTSWaterfall 
application user interface with the included sample data 
plotted, in this case having coincident reporter readouts 
of firefly luciferase (FLuc) and NanoLuc luciferase (NLuc) 
[26]. The plot controls are intuitive to use and include 
options to hide or show the various readouts, set colors 
for readout points and curve fit data, axis formatting, line 
weight, point sizes, and plot aspect ratio and background 
colors.

Input file format
Standard input file formats have been developed and 
sample files are available to plot and view within the 
application. These sample files can serve as templates for 
users’ input data. The software accepts comma-separated 
text files (.csv) or Microsoft Excel (.xlsx) files. The data 
within the files can be formatted in one of two forms. 
One format is specific to NCATS qHTS export format, 
however, most users will make use of the more generic 
format for general use, which is described in some detail 
here. A link in the upper left of the application will deliver 
an xlsx format sample input file with a color-coded 
header and notes on specific fields to include in the data. 
The header of this file, shown in Fig. 4, illustrates the left 
(A) and right (B) columns of data, respectively.

The upper left of the file, referring to Fig. 4A, has the 
keyword Format and the next cell to the right has the file 
format value. The value should typically be ‘generic_qhts’ 
unless working with NCATS format qHTS data in which 
this field will be ‘ncats_qhts’ and the format would be spe-
cific to NCATS qHTS format. The left-most column, Fit_
Output, has values of 1 or 0, indicating if that compound 
response should be represented as a dose–response curve 

fit, or just by the data points that define that curve. Often 
users tend to only render full curves for active responses, 
those passing some level of curation, or responses that 
are of particular importance to show, such as results 
associated with a particular chemotype or readout type. 
Examples of this include a coincidence reporter response 
(Fig.  3) where the two orthogonal reporter responses 
(FLuc or NLuc) are shown in green or blue, respectively 
[27]. Another example would be a gain-of-signal vs 
loss-of-signal as shown in Fig.  1D. Note that the order 
of compounds and associated response data will be pre-
served in the generated plot. This means that users can 
group compounds and responses based on activity crite-
ria, readout type, chemical structure, or any other user-
defined criteria (e.g., Fig. 1A vs B). The Comp_ID column 
holds a user-supplied compound ID. Note that these 
IDs need not be unique, each compound can have mul-
tiple responses according to the specific Readout being 
reported on a particular row. The Readout column con-
tains a descriptive name indicating the kind of response 
that is being reported on. In some assays, as shown, each 
compound may have different kinds of readout or even 
assay types. The readout column allows a compound to 
be represented more than once, to report on other meas-
ures of compound activity. In the sample file, a coinci-
dence reporter assay reports on FLuc and NLuc outputs 
for each compound. Note here that within the applica-
tion or R package, different Readout types can be shown 
or hidden, and point and line colors can be customized.

The curve fit parameter columns consist of those 
shown in light blue on the second row of Fig.  4A, 
labeled Log_AC50_M, S_0, S_Inf, and Hill_Slope. These 
are the standard curve fit parameters associated with a 

Fig. 4 File format overview. A Top row format tags which include compound annotations in column 5 (e.g., SMILES), and concentration–response 
curve parameters (Log  AC50,  S0,  Sinf, and Hill slope) in columns 6–9. B Example data columns, here an example of an 11-point titration with log base 
10 transformed molar concentrations in the upper row, aligned with normalized data below
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four-parameter concentration–response curve fit against 
the Hill Equation. Please see Additional file 2: Fig. S2 for 
the Hill Equation and explanation of the 4 associated 
parameters shown here.

The titration concentrations are captured in the input 
file, in the first row, just above the response values. Note 
that in Fig.  4A upper right, we have a data tag, Log_
Conc_M, to indicate the first column prior to the set of 
concentrations to read for data display. In Fig.  4B, we 
show the primary data columns of the file. Each column 
has a specific log base 10 transformed molar concentra-
tion value and below that a data header labeled from 
Data0 to Data10, in this case. The input file can have any 
number of data columns but should use this naming con-
vention to label starting at Data0.

Note that the 3D waterfall plot is constructed based 
on the order of compounds and their responses in the 
input file. This permits users to sort compounds based on 
a variety of criteria prior to plotting. Compound order-
ing can reflect structure-based clusters, response metrics 
such as potency and efficacy, readout type, or any com-
bination of compound or compound response attrib-
utes. As an illustration of compound pre-sorting, Fig. 1B 
features compound responses ordered and colored by 
NCATS curve class, a criteria-based response-curve clas-
sification system, and then ordered within each curve 
class by decreasing AC50.

Extra columns may be present in the file. In this exam-
ple, we include a compound name and smiles structure 
string. Extra columns can be appended. The current 
restrictions are that the first two cells in the upper left 
should include the Format tag and the format value, and 
the data columns (Data0-DataN) and associated concen-
trations should be in a block of consecutive/contiguous 
columns as shown in Fig. 4B.

Conclusions
Obtaining a comprehensive view of bioactivity from 
a qHTS is highly informative from several perspec-
tives. 3D data visualization can provide a high-level 
pharmacological assessment of overall library-assay 
activity allowing, for example, comparative analysis of 
assay activity vs library or vice versa. [1, 7, 8, 10, 12, 
13, 27–29] Further, by using specified sorting of com-
pound similarity vs AC50, hill slope, max response, etc. 
highlighted information such as pharmacologic mecha-
nism or chemical tractability can be conveyed to reveal 
actionable insights. For example, Fig.  1E shows a plot 
from a qHTS follow-up where five firefly enzyme ligand 
chemotypes (a-e) are shown to have varying cellular 
consequences effects on firefly luciferase reporter out-
put (PubChem AID = 1508643) [27].

Producing overview plots for large screening cam-
paigns had previously been a laborious process, using 
commercial software that were not optimally designed 
to handle this specific data and visualization type. The 
qHTSWaterfall application we present in this paper 
has allowed our lab to graph 3-dimensional qHTS data 
for various assays in a simple, and time-efficient man-
ner. Generating overview presentations of qHTS data is 
roughly analogous to omics heatmaps in showing activ-
ity patterns over large data sets. To our knowledge, a 
free, open-source qHTS Waterfall plot software has not 
been previously available.

In addition, this program offers a facile means to gen-
erate a high-level analysis of the ever-increasing qHTS 
data appearing in repositories such as PubChem for 
anyone interested in studying a large and varied chemi-
cal biology data set. At the time this paper was written, 
there were over 15  k HTS data sets in PubChem [30]. 
While qHTS data can be represented by a 3-axis plot, 
the information content includes more than 3 param-
eters. For example, in addition to structural relation-
ships among active compounds, each CRC contains 
pharmacologic parameters including an EC50 equiva-
lent, a measure of potency, the hill slope, a mechanis-
tic indicator, as well as the efficacy or magnitude of the 
response.

Our program allows biologists, chemists, informa-
ticians, and the public to create 3-dimensional qHTS 
graphs clustered according to their preference as well 
as color aesthetics.

The user interface featured in the Shiny application 
helps users that are not proficient in R to produce plots, 
while others that wish to integrate the qHTSWater-
fall plot into an existing R analysis workflow, can easily 
do so. 3-dimensional qHTS graphing allows researchers 
a general sense of trends, difficult to observe in a two-
dimensional graphing format, relating to the interaction 
of chemical libraries with biological assays. Furthermore, 
this visualization can illustrate the scale of noise and 
artifacts between reporters and assays. In addition, our 
program allows scientists, regardless of previous pro-
gramming experience, to create 3-dimensional qHTS 
data plots in an effective and timely manner. Researchers 
have the option to present data in clusters by the mecha-
nism of action, activity, inhibition, or compound ID to 
organize data repositories such as PubChem [30, 31].
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The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s13321- 023- 00717-9.

Additional file 1: Fig. S1. Instructions for installation and starting the 
qHTSWaterfall Application. The package devtools is required for installation 
from github.com and can be installed if needed.
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Additional file 2: Fig. S2. A sigmoidal concentration response curve. The 
4 parameters contained in the input file (denoted in the file as S_0, S_Inf, 
Hill_Slope and logAC50) are explained here. Note that some software pro-
grams that generate these fit parameters may use different nomenclature 
to refer to these parameters.
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