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Abstract 

The vast size of chemical space necessitates computational approaches to automate and accelerate the design of 
molecular sequences to guide experimental efforts for drug discovery. Genetic algorithms provide a useful frame-
work to incrementally generate molecules by applying mutations to known chemical structures. Recently, masked 
language models have been applied to automate the mutation process by leveraging large compound libraries to 
learn commonly occurring chemical sequences (i.e., using tokenization) and predict rearrangements (i.e., using mask 
prediction). Here, we consider how language models can be adapted to improve molecule generation for different 
optimization tasks. We use two different generation strategies for comparison, fixed and adaptive. The fixed strategy 
uses a pre-trained model to generate mutations; the adaptive strategy trains the language model on each new gen-
eration of molecules selected for target properties during optimization. Our results show that the adaptive strategy 
allows the language model to more closely fit the distribution of molecules in the population. Therefore, for enhanced 
fitness optimization, we suggest the use of the fixed strategy during an initial phase followed by the use of the adap-
tive strategy. We demonstrate the impact of adaptive training by searching for molecules that optimize both heuristic 
metrics, drug-likeness and synthesizability, as well as predicted protein binding affinity from a surrogate model. Our 
results show that the adaptive strategy provides a significant improvement in fitness optimization compared to the 
fixed pre-trained model, empowering the application of language models to molecular design tasks.
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Introduction
The goal of rational drug design is to identify molecules 
with specified properties associated with therapeutic 
value. Emerging infectious diseases (e.g. SARS-CoV-2 
and the associated pandemic) highlight the need for 
rational design to accelerate the discovery of drugs in 
response to novel protein targets [1, 2]. Computer aided 
drug discovery (CADD) provides a set of tools to shorten 
the time and cost of searching chemical space for new 
applications [2–7]. In addition to the development of bio-
physical models and simulations traditionally associated 
with CADD  [5–7], much recent work has focused on 
using methods from machine learning (ML) and artificial 
intelligence (AI) for molecular design [4, 5, 7–9].

The use of ML models in drug design has been ena-
bled by the availability of large compound libraries  [10] 
and experimental datasets  [11, 12] along with computa-
tional libraries for cheminformatics [13]. Within a design 
application, models generally serve one of two possibly 
overlapping roles, molecule generation and molecule 
scoring. Generative models, such as variational autoen-
coders  [8, 14] and generative adversarial networks  [15, 
16], are capable of sampling new molecules from chemi-
cal space based off a training set. Scoring models, on the 
other hand, take a molecule as input and generate a pre-
diction for a given property (e.g. protein binding affinity). 
Through iterations of generation and scoring, searches 
over chemical space can be performed to optimize a 
given property. The iterative process for optimization is 
commonly referred to as a genetic algorithm [17].

Genetic algorithms provide a useful strategy for the 
design of molecular sequences for drug discovery appli-
cations. To use a genetic algorithm, a representation for a 
chemical sequence must be chosen along with a mutation 
operator to generate new sequences. The mutation oper-
ator is then used to explore chemical space and selection 
is performed according to a pre-defined fitness objective. 
Previous studies have used genetic algorithms success-
fully for a range of drug discovery applications  [18–22]. 
Furthermore, benchmark studies have shown that genetic 
algorithms can achieve state-of-the-art results for mol-
ecule generation, comparing favorably to recent machine 
learning techniques [19, 21].

Despite the success of genetic algorithms, the need 
to define an appropriate representation for a chemical 
sequence and a mutation operator poses a challenge. 
Previous studies have often utilized a simple representa-
tion by enumerating individual atoms and bonds within 
a molecule [18, 19, 22]. For mutation, hand-crafted rules, 
such as add an atom, delete an atom, or create a ring, 
have been proposed and used for large scale explora-
tion of chemical space [18]. Additional studies have used 
data mining techniques to discover commonly occurring 

multi-atom fragments and used custom mutation opera-
tors to rearrange the specified fragments  [20, 22–25]. 
However, specifying fixed rules for rearrangements limits 
the ability to adapt the optimization procedure to a given 
task. Ideally, the mutation operator can be automatically 
inferred from the data, reducing the need for intuition 
and generalizing the genetic algorithm approach to new 
molecular design tasks.

A related approach to molecule generation uti-
lizes recurrent neural network (RNN) based architec-
tures such as the Long Short-Term Memory (LSTM). 
More generally, statistical language-based models uti-
lize different structural representations (e.g., molecu-
lar fingerprints) for generation and optimization based 
architectures. For example, Segler et al. [26] had showed 
how a LSTM based models can be used for transfer 
learning as they are fine-tuned on smaller population of 
molecules to achieve activity towards certain biological 
target and thus be used to generate novel set of molecules 
with desired activities. Along that direction, Arés-Pous 
et al. [27] have carried out an extensive study on different 
RNN based models (such as LSTM and Gated recurrent 
unit or GRU) using different Simplified Molecular Input 
Line Entry System (SMILES) representations like canoni-
cal, randomized and DeepSMILES versions. These differ-
ent experiments designs are then tested on various sizes 
of molecule populations ranging from 10k to 1 million. 
In another recent RNN based work [28] on two different 
string representations namely SMILES and SELF-refer-
encing Embedded Strings (SELFIES) demonstrated that 
RNN-based language models can deliver powerful gen-
erative capabilities while learning complex chemical rules 
of the molecular representations better than graph-based 
models. This observation is then further extended by the 
works of Awale et al. [29] when they trained LSTM based 
generative models on different datasets including full 
size drug molecules along with fragments and performed 
transfer learning to demonstrate that fragments-based 
training is as capable as training on full size molecules 
in producing efficient drug analogs. In related work on 
biogenic compounds Zheng et al. [30] developed a quasi-
biogenic molecule generator (QBMG) with GRU RNN 
to generate quasi-biogenic compounds, libraries includ-
ing stereochemistry and a de novo approach to produce 
focused libraries influenced by certain scaffolds. On the 
other hand, recent proposed methods based on con-
ditional generative adversarial networks  [31] or GAN, 
offers an alternative strategy to take advantage of all 
information stored in compound-induced gene expres-
sion data to generate active-like molecules. As their 
method requires no explicit activity or target annota-
tion information during training process, this can be 
used as a target-independent generalized approach. But 
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algorithm wise these types of models are very different 
than bidirectional transformers-based models. Trans-
former based large language models (LLM) are different 
than RNN or LSTM type language models. These trans-
former-based molecule generators in recent times dem-
onstrate how effective these LLMs could be in designing 
novel molecules for different purposes as required. Bidi-
rectional Encoder Representations from Transform-
ers (BERT)  [32] based LLMs showed advantages while 
tested on established benchmark models and datasets for 
downstream tasks and gCT [33] (i.e., generative chemical 
Transformer) showed improved or at-least on-par per-
formance. Similarly generative pre-training (GPT)  [34] 
models delivers comparable performance in generating 
novel, valid and unique molecules when tested on bench-
mark datasets with other models.

The present work i.e., a novel strategy about how to 
generate a new population of molecules resembling ini-
tial highly optimized molecules by adapting the original 
optimized properties while restricting from generating 
a generic broader population distribution of new mol-
ecules, is a direct improvement over using fixed pre-
trained model as demonstrated. Under-the-hood our 
implementation is based on Transformer architecture 
specially to be mentioned as Bidirectional Encoder Rep-
resentations from Transformers (BERT)  [32]. This par-
ticular type of architecture has shown proven advantage 
when used on established benchmark datasets such as 
GuacaMol  [21] for targeted benchmark tasks such as 
virtual screening and QSAR applications by positively 
impacting subsequent downstream tasks, augment-
ing the constancy of learnt molecular representation 
and improved performance over present dataset  [32]. 
In related work using transformers model on chemical 
designing, analogous architecture namely gCT  [33] (i.e., 
generative chemical Transformer) also able to success-
fully generate valid new molecules that satisfy various 
required target properties while showing either improved 
(or at-par in some cases) compared to other benchmark 
reference models (such as MOSES models [35]). Also, on 
using related large language models (LLM) based archi-
tecture such as using generative pre-training (GPT) [34] 
models we see results and performance that are compa-
rable to previously implemented machine learning algo-
rithms to task like designing valid, novel, and unique 
molecules when compared with MOSES [35] benchmark 
models and datasets.

Inspired by the advances in natural language processing 
(NLP)  [36], recent studies have shown how to automate 
both the choice of representation for chemical structure 
and the mutation operator  [2, 37]. Starting with a text-
based representation for molecules, SMILES  [38], the 
process of tokenization is used to determine commonly 

occurring subsequences  [39, 40]. The subsequences are 
stored as a vocabulary and are used to map a given mole-
cule sequence into a list of token IDs. Each token ID may 
correspond to multiple characters (i.e., atoms and bonds) 
in a given molecule. Once a tokenization scheme is 
defined, the molecule data can be used to train a masked 
language model. In the training for such a model, tokens 
are randomly masked and the loss is determined by how 
well the model reproduces the original sequence when 
predicting the masked tokens [36].

Without the need for labels, unsupervised training 
of masked language models can be performed on large 
compound libraries (e.g. Enamine REAL database)  [10]. 
For a given mask, a trained model will rank possible 
ways to complete the molecular sequence based on the 
vocabulary. Therefore, sampling from the top mask pre-
dictions provides an automated mutation operator for a 
genetic algorithm [37]. Therefore, in contrast to manually 
defining rules for mutations, masked language models 
provide an automated solution for discovering both use-
ful molecular representations (i.e., through tokenization) 
and mutations (i.e., through mask prediction) as shown 
in Fig. 1.

Although the use of a fixed pre-trained masked lan-
guage model provides a useful improvement over man-
ually defined rules, the challenge to adapt molecule 
generation for different optimization tasks remains. For 
example, the dataset used for model pre-training may 
have certain biases that limit structural rearrangements 
useful for a new task. In order to overcome this difficulty, 
we here propose a novel way to use language models 
within genetic algorithm optimization. Specifically, we 
continue to train the masked language model on popula-
tions selected for a specified fitness objective. By contin-
ued training on the selected population, we hypothesized 
that the language model would adapt to new regions of 
chemical space useful for optimization.

In order to test our hypothesis, we implemented two 
approaches for comparison - fixed and adaptive. In the 
fixed approach, a pre-trained language model was used 
to generate new molecules. In the adaptive approach, the 
pre-trained language model is used as a starting point 
and further trained using mask prediction on a speci-
fied population. Continued training is performed after 
each iteration of the genetic algorithm to produce a new 
population of molecules. Our results show that the adap-
tive approach produces data that more closely mimics 
the genetic algorithm population. For optimization, the 
adaptive approach leads to increases in fitness for tasks 
using both heuristic metrics and a ML surrogate model. 
Therefore, by introducing the adaptive approach for auto-
mating mutations we broaden the capabilities of genetic 
algorithm optimization for molecular design.
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Methods
Genetic algorithm
In this work, we focused on the molecule generation 
capabilities of a masked language model for fitness opti-
mization. The source code for this work can be found at 
https:// code. ornl. gov/ candle/ mlmol in the adaptive-lm 
directory. As described in previous work [37], a masked 
language model can be used as an automated mutation 
operator within a genetic algorithm. Figure 1 shows the 
major components for optimization. An initial popula-
tion of molecules, in the form of SMILES strings are 
used as input to the masked language model. Portions 
of a given SMILES string are then randomly masked 
and the language model is used to predict mutations to 
the original molecule. The generated molecules are then 
scored and selection is performed based on the specified 
fitness to generate an optimized population. The process 
of mutation and selection can be repeated for a specified 
number of iterations.

For the language model acting as the mutation opera-
tor, we considered two different training strategies, fixed 
and adaptive. In both cases, we started by pre-training a 
masked language model on a dataset with billions of mol-
ecules (for further details on the dataset, see Methods 
Section - Molecule Data). For the fixed strategy, weights 
of the pre-trained model were frozen, and the model was 
used only for inference (i.e., mask prediction) as part of 
the genetic algorithm. For the adaptive strategy, however, 
model training based on mask prediction was performed 
for one epoch during each generation, with the current 

population of molecules used as the training data. The 
language model, therefore, adapted to the patterns found 
in the current population of the genetic algorithm before 
generating mutations.

To distinguish between the optimization performance 
of the fixed and adaptive strategies, we utilized a rela-
tively simple genetic algorithm with a (µ+ 5µ) survi-
vor selection scheme. Random uniform sampling with 
replacement was used to select µ parents from the popu-
lation, and only mutation was used to generate new mol-
ecules, similar to our previous work  [37]. A population 
size ( µ ) of 105 was used for all reported genetic algorithm 
simulations. Mutations were generated by taking the 
top 5 predictions from the masked language model for a 
given set of masks. Validity and uniqueness of the gener-
ated molecules were determined using rdkit [13] to con-
vert SMILES strings into canonical form. Only unique 
molecules were retained in the population. All reported 
results, except for example histograms, show the mean 
over six repeated runs, with the standard deviation used 
to calculate error bars. Example histograms show the dis-
tribution of metric values for a single run.

For mask generation, we considered the following dif-
ferent values for the mutation rate (i.e., probability that a 
given token will be masked): [0.15, 0.30, 0.45, 0.60, 0.75]. 
In addition, three different types of mutation (replace-
ment, insertion, and deletion) were used. For each type, 
the number of mutations was determined using the bino-
mial distribution for the appropriate number of tokens 
and mutation rate. A minimum number of 1 mask per 

Fig. 1 Strategy for molecule optimization using a language model. An initial population of molecules is used as input. The language model then 
generates mutations using predictions for randomly placed masks. Molecules are ranked according to a specified score and top performers are 
selected for another round of mutations. Two approaches for the language model are investigated, fixed and adaptive. For the fixed approach, the 
language model is pre-trained on a large molecule dataset and it does not change during the optimization process. For the adaptive approach, the 
language model is trained on the selected population, which itself changes during the optimization process

https://code.ornl.gov/candle/mlmol
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molecule was enforced. The locations for each mutation 
within the molecule string were then randomly sam-
pled. For replacement, the sampled token locations were 
replaced with a mask. For insertion, one sampled loca-
tion was used to insert a mask before the given token. 
Similarly, for deletion, one sampled location was used to 
delete the token following the mask. The remaining sam-
pled locations for both insertion and deletion were used 
for replacement.

Fitness in the genetic algorithm simulations was deter-
mined using the harmonic mean of multiple molecular 
metrics. For example, for two metrics ( x1 and x2 ), we 
used a fitness F given by:

By default, we used quantitative estimations of drug-
likeness and normalized synthesizability, similar to sev-
eral previous studies on molecular optimization [15, 16, 
41, 42]. To apply the genetic algorithm strategies on a 
more realistic drug discovery scenario, we also utilized a 
recently released model for protein binding affinity pre-
diction to generate a molecular metric  [43]. Specifically, 
we used a predicted affinity score for the main protease 
of SARS-CoV-2. The resulting fitness was, therefore, the 
harmonic mean of drug-likeness, synthesizability, and 
the predicted affinity score.

Molecule data
Similar to previous work  [2], we generated a molecule 
dataset starting from the Enamine REAL database  [10]. 
Using a data augmentation strategy with a previously 
trained language model, we increased the number of 
molecules to approximately 3.6 · 1010 . The strategy for 
data augmentation is inspired by the pre-training process 
of the masked language models [2]. The pre-trained mod-
els are capable of designing novel, valid and unique mol-
ecules by structural rearrangements including combining 
two molecules. But in order to be selected to augmented 
data the newly predicted molecules also should be valid, 
unique and with synthesizability score to be more than 
certain threshold (in the case 0.30). In preparation for 
model training, the dataset was partitioned into 7.2 · 104 
files, each with 5 · 105 molecules, stored using the Web-
Dataset [44] library for shared data loading during model 
training.

In addition to the constructed molecule dataset, we 
used two additional datasets as the starting population 
for genetic algorithm simulations. First, we used a sub-
set of 105 molecules from QM9 [45, 46], referred to in the 
text and figures as GDB9. Second, we selected the top 
105 in terms of drug-likeness and synthesizability from a 
hold-out set of the training data, referred to in the text 

(1)F(x1, x2) =
2x1x1

x1 + x2

and figures as Top. These two datasets were used to show 
the difference in performance for the fixed and adaptive 
strategies when starting from a relatively low and high 
initial fitness respectively.

Language model training
Language model pre-training consists of two different 
stages, tokenization and mask prediction. During tokeni-
zation, a vocabulary is generated for the model based on 
commonly occurring subsequences within the SMILES 
string for molecules. Here, we split the SMILES string 
during pre-processing based on punctuation, which is the 
default splitting used for the BERT WordPiece tokenizer 
in the Hugging Face transformers library [47]. The vocab-
ulary for the WordPiece tokenizer was then generated 
using the full 36 billion molecule dataset, with the vocab-
ulary size set to 32,768.

For mask prediction, we used PyTorch and Hugging 
Face transformers along with DeepSpeed for distributed 
training [48]. The transformer architecture that has been 
used here for the molecule language model is BERT-
based. This has approximately 109 million parameters 
that are learnable. We Pre-train the model with data par-
allelism technique where each of the GPUs is trained with 
the model on separate data. As described in [2], we used 
data parallelism with DeepSpeed’s fused LAMB opti-
mizer to train at scale on a dataset of 3 billion molecules 
(i.e., the first 6000 partitions of the full molecule dataset). 
Pre-training was performed on the Summit supercom-
puter using 1000 nodes (6 Nvidia 16 GB V100 GPUs per 
node), with each partition of the dataset assigned to a 
single GPU. We used a batch size of 80 molecules with 3 
gradient accumulation steps per GPU, leading to a global 
batch size of 1.44 million. As stated the primary objec-
tive has been to develop a novel algorithm that adapts to 
initial highly optimized dataset generating similar opti-
mized molecules and not to attain generic distribution of 
novel molecules or to predict individual molecules with 
some specific properties. For this purpose, we required 
a dataset that will be as large as possible to begin with 
so that the pre-trained model will benefit from learning 
through the largest chemical dataset available. More so 
because having trained on as wide a distribution of train-
ing data as practicable, we minimize the bias related to 
data being in or out of distribution in the results of the 
adaptivity experiment. To have a model that is trained on 
this large and with wide distribution of molecule data-
set we used required large number of GPUs. But once 
these models are trained, these pre-trained models can 
be used with one GPU on small dataset for fine-tuning or 
downstream tasks as required. Pre-training was done for 
7 epochs, taking approximately 2.5 h, and model valida-
tion was done using mask prediction on a hold-out set of 
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molecules. The best validation accuracy occurred for the 
final epoch, and the resulting model weights were frozen 
for language model mutations in the fixed strategy. The 
model weights were used as the initial conditions for con-
tinued training in the adaptive strategy.

To further validate the pre-trained model, we randomly 
sampled 100,000 molecules with different mutation 
rates for each of the two data sets used throughout the 
manuscript as initial populations. New molecules were 
generated by sampling masked tokens using the Gum-
bel-softmax layer implemented in PyTorch. We com-
puted the percent of novel and valid molecules present 
in each population, showing that increasing the mutation 
rate decreases the number of valid and novel molecules 
(Table 1).

Surrogate model for binding affinity
In addition to the heuristic metrics for drug molecules, 
synthesizability and drug-likeness, we also used an ML 
model to predict protein binding affinity for a given 
target, in this case the main protease of SARS-CoV-2. 

As described in previous work  [2], the binding affinity 
model was generated by fine-tuning language models 
for both molecule and protein sequences. The output of 
the model is the predicted negative log (base 10) of the 
binding affinity. To convert to an affinity score for fitness, 
we divided the prediction by 10 and clipped the result-
ing values between 0 and 1. Although the validation and 
discussion of this model are beyond the scope of the cur-
rent work, we chose it as an example to illustrate that our 
proposed optimization strategies can be applied to find 
high-scoring candidates for both heuristic and ML sur-
rogate scoring models.

Results
Fixed and adaptive strategies for molecule generation
Before analyzing the impact of continued language 
model training on molecule optimization, we consid-
ered a simpler task: generating mutations for a fixed set 
of initial molecules. We implemented this task by using 
the genetic algorithm without selection (i.e. the parent 
population remains unchanged). During each generation, 
mutations are generated and the resulting unique mol-
ecules are saved for further analysis. For the fixed strat-
egy, mutations are generated from the fixed pre-trained 
model, while for the adaptive strategy, the language 
model is trained for 1 epoch on the initial data in each 
generation before producing mutations.

As shown in Fig. 2, we used two different initial data-
sets, GDB9  [46] and Top (see Methods Section - Mole-
cule Data). The mutation rate determines the fraction of 
tokens that are randomly masked during the generation 

Table 1 Valid and novel molecules generated by the language 
model

Mutation rate 0.15 0.30 0.45 0.60 0.75

% valid: GDB9 28 26 21 16 9.7

% novel: GDB9 25 24 20 15 9.2

% valid: TOP 29 31 26 15 4.7

% novel: TOP 26 29 25 15 4.7

Fig. 2 Distributions of molecules produced by a fixed and adaptive approach. Two datasets (GDB9 and a custom dataset with the top scoring 
molecules for drug-likeness and synthesizability) are used as training data. The fixed approach (blue) generates a broad distribution of molecule 
scores, while the adaptive approach (orange) more closely mimics the training dataset. Notice that for initial training data with low scores (i.e., 
GDB9), the adaptive approach produces lower scores on average than the fixed approach, while the situation is reversed for initial training data with 
high scores (i.e., Top)
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of new molecules. Each genetic algorithm simulation 
was run for 5 generations. For each run, the mean drug-
likeness and synthesizability scores were calculated for all 
unique molecules produced in each generation outside of 
the original data. In terms of time there is no significant 
difference in generating the molecules between these 
approaches. For example, the fixed strategy is able to gen-
erate ∼308k valid molecules in ∼42 min out of which ∼
284k are novel molecules using one GPU while adaptive 
strategy is able to generate ∼250k valid molecules out of 
which ∼212k molecules are novel molecules in ∼32 min. 
The histograms show an example of the distributions for 
novel molecules with a metric value greater than zero 
produced from the final generation of a single run with a 
mutation rate of 0.3.

Due to the continued training of the language model, 
the mutations generated by the adaptive strategy are 
much closer, in terms of synthesizability and drug-like-
ness, to the initial population of molecules. This leads 
to a decrease in typical values for the GDB9 dataset. 
However, for the Top molecules, the adaptive strategy 

produces higher scores. This result can be intuitively 
explained, as the fixed model is biased by the data used in 
pre-training (i.e., the pre-trained model will tend to pro-
duce mutations that were prevalent in its training data-
set). Continued training allows the model to adapt to the 
new data, either GDB9 or Top.

Fixed and adaptive strategies for molecule optimization
For molecular optimization, the ability to adapt to a 
given initial dataset may or may not be beneficial. In 
the case of initial data with relatively low scores, we 
expect the adaptive strategy to slow down optimi-
zation, as the generated molecules with have scores 
similar to the poor initial data. To test this hypothesis, 
we applied a genetic algorithm (GA) to optimize mol-
ecules for drug-likeness and synthesizability starting 
from the GDB9 dataset. As shown in Fig. 3, the adap-
tive strategy indeed results in decreased fitness relative 
to the fixed strategy. This molecular optimization task 
can be contrasted with the fixed strategy for molecular 
generation in Fig. 2 as a baseline (shown in dark blue 

Fig. 3 Optimization of molecules for drug-likeness and synthesizability produced by a fixed language model, adaptive language model, or 
fixed language model without a genetic algorithm based optimization scheme. Two datasets (GDB9 and a custom dataset with the top scoring 
molecules for drug-likeness and synthesizability) are used as initial data. In the Fitness vs Generations subplots, the y-axis is the average fitness of 
the population over six runs. The related standard deviations are small compared to the mean values in the order of 0.1%−0.2%. The fixed approach 
(blue) results in a faster increase in fitness, along with greater valid and accepted molecules for the GDB9 dataset. For the top dataset, however, the 
adaptive approach leads to a faster increase in fitness along with greater accepted molecules. Both the adaptive and fixed approaches outperform 
the baseline of a fixed language model without the genetic algorithm. The histograms show synthesizability and drug-likeness of the final 
population after six generations for each approach
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throughout Fig.  3). The fitness plot shown over five 
generations and histograms of the final molecular pop-
ulations were generated with a mutation rate of 0.3. 
Furthermore, the adaptive strategy produced less valid 
molecules and less accepted molecules (i.e., molecules 
accepted into the population during selection) for all 
mutation rates.

The same genetic algorithm applied to the Top 
dataset produces the opposite results in terms of fit-
ness. Here, the adaptive strategy outperforms the fixed 
strategy for all mutation rates considered. Interest-
ingly, although the adaptive strategy produces fewer 
valid molecules for most mutation rates (similar to the 
GDB9 dataset), it produces more accepted molecules 
in all cases. The decrease in valid molecules can be 
understood as adaptive training leading to possible 
issues with over-fitting the current dataset, rather than 
learning from the large compound library used for pre-
training. However, the increase in accepted molecules 
suggests that molecular rearrangements learned from 
a high scoring dataset can improve fitness optimiza-
tion despite the decrease in valid molecules. The fixed 
and adaptive GA-based approaches provided much 
higher fitness than random search despite generat-
ing a similar number of valid molecules. For the fol-
lowing analysis, we fixed the mutation rate to 0.3 and 
focused on ways to use the fixed and adaptive strate-
gies together for molecular design.

Combining fixed and adaptive strategies
The trade-off in performance for the fixed and adaptive 
strategies, depending on the distribution of values in 
the initial dataset, suggests that mixing fixed and adap-
tive strategies may be useful for molecular optimization. 
For a new optimization task, a previously optimized 
dataset will likely not exist to serve as an initial popula-
tion. In many cases, generating a reasonably optimized 
dataset may be the entire goal of applying the optimiza-
tion procedure. Therefore, we assume that the case with 
poorly optimized initial data, similar to GDB9, is more 
representative of a typical molecular design problem. In 
this case, our results have shown that the fixed strategy 
outperforms the adaptive strategy for optimization. How-
ever, as the fitness of the population increases, we expect 
that the adaptive strategy may provide a better alternative 
to optimize fitness.

To test this hypothesis, we implemented various sched-
ules for combining the fixed and adaptive strategies. As 
show in Fig.  4, the fixed strategy was used initially and 
then replaced by the adaptive strategy after a specified 
number of generations. As expected, the optimal strat-
egy involves a combination of the two strategies, with five 
generations of fixed followed by 20 generations of adap-
tive. Interestingly, although the purely adaptive strategy 
(orange) increases much more slowly than the purely 
fixed strategy (blue), adaptive overtakes fixed in terms of 
fitness after approximately 15 generations. This suggests 
that the difficulties associated with fitting more closely to 

Fig. 4 Combining fixed and adaptive approaches during optimization. The fixed approach is used during optimization for 25 epochs. For 
comparison, the adaptive approach is used starting from the output population of the fixed approach at different generations. The highest fitness 
is achieved in the case where the adaptive approach is used after 5 epochs of the fixed approach. In the Fitness vs Generations subplots, Y-axis 
is average fitness of the and calculated as mean over six runs with standard deviations in the order of 0.1–0.2% of mean value. Notice that the 
adaptive approach starting from the same initial data as the fixed approach achieves a higher fitness after approximately 15 epochs
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a poor initial dataset can be overcome with the ability to 
adapt to the population as fitness increases.

Molecular optimization using a surrogate model
All of the results we have shown so far have used heu-
ristic functions to score molecules (i.e., synthesizability 
and drug-likeness scores). However, molecular optimiza-
tion applications may involve additional ML-based surro-
gate models for scoring. For example, a ML model may 
be trained on a limited experimental dataset in order to 
search for molecules with related properties. Here, we 
use a previously trained surrogate model, which is avail-
able for download  [43], developed to predict binding 
affinity for a given protein and molecule. We fix the pro-
tein sequence to the main protease of SARS-CoV-2, as 
described previously [2], and generate a normalized affin-
ity score to use in fitness calculations. During the evalu-
ation of surrogate model for predicting binding affinity 
for a given protein and molecule, that is also then used 
in calculating fitness function, the cost of computation 
increased because the large population size. Due to long 
runtimes with the surrogate model, a given genetic algo-
rithm simulation was split into multiple sequential jobs, 
with each job running for five generations. Upon restart-
ing, the model weights were initialized to the fixed pre-
trained model.

Building off the results for optimization with heuristic 
metrics, we compare two optimization schedules. We 

first apply the fixed strategy for five generations. This is 
followed by the adaptive strategy for 20 generations, with 
the continued fixed strategy for comparison. As shown 
in Fig.  5, the adaptive strategy results in a substantial 
increase in fitness over the fixed strategy for optimiza-
tion with the surrogate model. By comparing the histo-
grams for synthesizability, drug-likeness, and affinity 
score, we determined that the increase in fitness values 
was primarily the result of increases to the affinity score, 
suggesting that the adaptive strategy is particularly use-
ful for optimizing the ML scoring model. We also show 
examples of molecules with different values for the three 
metrics used during fitness optimization. Beyond gener-
ating molecules with high values for all three metrics, the 
examples show how changes in the chemical structure for 
a family of molecules result in trade-offs amongst synthe-
sizability, drug-likeness, and affinity score.

Discussion
Sequence‑only models for drug design
The models presented in this work for both molecule gen-
eration and scoring rely only on the molecular sequence 
(i.e., the SMILES is the only model input). A sequence-
only approach is in contrast to ML models that utilized 
many local and global features (e.g. molecular finger-
prints) [3]. Simulation and modeling approaches outside 
of ML, such as molecular dynamics and docking, use 
the full three-dimensional structures of both the protein 

Fig. 5 Fixed and adaptive approaches to optimize fitness given by the harmonic mean of synthesizability, drug-likeness, and affinity score. 
Changing to the adaptive approach after 5 generations results in an increase in fitness as shown by the histograms for drug-likeness and affinity 
score. The histograms were generated from the final population for the runs with the highest fitness for fixed and adaptive approaches. In the 
Fitness vs Generations subplots, Y-axis denotes average fitness of the population and plotted as mean over six runs. The related standard deviations 
are in the order of 0.1%−0.2% of the mean values. Sample molecules with similar chemical structures are shown for the adaptive approach. 
Mutations proposed by the language model show how modifications result in changes in the metrics used to calculate fitness
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and molecule to predict binding affinity [5]. The primary 
strength and weakness, therefore, of sequence-only mod-
els is the simplicity of the model input. By using SMILES, 
the model has no direct information concerning geom-
etry or chemical properties. However, SMILES enables 
the model to be used to train and make predictions on 
data without known three dimensional structures or pre-
viously calculated chemical properties, enabling searches 
and screening over large portions of chemical space. Fur-
thermore, sequence-only models have been shown to 
compare favorably to more traditional approaches with 
manually defined features [49–51].

Molecule generation through mutations
In this work we have considered molecule generation for 
design using a language model to generate mutations. 
This strategy differs from other approaches to develop 
generative models, such as variational autoencoders [14, 
52] and generative adversarial networks  [15, 16]. The 
mutation strategy is dependent on an original molecule 
in which certain subsequences are changed rather than 
generating an entire molecule by sampling from a latent 
space or noise distribution. Although mutation relies 
upon an original molecule, and thus limits the amount of 
chemical space accessible for a given round of molecule 
generation, it has multiple benefits. First, mode collapse 
should not in principle present a problem for molecule 
generation through mutation. Because mutations are 
sampled from each molecule in the population, the full 
training set is represented in each generation of gener-
ated molecules. Second, each round of mutations can 
be manually inspected along with the scores for each 
respective molecule, enabling a user to better understand 
the types of mutations being generated and their impact 
on fitness. Furthermore, through multiple iterations of 
mutations and selection, large regions of chemical space 
can be explored  [18], even though a single iteration 
remains close to the original data.

Adaptive strategy
As mentioned earlier the masked language models 
enable us to attain two major design targets - (1) dis-
covering useful molecular representation through 
tokenization and (2) injecting mutation through mask-
ing. In this work our primary objectives are - firstly, 
given a highly optimized dataset available for initial 
dataset whether we could devise a certain novel way to 
generate newer dataset that also guarantees to be opti-
mized in similar fashion. Towards that goal we develop 
an effective algorithm that overcomes the challenges 
to generate new set of molecules from an optimized 
dataset through necessary molecular reconstruc-
tion for performing particular different optimization 

tasks while simultaneously restricting from attaining 
a generic broader population distribution. In other 
words, we intend to demonstrate a novel way that 
will get rid of the certain biases that obstructs neces-
sary structural rearrangements during mutation pro-
cess, automatically adapt the required chemical region 
from the original population required for specific user-
defined new tasks so that a certain population distribu-
tion can be produced. Secondly the other goal of the 
work is to generate a new population of molecules that 
are more similar in nature to the original highly opti-
mized data than finding few individual novel molecules 
with certain specific properties. Together fulfilling 
both of the above objectives means the improvement 
that our new strategy offers will be to adapt to specific 
highly optimized datasets for generating novel mol-
ecules that are able to perform highly optimized tasks 
and be prevented from a broader generic distribution.

Conclusions
Masked language models coupled with genetic algo-
rithms provide a useful framework for molecular optimi-
zation. During tokenization and pre-training, the model 
determines commonly occurring chemical sequences and 
rearrangements that can be leveraged for molecule gen-
eration through mutations. Furthermore, the language 
model can be refined using continued training on popu-
lations of molecules selected for desired properties. Here, 
we have shown that the continued training of a language 
model during genetic algorithm optimization provides a 
powerful approach to search for molecules according to 
both heuristic and ML model scoring functions. Mod-
els pre-trained on large compounds libraries serve as a 
useful starting point for both initial optimization from a 
poorly optimized dataset and initial weights for contin-
ued training.
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