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Abstract 

Identification and validation of bioactive small‑molecule targets is a significant challenge in drug discovery. In recent 
years, various in-silico approaches have been proposed to expedite time‑ and resource‑consuming experiments for 
target detection. Herein, we developed several chemogenomic models for target prediction based on multi‑scale 
information of chemical structures and protein sequences. By combining the information of a compound with mul‑
tiple protein targets together and putting these compound‑target pairs into a well‑established model, the scores to 
indicate whether there are interactions between compounds and targets can be derived, and thus a target predic‑
tion task can be completed by sorting the outputted scores. To improve the prediction performance, we constructed 
several chemogenomic models using multi‑scale information of chemical structures and protein sequences, and the 
ensemble model with the best performance was used as our final model. The model was validated by various strate‑
gies and external datasets and the promising target prediction capability of the model, i.e., the fraction of known 
targets identified in the top‑k (1 to 10) list of the potential target candidates suggested by the model, was confirmed. 
Compared with multiple state‑of‑art target prediction methods, our model showed equivalent or better predictive 
ability in terms of the top‑k predictions. It is expected that our method can be utilized as a powerful computational 
tool to narrow down the potential targets for experimental testing.
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Graphical Abstract

Introduction
It is estimated that 52% of clinical phase II failures are 
primarily due to insufficient efficacy, in which most 
are caused by poor targeting or unfavorable off-target 
effects [1, 2]. Apparently, identification of the potential 
targets for drug candidates in the early stages of drug 
discovery may reveal their adverse side effects, thereby 
reducing the attrition rate in clinical trials. Moreover, 
traditional drug discovery primarily followed the ‘one-
compound, one-target, one-disease’ diagram, implying 
that a drug is designed to modulate a single target for 
a specific disease. But it is well known that most drugs 
bind to multiple targets, a general phenomenon known 
as polypharmacology [3]. The interactions between 
these secondary targets and drugs may be responsible 
for unexpected off-target effects, which usually induce 
unfavorable side effects but may also provide more 
opportunity for drug repositioning. For example, Silde-
nafil, the first selective type 5 phosphodiesterase  (PDE5) 
inhibitor for the treatment of angina pectoris, has been 
repurposed for the treatment of penile erectile dys-
function (PED) and pulmonary hypertension [4]. Other 
notable drug repositioning examples include Meman-
tine [5], Buprenorphine [6], Requip [7, 8], Colesevelam 
[9] and so on. Nowadays, due to the great difficulty and 
financial strain of drug discovery, identifying new indi-
cations for old drugs is informed the best way to bring a 
drug to market [10].

With the development of experimental techniques, 
protein targets can be identified by chemical proteomics 
methods such as affinity chromatography and activity-
based protein profiling. In such experiments, modified or 
labelled compounds would specifically bind to proteins, 
and then the related protein targets can be precipitated 
or traced [11–18]. However, the modification and label-
ling of the key functional groups of the query compound 
may hamper compound-protein interactions. Moreover, 
these experimental approaches are labor-intensive, time-
consuming and costly, and may suffer from high false-
positive rate. Alternatively, driven by massive bioactivity 
data deposited in public chemogenomic databases such 
as ChEMBL [19], DrugBank [20], and TTD [21], in-silico 
target prediction has shown promise in recent years. By 
screening a compound against a database, it is possible to 
identify potential target candidates for subsequent exper-
imental validation [22–25].

Generally, computational target prediction methods 
are classified into two categories: structure-based and 
ligand-based. The former methods detect the possi-
ble targets based on the three-dimensional (3D) crystal 
structure information of proteins, focusing on docking 
a query compound either to a set of targets or mapping 
to the pharmacophores inferred from ligand-target 
complexes [26–29]. However, the necessity of the 3D 
structures of proteins makes these methods applica-
ble to a small range. Moreover, the uncertain relation 
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between bioactivities and physicochemical properties 
served for scoring and the insufficient accuracy of scor-
ing functions also show their weakness. Differently, the 
latter methods, mapping targets through the insight of 
the similarities between two compounds based on the 
hypothesis that similar compounds are likely to have 
similar target-binding profiles, are approved to achieve 
better predictive performance [30–34]. The most com-
mon implementation is machine learning (ML), which is 
accomplished by combining multiple independent binary 
classifiers. Each binary classifier trains on ligand infor-
mation (i.e., descriptors) associated with a target and 
then learn knowledge that can correctly map descriptors 
to the target [35–38]. However, as ML methods do not 
take any protein information into account, the interac-
tions between targets and compounds have not been fully 
explored. More importantly, if the number or structural 
diversity of the ligands for some targets is insufficient, 
the mapping functions cannot be guaranteed and well 
established.

Recently, the chemogenomic methods, by combining 
the protein sequence information with the compound-
target interaction data to prediction models, making up 
for some key information of interactions and increasing 
the number of ligands for some targets by sharing ligands 
with targets having similar sequences, offset some weak-
ness of ML methods discussed above [39–41]. These 
methods utilize both ligand and target spaces to extrap-
olate the bioactivities of compounds. Typically, a vector 
of descriptors representing each compound-target pair 
is taken as the input, and the output is whether there is 
an interaction between a compound and a target [42–44]. 
What inspires us is that, given the characteristic of this 
approach, a target prediction task can also be completed 
through combining a basket of protein targets for a com-
pound and putting these compound-target pairs into a 
model to yield predictions. The score of each compound-
target pair represents the probability of the association 
between the compound and protein, and finally the top-
ranked targets are regarded as the potential targets. But 
as we already known, the prediction performance of the 
methods for target prediction has not been systematically 
evaluated.

In this study we constructed several chemogenomic 
models by integrating two types of protein descriptors 
and three types of molecular descriptors. These models 
are equipped with good binary classification that can 
accurately differentiate the compound-target interactions 
with strong binding affinity from those with weak bind-
ing affinity. Driven by the fact that the more descriptors 
from different insights included in the models, the more 
excellent prediction will be derived, different ensemble 
ML models were established and fully assessed, and the 

best one was selected as the final prediction model. The 
target prediction performance of the models (i.e., the 
fraction of known targets identified in the top-k (1 to 10) 
prediction list) was validated by various strategies and 
external datasets. Statistically, 26.78% and 57.96% of the 
known targets were enriched in top-1 and top-10 of the 
prediction list according to the stratified tenfold cross 
validation, respectively, suggesting approximately 230-
fold and 50-fold enrichments. When validated by the 
external datasets including natural products, more than 
45% targets were enriched in the top-10 of the predic-
tion list. Compared with multiple state-of-art target pre-
diction methods, our model yielded equivalent or better 
predictive ability on the top-k predictions.

Materials and method
Dataset collection
In this study, 859 human target proteins from the 
ChEMBL27 database [45] were collected for target pre-
diction. Although some target proteins from other spe-
cies also bind drug-like ligands, they were excluded 
because the prediction of targets against human species 
is our main focus. The collected targets mainly cover 
kinases, GPCRs, proteases, enzymes, and proteins from 
other detailed categories, among which 294 are FDA 
approved targets, 256 for clinical trial targets, 53 for pat-
ent targets, 236 for investigational targets and 20 tar-
gets documented in the literatures (Fig.  1). In addition, 
the target information including protein sequence and 
gene ontology (GO) terms with three subclass of biologi-
cal process (BP), molecular function (MF) and cellular 
component (CC) was retrieved from the UniProt data-
base [46] in order to facilitate the calculation of protein 
descriptors for constructing the prediction models. The 
detailed information of these 859 targets served for pre-
diction can be seen in Additional file 1.

The entire dataset for modeling is composed of 153,281 
compound-target interactions extracted from the Bind-
ing database v2020 [47] and the ChEMBL27 database 
[45], associated with 859 target proteins and 93,281 
unique compounds. For each compound-target pair, its 
corresponding bioactivity data (Ki) were extracted from 
these two databases. It is possible that multiple bioactiv-
ity data may be found for one compound-target pair due 
to the integration of different sources or literatures. A 
median of these bioactivity data was used for such pairs 
whose difference is below one magnitude, and those pairs 
whose bioactivity difference exceeds one magnitude were 
excluded. The detailed information of modeling data can 
be seen in Additional file 2.

The Ki value of 100  nM was used as the threshold 
to tune the positive set (compound-target pairs with 
Ki ≤ 100  nM) and the negative set (compound-target 
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pairs with Ki > 100  nM). Thus, the entire data set was 
firstly divided into 80,608 positive samples and 72,673 
negative samples. Of these 859 targets, 549 had 10 or 
more known data points, 240 had more than 100 data 
points and 37 had more than 1000 data points. In more 
detail, 380 targets had 10 or more positive samples 
(namely active compound-target interactions), 145 tar-
gets had more than 100 positive samples, and 17 targets 
had more than 1000 positive samples (Fig. 2). On aver-
age, each target had 173.6 data points and 93.8 positive 
samples, the maximum numbers of the data points and 
positive samples of a target (carbonic anhydrase 2) were 
3,351 and 2,013, respectively.

Chemical structure and protein sequence representation
The descriptors used to represent and describe data 
decide the application range and success of a ML model. 

Structural descriptions under different levels sketch dif-
ferent compound/protein behaviors and provide diverse 
clues to inferring compound-target interactions. One-
sided descriptors may not contain enough features to 
fully characterize the chemical and biological spaces 
of the data, provided the occurrence of “activity cliff” 
which presents pairs of compounds with high structural 
similarity but unexpectedly large activity (or property) 
difference. As a supplement, this gap may be captured 
by other types of descriptors. Therefore, to fully repre-
sent the comprehensive target-ligand interaction space, 
compounds were represented by three types of descrip-
tors and proteins were described by three-level charac-
terizations involving physicochemical properties, protein 
sequences and gene ontology (GO) terms.

For compound representation, three different molecu-
lar descriptors without the requirements of the three-
dimensional conformations were used: (1) 188 Mol2D 
descriptors derived from the article proposed by Dong 
et al., including 30 molecular constitutional descriptors, 
25 topological descriptors, 44 molecular connectivity 
indices, 7 kappa shape descriptors, 21 Basak descriptors, 
25 charge descriptors, and 60 MOE-type descriptors [48, 
49]; (2) Extended Connectivity Fingerprint with a bond 
diameter of 4 (ECFP4), a class of 1024 bit circular finger-
prints developed specifically for SAR modeling [50]; (3) 
MACCS fingerprints recording the occurrence of 166 
predefined substructures reported to effectively encode 
molecular structure [51]. The above descriptors were cal-
culated using MOE [52], ChemDes [53], ChemoPy [54], 
PyBioMed [48], and PyDPI [55].

The used protein descriptors were classified into two 
parts: protein type A (ProA) and protein type B (ProB). 

Fig. 1 Category distribution of 859 targets for prediction

Fig. 2 The distribution of the numbers of the positive samples and 
negative samples associated with each target
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Protein sequences from the Uniprot database were used 
as the source for calculation. ProA was designed to exe-
cute the computation of seven physicochemical descrip-
tor groups including amino acid composition descriptors, 
autocorrelation coefficient descriptors, CTD (composi-
tion, transition, and distribution) descriptors, conjoint 
triad descriptors, quasi-sequence-order descriptors, 
pseudo-amino acid composition descriptors, and pro-
teochemometrics descriptors [48]. In order to reduce the 
model load, the multivariate descriptors (more than 50 
dimensionality) from different sub-groups  are projected 
to a lower-data space (50 dimensionality) from its most 
informative viewpoint by principal component analysis 
(PCA) [56]. Thus, each protein is described by 762 ProA 
descriptors. ProB is the descriptors derived from similar-
ity matrix, which records the similarity between each pair 
of 859 protein pairs, including protein sequence similar-
ity and the GO term similarity. Technically, the sequence 
similarities between each pair of proteins were calculated 
using the Resnik algorithm and GO semantic similarity 
measures including BP, MF and CC were obtained using 
the BLOSUM62 algorithm. In this manner, four similar-
ity matrices of 859 × 859 were obtained, and each row 
of the matrix is the descriptors for each protein [57, 58]. 
Through PCA as before, ProB descriptors of each sam-
ple were reduced to 200 (4 × 50) dimensionality [56]. The 
detailed information of the descriptors and the percent-
age of explained variance (%VAR) of PCA were shown in 
Additional file  3. Here, the introduction of the matrix-
derived descriptors limits the target prediction applica-
tion of the models to these 859 targets [43, 59–61]

In this work, we employed the chemogenomic 
approach to encode the compound-target interactions 
by using both compounds and target proteins. An inter-
action can be efficiently represented by simultaneously 
considering the structural information from this com-
pound and this protein. Through the combination of the 
structures from related compound and related protein 
(i.e., six combined descriptors of ECFP4-ProA, ECFP4-
ProB, Mol2D-ProA, Mol2D-ProB, MACCS-ProA, and 
MACCS-ProB), each interaction sample (positive or neg-
ative) is finally characterized as a 1786, 1044, 950, 388, 
928, 366 dimensional vectors, respectively.

Machine learning methods
The extreme gradient boosting (XGBoost) algorithm was 
employed to construct the classification models [62]. 
XGBoost is an efficient and scalable implementation of 
the gradient boosting framework, and it provides insights 
on cache access patterns, data compression, and frag-
mentation. XGBoost develops the model in a sequential 
stage-wise fashion like other boosting methods do, and 
generalizes them by allowing optimization of an arbitrary 

differentiable loss function [63–65]. It has been regarded 
as a new generation of ensemble learning algorithms, 
which has become the winners for several ML competi-
tions in recent years [66].

In the implementation, Konstanz Information Miner 
(KNIME) [67], a platform integrating data processing, 
data analysis, data exploration and Python package [68], 
was applied to construct models. The main hyperparam-
eters, including learning rate (eta), the maximum depth 
of a tree (maximum depth), the minimum loss reduction 
required to make a further partition on a leaf node of the 
tree (gamma) and the number of models to train in the 
boosting ensemble (boosting rounds), were optimized by 
using the grid search method and the stratified tenfold 
cross-validation.

Performance evaluation
The primary task of the model is to distinguish com-
pound-target interactions with strong binding affinity 
from those with weak binding affinity, namely binary 
classification. Only when the model is equipped with 
satisfied binary classification performance, the target 
prediction performance can be guaranteed because it 
requires not only the binary classification capability of 
the classifier but also the ability to enrich the potential 
active targets of the compound at the top of the pre-
diction list, namely early retrieval, typically the top 10 
targets (top 0.1–1%) so that users are able to obtain a rea-
sonable number of targets to be experimentally tested. 
Therefore, the binary classification performance of the 
model is firstly evaluated, and subsequently the target 
prediction ability is measured.

To ensure that the derived model has good generaliza-
tion ability, the stratified tenfold cross-validation (CV) 
was used where the stratification process guaranteed 
that samples from each target were present in both the 
training and test dataset and samples from some targets 
which have a small quantity of ligands (≤ 5) were pre-
sent only in the training datasets. By definition, the com-
pounds or targets in the training set are called ‘known’, 
whereas those not existing in the training set are called 
‘new’. Compared with the training set, there are two 
types of test set: (1) known compounds and known tar-
gets (intend to identify more possible targets for known 
active compounds); (2) new compounds and known 
targets (intend to identify targets for new compounds). 
Therefore, we conducted two levels of validation: pair-
split validation and compound-split validation. As for the 
pair-split validation, the training and test sets were gen-
erated by randomly splitting the dataset according to the 
stratification. It measures the average performances of 
our models as the test datasets include both two types of 
pairs. As for the compound-split validation, it splits the 
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compounds into 10 parts, and therefore the compound-
target interactions associated with 1 out of these 10 parts 
were used as the test set and the interactions associated 
with the remaining 9 parts were kept in the training set. It 
assumes the situation where we want to detect the targets 
for external compounds. In order to evaluate the robust-
ness of the model, the stratified tenfold CV was repeated 
50 times and the obtained mean values and variance val-
ues were used to quantify the performance.

In the assessment, the binary classification perfor-
mance of compound-target interactions was evaluated 
by several commonly used statistical parameters: true 
positives (TP), false negatives (FN), true negatives (TN), 
false positives (FP), the overall prediction accuracy 
(ACC = (TP + TN)/(TP + TN + FP + FN)), the predic-
tion accuracy of the positive set (Sensitivity, SE = TP/
(TP + FN)), and the prediction accuracy of the negative 
set (Specificity, SP = TN/(TN + FP)). Besides, the receiver 
operating characteristic (ROC) curve was plotted, and 
the area under the receiver operating characteristic curve 
(AUC) was used to assess each of the models.

The target prediction performance was verified by the 
recall rate, namely the fraction of known targets identi-
fied in the top k of the prediction list. For each com-
pound to be predicted in the test set, the features from its 
compound descriptors combined with 859 protein tar-
gets, namely 859 compound-target integrated descriptors 
(i.e., six combined descriptors of ECFP4-ProA, ECFP4-
ProB, Mol2D-ProA, Mol2D-ProB, MACCS-ProA, and 
MACCS-ProB), were inputted into the corresponding 
prediction model and then 859 compound-target inter-
action scores could be outputted. The targets ranked 
top-k of the prediction list are recognized as the potential 
targets, whereas the other targets are assumed inactive. 
An arbitrary cutoff of k (1–10) predictions was feasible 

number of protein targets that could be screened and dif-
ferences in classifier performance after this cutoff will be 
missed. The recall rate is relatively harsh as it requires a 
classifier to have placed a correct target for a compound 
in the top 0.1%-1% of the lists but it gives an indication 
for the practicability of a model for target prediction.

Results and discussion
Compound‑target interactions can be accurately predicted 
from integrated features
Our first concern in this study is to construct a predictive 
model that can accurately differentiate compound-target 
interactions with strong binding affinity from those with 
weak binding affinity. To represent compound-target 
interactions, we used a chemogenomic framework. In 
brief, an interaction is represented by simultaneously 
considering the structure content from this compound 
and this protein. Thus, each interaction sample (positive 
or negative) is finally characterized by a fixed dimen-
sional vector by combining the structural content from 
the related compound and protein. Each of these factors 
can be considered as a separate coordinate spanning a 
multidimensional space, and in this sense a compound-
target interaction is an event in this type of multidimen-
sional space.

Firstly, the classification performance of compound-
target interactions was evaluated. The statistics of the 
predictions on the stratified tenfold CV are summarized 
in the “Integrated” rows of Table 1. The ROC curves are 
shown in Fig. 3.

From Table  1, both the pair-split and compound-split 
models performed well with an average ACC up to 0.81 
and an average AUC up to 0.90, and the low standard 
deviations obtained from the 50 repetitions of the model 
shows the robust predictive performance of the models. 

Table 1 Statistical results of the models derived from different descriptors (integrated or separated groups) on the stratified tenfold CV 

Descriptors Pair‑split Compound‑split

ACC SE SP AUC ACC SE SP AUC 

Integrated ECFP4‑ProA 83.96 ± 0.12 85.74 ± 0.11 82.00 ± 0.17 92.67 83.58 ± 0.06 85.35 ± 0.09 81.65 ± 0.09 92.33

ECFP4‑ProB 83.99 ± 0.16 85.87 ± 0.12 81.91 ± 0.22 92.68 83.55 ± 0.05 85.41 ± 0.08 81.51 ± 0.06 92.33

Mol2D‑ProA 82.11 ± 0.09 84.68 ± 0.10 79.29 ± 0.11 92.04 81.47 ± 0.05 83.95 ± 0.08 78.69 ± 0.03 91.46

Mol2D‑ProB 82.17 ± 0.13 84.85 ± 0.10 79.23 ± 0.18 92.02 81.59 ± 0.07 84.17 ± 0.07 78.75 ± 0.11 91.35

MACCS‑ProA 82.89 ± 0.25 85.00 ± 0.21 80.53 ± 0.34 90.86 82.24 ± 0.05 84.23 ± 0.08 80.04 ± 0.08 90.19

MACCS‑ProB 82.83 ± 0.27 85.02 ± 0.20 80.40 ± 0.33 90.93 82.09 ± 0.07 84.16 ± 0.11 79.81 ± 0.09 90.34

Separated ECFP4 74.99 ± 0.03 76.21 ± 0.04 73.66 ± 0.09 85.08 75.28 ± 0.09 77.53 ± 0.12 72.76 ± 0.18 84.65

Mol2D 74.09 ± 0.06 76.73 ± 0.07 71.17 ± 0.07 83.18 73.61 ± 0.07 76.99 ± 0.13 69.85 ± 0.16 82.33

MACCS 72.83 ± 0.07 75.30 ± 0.09 70.12 ± 0.08 82.88 72.94 ± 0.08 76.45 ± 0.08 69.03 ± 0.18 83.30

ProA 66.20 ± 0.01 72.51 ± 0.09 59.22 ± 0.13 72.57 66.21 ± 0.03 72.41 ± 0.20 59.34 ± 0.22 72.53

ProB 66.21 ± 0.03 72.53 ± 0.08 59.20 ± 0.13 72.57 66.21 ± 0.03 72.44 ± 0.12 59.34 ± 0.15 72.53
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These results above indicated that our models built with 
the six integrated descriptor groups and XGBoost algo-
rithm could effectively distinguish the compound-target 
interactions with strong binding affinity from those with 
weak binding affinity. Unsurprisingly and reasonably, the 
performance of the compound-split validation is slightly 
worse than that of the pair-split validation (e.g., Mol2d-
prob model ACC: 82.11 vs. 81.47) since these two strat-
egies simulate different situations that actual predictions 
may encounter where the former means the prediction 
of brand-new “new” compounds while the latter addi-
tionally includes the prediction of “known” compounds 
whose associated compound-target interaction(s) in 
the training set may provide prediction clues. The sta-
tistical values of the models built on the individual 
descriptor group were as follows in a decreasing order: 
ECFP4-ProA > ECFP4-ProB > Mol2D-ProA > Mol2D-
ProB > MACCS-ProB > MACCS-ProA. The model uti-
lizing the ECFP4-ProA descriptors yielded the best 
performance, with ACC = 0.832 and AUC = 0.913.

The chemogenomic approach, aiming at integrating the 
chemical space with the genomics space, is demonstrated 
to be strikingly helpful for representing compound-target 
associations. A demonstrable feature of our approach is 
that the information from compounds and targets were 
integrated to represent compound-target associations. 
We assume that compound-target interactions can be 
determined by the structural features from compounds 
and targets, which comprise of a pharmacological space. 
To demonstrate the reliability of our assumption, we re-
established our model using only the structural informa-
tion from a single space (i.e., chemical space or genomics 
space), that is, models are constructed only using the 

compound features or protein features, respectively. The 
statistics of these models on the stratified tenfold CV 
were summarized in the “Separated” rows of Table 1. The 
ROC curves of the re-established models were shown in 
Fig. 3.

As can be seen from Table 1, the models with the com-
pound features or protein features provided noticeably 
inferior predictions. The comparison between the mod-
els with the separated features and those with the inte-
grated features sufficiently indicates that the structural 
information from compounds and targets contributes 
to the discrimination of compound-target associations 
cooperatively. Somewhat surprising, our comparison also 
illustrated that the features from compounds seem to be 
more predictive than those from target proteins.

The ensemble model performs well than individual models
Due to the different strengths in compound-target 
interaction prediction caused by different descriptor 
groups, we attempt to improve the prediction perfor-
mance through their combination. We built three types 
of ensemble models by averaging the predictions given 
by the six individual models (Mean) [69], taking the 
maximum value given by the six individual models (Max-
imum) and obtaining new scores using the stacked mod-
els reported by Nicholas (Stacked) [70]. The performance 
statistics are summarized in Table 2 and the ROC curves 
are shown in Fig. 4. The result shows that the ensemble 
model (Mean) yielded better predictive ability than any 
individual model, with the improved ACC of 0.01–0.1 
and AUC of 0.01–0.1. It appeared that it could capture 
the relationship between compound-target interaction 
patterns and the interaction endpoint more efficiently 

Fig. 3 ROC curves of models derived from different descriptors (integrated or separated groups) on the stratified tenfold CV
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than any individual model. Therefore, the ensemble 
model (Mean) was used as our final model and applied 
for the subsequent analysis.

Evaluation of the target prediction performance of our 
model
Under the premise of ensuring good classification per-
formance of compound-target interactions, the target 
prediction performance of our model was then evalu-
ated, which was the focus of our study that we attempted 
to verify whether our method could be expanded to the 
application of target prediction. For each compound to 
be predicted, a vector of 859 compound-target interac-
tion scores could be outputted by our models and the 
targets with higher scores are considered as the target 
prediction result. Therefore, the target prediction perfor-
mance was verified here using the recall rate, namely the 
fraction of the known targets identified in the top k of the 
prediction list. Undoubtedly, the performance improved 
with the increasing number of the picked targets. How-
ever, if the threshold of the number of selected targets 
is high, the number of the targets to be experimentally 
tested increases and thus the efficiency of the model 
application decreases. Inversely, if the threshold of the 

number of the selected targets is low, many targets recog-
nized as inactive might be actually active. For practicality, 
approximately the top 1–10 targets out of the total 859 
targets are proposed as the candidate targets.

The target prediction result on the stratified tenfold 
CV was showed in Table 3. The average recall rates of the 
top-1 and top-10 metrics for pair-split validation datasets 
were 28.54% and 59.50%, respectively, implying that there 
are 28.54% and 59.50% of known targets were enriched 
to the top-1 and top-10 of the ranked list by our model. 
Given that predictions were made among the 859 pos-
sible human targets, these recall rates of the top-1 and 
top-10 metrics correspond to approximately the 245-fold 
[28.54%/(1/859)] and 51-fold [59.50%/(10/859)] enrich-
ment compared to random picking, respectively [30]. As 
for the compound-split validation datasets, the average 
recall rates of the top-1 and top-10 metric were 26.78% 
and 57.96%, respectively, which refer to approximately 
the 230-fold [26.78%/(1/859)] and 50-fold [57.96%/
(10/859)] enrichments [30]. By the way, the targets to be 
correctly predicted evenly distributed across different 
target classes, which recognized the unbiased prediction 
performance for different target classes. This indicated 
that our model based on the ensemble chemogenomic 

Table 2 Prediction results of different ensemble models on the stratified tenfold CV

Methods Pair‑split Compound‑split

ACC SE SP AUC ACC SE SP AUC 

Mean 84.83 ± 0.16 86.96 ± 0.10 82.44 ± 0.24 92.84 84.41 ± 0.03 86.5 ± 0.04 82.13 ± 0.04 92.41

Maximum 80.73 ± 0.19 94.53 ± 0.08 65.39 ± 0.32 92.46 79.97 ± 0.05 94.63 ± 0.05 63.71 ± 0.08 91.98

Stacked 83.80 ± 0.23 85.07 ± 0.20 82.37 ± 0.30 91.47 82.93 ± 0.08 84.33 ± 0.08 81.40 ± 0.11 91.47

Fig. 4 ROC curves of three ensemble models on the stratified tenfold CV
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approach could push true targets at the top of the rank-
ing list and make some efforts to narrow down the poten-
tial targets to be tested.

To further verify whether our model had better target 
prediction performance than individual models based 
on various integrated descriptor groups, the prediction 
abilities of the individual models were prerecorded and 
compared with that of our model. As for the compound-
split validation, the average recall rates of the top-k tar-
gets for diffident models on the stratified tenfold CV 
datasets, were plotted in Fig.  5. As shown in Fig.  5, the 
performance of the individual models was greatly infe-
rior to that of our model. The recall value of each indi-
vidual model for top 1 was lower than 20% even lower 
than 10%, while that of our model was 26.78%. The recall 
rate of top 10 for each individual model was lower than 
40%, while that for our model was 57.96%. The recall 
values of the models in decreasing order were as fol-
lows: our model >  > ECFP4_Proa > ECFP4_Prob > Mol2d_
Proa > Mol2d_Prob > MACCS_Prob > MACCS_Proa, 
which further illustrated the robustness and predictiv-
ity of our model based on the ensemble chemogenomic 
approach for target prediction.

Target prediction performance for external test sets
To validate the generalization ability of our model on 
the external test dataset, we collected nonduplicated 

compound-target interactions with Ki less than 100 nM 
from the PDSP Ki (Psychoactive Drugs Screening Pro-
gram Ki Database,  https:// pdsp. unc. edu/ datab ases/ 
kidb. php) and NPASS databases (Natural Product 
Activity & Species Source Database) [71] to evaluate 
the ability of the model. After compound filtering and 
preprocessing, we finally obtained 442 compounds with 
778 compound-target interactions from the PDSP Ki 
database and 122 compounds with 181 compound-tar-
get interactions from the NPASS database. The two test 
datasets include 94 and 113 proteins, respectively. The 
detailed information of validation data can be seen in 
Additional file 4.

The target prediction results were shown in Table  4. 
For the compounds from the PDSP Ki database, 147 
targets (out of 778) were ranked at the top-1 of the 
predicted target list, with a recall rate of 18.89%. The 
NPASS dataset obtained a recall rate of 8.84%, indicat-
ing that 16 targets (out of 181) were successfully pre-
dicted in the top-1 list. The performance gap between 
these two datasets might be explained by the fact that 
the enough knowledge about natural products didn’t 
be well learned by the model constructed by datasets 
mostly composed of synthetic compounds. However, 
whether for the PDSP Ki dataset or NPASS dataset, 
more than 45% targets were enriched in the top-10 of 
the predicted ranking list (a recall rates of 53.34% and 
45.30% for PDSP Ki and NPASS for the top-10 predic-
tion, respectively). Although the performance of these 
external datasets was fractionally inferior to that of the 
stratified tenfold CV, it highlighted the capability of our 

Table 3 Recall rates of our model measured on the stratified tenfold CV datasets

Top1 Top3 Top5 Top7 Top9 Top10

Pair‑split 28.54 ± 1.22 43.92 ± 0.56 50.63 ± 0.46 55.00 ± 0.35 58.18 ± 0.28 59.50 ± 0.26

Compound‑split 26.78 ± 0.12 42.80 ± 0.23 49.42 ± 0.22 53.59 ± 0.17 56.69 ± 0.17 57.96 ± 0.14

Fig. 5 The recall rates of six individual models and our model within 
various top k values (k = 1–10) measured on the stratified 10‑CV

Table 4 The target prediction results of the external test sets

Top k threshold PDSP Ki (778) NPASS (181)

Count Recall (%) Count Recall (%)

Top1 147 18.89 16 8.84

Top3 257 33.03 49 27.07

Top5 322 41.39 68 37.57

Top7 363 46.66 72 39.78

Top10 415 53.34 82 45.30

https://pdsp.unc.edu/databases/kidb.php
https://pdsp.unc.edu/databases/kidb.php
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model to enrich active targets for different sets of com-
pounds, even for natural products.

Comparison with alternative approaches
Our model was compared with some state-of-the-art 
target prediction tools including SwissTargetPredic-
tion (the updated 2019 version) [30], HitPickV2 [72], 
PPB2 [73], PPB [74] and TargetNet [36]. The compari-
son dataset was from the validation data from Swis-
sTargetPrediction (from ChEMBL24) annotated as 
direct binders with the high activity (Ki, KD,  IC50 or 
 EC50) < 1 nM, associated with 1,061 ligand-target inter-
actions. The ligands present in our model were firstly 
removed from the model to rebuild a new one in order 
to avoid potential bias. The recall rate defined in this 
study was used in the comparison between our ensem-
ble model and four web tools. As the performance of 
SwissTargetPrediction on this dataset is public and its 
statistics metric is different from that of our research, 
our model was re-measured by the same statistics met-
ric to ensure fair comparison, that is, the fraction of 
compounds for which at least one known target was 
identified in the top-1 or top-15 of the prediction 
lists. The comparison results are listed in Table 5, and 
related detailed performance of individual methods 
can be seen in Additional file 5.

The comparison results with HitPickV2, PPB2, 
PPB and TargetNet showed that our model per-
formed better than any other method for the recall 
rate on top-1 predictions, including the popular Hit-
PickV2 (Recall: 26.96% vs. 24.69%) and PPB2 method 
NN(MQN) + NB(ECfp4) (Recall: 26.96% vs. 14.89%). 
For the top-10 predictions, the performance of our 
model was better than those of all other models except 
PPB2 method NN(ECfp4) + NB(ECfp4) (Recall: 63.99% 
vs. 64.75%). The above results are very encourag-
ing, especially since it is not clear whether the tested 
interaction pairs have been used in the construction of 
other models.

Comparison results with SwissTargetPrediction 
showed that for 360 molecules (72%), at least one of 
the experimentally known targets can be found among 
the predicted top-15 of SwissTargetPrediction, while 
for 379 molecules (76%), at least one of the experimen-
tally known targets can be found among the predicted 
top-15 of our method. More importantly, our model 
detected at least one known target at top-1 prediction 
for 57.0% of ligands, with 28% for SwissTargetPredic-
tion. These excellent results supported that our model 
is a strongly powerful target prediction engine to 
enrich active targets which may strongly bind/associ-
ate to compounds. It is expected to make some efforts 
for narrowing down the set of potential targets to be 

experimentally tested and to be of interest to the audi-
ences for wider scientific community.

Conclusion
Predicting targets of active compounds can augment 
modern drug discovery efforts in a range of applications, 
from the elaboration of molecular mechanisms and side-
effect to the repurposing of existing drugs, and to design-
ing novel drugs with lower toxicity and higher efficacy. 
However, identifying a direct target for active compounds 
remains a challenging task as a significant investment of 
time and resources is required for the experiments. Here, 
the chemogenomic modeling using the integrated fea-
tures of compounds and proteins can be considered as a 
promising method for target identification.

We developed a model with the multi-scale infor-
mation of chemical structures and protein sequences 
through the chemogenomic framework and the ensemble 
method to predict targets. It shows excellent target pre-
diction statistics, which means to approximately 230-fold 
and 50-fold enrichment. The performance of our model 
was greatly superior to the individual models. When 
the model was validated by external datasets including 
natural products, more than 45% targets were enriched 
in the top-10 of the prediction list. Moreover, compared 
with multiple state-of-art target prediction methods, our 
model yielded equivalent or better predictive ability on 
the top-k predictions. In summary, the ensemble chem-
ogenomic model constructed by us is expected to make 
some efforts for narrowing down the set of potential tar-
gets to be tested and speed up the process of the target 
identification.

For practicability, our model was public to facilitate 
predicting targets of interested compounds: https:// 
github. com/ Sorch aYang 00/ Chemo genom ic- Model. 
By inputting a compound, 859 targets can be hit and 
assigned by corresponding probabilities. Given the com-
plexity of the interaction pattern between compounds 
and targets and derived numerous features/variables, 
neural network may provide progressive progress of the 
chemogenomic method for target prediction.

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s13321‑ 023‑ 00720‑0.

Additional file 1. Targets that can be predicted by our model.

Additional file 2. The datasets supplied for model construction.

Additional file 3. The detailed information of the descriptors and the 
percentage of explained varianceof PCA.

Additional file 4. External test sets and corresponding validation results.

Additional file 5. Results and performance of our model and alterna‑
tive state‑of‑the‑art target prediction tools on the validation data from 
SwissTargetPrediction.

https://github.com/SorchaYang00/Chemogenomic-Model
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