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Abstract 

Drug resistance represents a major obstacle to therapeutic innovations and is a prevalent feature in prostate cancer 
(PCa). Androgen receptors (ARs) are the hallmark therapeutic target for prostate cancer modulation and AR antago-
nists have achieved great success. However, rapid emergence of resistance contributing to PCa progression is the 
ultimate burden of their long-term usage. Hence, the discovery and development of AR antagonists with capability to 
combat the resistance, remains an avenue for further exploration. Therefore, this study proposes a novel deep learn-
ing (DL)-based hybrid framework, named DeepAR, to accurately and rapidly identify AR antagonists by using only 
the SMILES notation. Specifically, DeepAR is capable of extracting and learning the key information embedded in AR 
antagonists. Firstly, we established a benchmark dataset by collecting active and inactive compounds against AR from 
the ChEMBL database. Based on this dataset, we developed and optimized a collection of baseline models by using a 
comprehensive set of well-known molecular descriptors and machine learning algorithms. Then, these baseline mod-
els were utilized for creating probabilistic features. Finally, these probabilistic features were combined and used for the 
construction of a meta-model based on a one-dimensional convolutional neural network. Experimental results indi-
cated that DeepAR is a more accurate and stable approach for identifying AR antagonists in terms of the independ-
ent test dataset, by achieving an accuracy of 0.911 and MCC of 0.823. In addition, our proposed framework is able to 
provide feature importance information by leveraging a popular computational approach, named SHapley Additive 
exPlanations (SHAP). In the meanwhile, the characterization and analysis of potential AR antagonist candidates were 
achieved through the SHAP waterfall plot and molecular docking. The analysis inferred that N-heterocyclic moieties, 
halogenated substituents, and a cyano functional group were significant determinants of potential AR antagonists. 
Lastly, we implemented an online web server by using DeepAR (at http:// pmlab stack. pytho nanyw here. com/ DeepAR). 
We anticipate that DeepAR could be a useful computational tool for community-wide facilitation of AR candidates 
from a large number of uncharacterized compounds.
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Introduction
Drug resistance represents a major obstacle to thera-
peutic innovations and are a prevalent feature in various 
cancers. The common incidence of resistance to thera-
peutic agents manifests through several mechanisms 
which allow for cancers to progress to its lethal stage [1]. 
One such cancer where resistance is common and often 
results in a severe occurrence is prostate cancer (PCa). 
PCa ranks as the fourth most commonly diagnosed can-
cer worldwide [2]. According to the International Agency 
for Research on Cancer, the estimated numbers of new 
PCa cases will rise from a total of 20,707,048 cases in 
2020 to approximately 31,123,508 cases in 2040 with an 
increase of 60.5% seen in Asia [3]. Androgens are impor-
tant for the regulation of prostate function by managing 
their proper growth and development [4–6]. Belonging 
to the nuclear receptor family, the androgen receptor 
(AR) shares genetic similarities with other well charac-
terized receptors such as estrogen receptor (ER), proges-
terone receptor (PR), glucocorticoid receptor (GR) and 
mineralocorticoid receptor (MR) that are prominently 
involved in cancers such as breast, ovarian and prostate 
cancers, to name a few.

AR is comprised of the N-terminal domain, the DNA-
binding domain and the Ligand binding domain (LBD) 
which make up its three main structural domains [7]. 
The ligand binding site or active site located in the LBD, 
is well characterized and engages with the ligand (i.e., 
agonist or antagonist) to modulate downstream action of 
AR [7, 8]. AR signaling allows for the survival and pro-
liferation of PCa cells which are precariously dependent 
on androgen stimulation. Therefore, the hallmark target 
for therapeutic agents in PCa involves the inhibition of 
androgen synthesis by preventing the transcription of AR 
activity either through chemical castration (i.e., abirater-
one acetate) [9] or AR antagonists (i.e., enzalutamide) [10, 
11]. AR inhibitors such as enzalutamide, flutamide, bical-
utamide and darolutamide which are in current clinical 
use, target the ligand binding pocket located in the LBD 
[12]. AR antagonists bind to the receptor by compet-
ing with endogenous androgens to block the transcrip-
tion activity of AR [8]. Out of the two broad types of AR 
antagonists (i.e., steroidal and nonsteroidal), nonsteroidal 
compounds do not cross react with other steroid recep-
tors (i.e., PR, MR, ER or GR) and show improved oral 
bioavailability. Hence, they are more compelling for clini-
cal applications.

The survival rate of PCa patients have been vastly 
enhanced due to successful treatments with AR antago-
nists for androgen dependent PCa. On the other hand, 
consuming incessant AR antagonists leads to the rapid 
occurrence of resistance in the LBD active site [13]. 
These AR variants can contribute to PCa progression by 

transforming AR antagonists to agonists [14]. In addi-
tion, to date, the antagonist binding mode of AR has not 
been illuminated due to the absence of an AR-antagonist 
bound crystal structure. The ligand binding pocket of 
both AR antagonists and agonists are the same amino 
acids from helix 3, helix 4, helix 5, helix 11 and helix 12 
forming polar and non-polar interactions. Among them, 
amino acids that form hotspots for the receptor specific 
binding through hydrogen bond interactions include 
Gln711 (H3), Met745 (H5), Arg752 (H5), Asn705 (H3) 
and Thr877 (H11) [8, 15–17]. Meanwhile, other auxil-
lary surface-exposed ‘pockets’ such as the activation 
function-2 (AF2) site are also present in the LBD of AR. 
The AF2 site is essential for coactivator binding and 
encompasses a hydrophobic groove composed of numer-
ous residues (such as Val716, Met734, Ile737, Gln738, 
and Met894) and flanked by charged residues (such as 
Gln733, Lys720). In 2007, the first crystal structure of 
AF2 in complex with antagonist was solved and since 
then, several other structures have been elucidated [18, 
19]. An advantage of small molecule inhibition at the AF2 
site is the direct disruption of coactivator recruitment 
as opposed to the traditional AR antagonists which act 
indirectly by inducing conformational change to prevent 
coactivator binding [18–21]. Therefore, pursuing the AF2 
binding site could not only serve as a strategy to combat 
long-term AR-antagonists induced resistance but also 
offer an alternate pharmacological target.

Moreover, the process of drug discovery in its con-
ventional form is expensive, time-consuming, and 
labor-intensive. Thus, the use of computer-aided drug 
discovery methodologies (i.e., molecular docking, molec-
ular dynamic (MD) simulations, quantitative structure–
activity relationship (QSAR), and deep learning (DL)), 
have been frequently employed to alleviate such burdens 
over the past two decades. Such studies utilized machine 
learning (ML)-based, structure-based and ligand-based 
approaches to discover potential AR modulators [22–29]. 
ML-based approaches have made significant strides in 
constructing QSAR models that can handle large bio-
logical datasets while maintaining interpretability [30]. 
DL-based techniques have also advanced significantly in 
recent years and are proving to be useful in drug mode-
ling due to the growing availability of biological data. For 
instance, Elmarakeby et al. [31] developed a biologically 
informed DL model, which were capable of stratifying 
patients with prostate cancer by their treatment-resist-
ance state and identifying molecular drivers of resistance 
for targeted therapy. Cherkasov et al. [29] employed deep 
neural networks to create DL-based models to predict 
the response of resistant mutations to anti-androgens 
and testosterone. Idakwo et al. [32] compared DL-based 
and random forest (RF)-based models for predicting AR 
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chemical toxicity and found that the DL-based models 
outperformed RF-based models by over 20% with sta-
tistical significance. Yu et  al. [33] utilized 2-D chemi-
cal structure image information as input for creating 
their DL-based model in order to predict agonist activ-
ity for AR toxicity. However, despite the progress made 
in these studies, there is a lack of interpretable DL-based 
approaches for predicting AR antagonists that can be 
deployed as a web server for community-wide usage.

Keeping these limitations in mind, we develop 
DeepAR, a DL-based hybrid framework for accurately 
and rapidly identifying AR antagonists. DeepAR is a 
structure-independent protocol, which is able to identify 

AR antagonists by using the SMILES notation without 
the use of structural information. The design and devel-
opment process of DeepAR is summarized in Fig. 1. First, 
we established a benchmark dataset by collecting antago-
nists of AR from the ChEMBL database. Second, DeepAR 
employed 12 types of molecular descriptors and 13 dif-
ferent ML algorithms to construct 156 baseline mod-
els. Subsequently, these baseline models were utilized 
for generating 156 probabilistic features (PFs). Finally, 
a meta-model based on a one-dimensional (1D) convo-
lutional neural network (1D-CNN) was developed by 
using the combination of all the 156 PFs and the stacking 
strategy. Both tenfold cross-validation and independent 

Fig. 1 System flowchart of the proposed DeepAR. The overall workflow for the development of DeepAR contains three major steps: dataset 
preparation, DeepAR optimization and construction, performance evaluation and model interpretation
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test results demonstrate that DeepAR outperformed 
several conventional ML classifiers. In addition, our pro-
posed framework is able to provide the feature impor-
tance information by leveraging a popular computational 
approach, named SHapley Additive exPlanations (SHAP). 
Furthermore, the SHAP waterfall plot coupled with 
molecular docking was employed for the characterization 
and analysis of novel AR antagonists.

Materials and methods
Construction of training and independent test datasets
The training and independent test datasets were collected 
from the ChEMBL database (Target ID: CHEMBL1871; 
version 30) [34]. At first, 10,285 compounds exhibiting 
activity towards AR was downloaded and subjected to 
data curation using our in-house code, where compounds 
having the symbol ‘ = ’ in their “Standard Value” column 
were retained while those having symbols of ‘ < , > ,/’were 
removed. In addition, redundant and missing data were 
also discarded. After which, compounds with bioactivity 
unit of  IC50 (half-maximal inhibitory concentration) with 
standard deviation of 2, were selected to form the final 
dataset which consisted of 1,309 compounds. The  IC50 
of a compound is a measure of the concentration needed 
to inhibit a specific biological activity by 50%. It serves 
as a widely accepted indicator of a compound’s potency 
in drug discovery, with compounds possessing lower 
 IC50 values generally considered to be more potent and 
exhibiting higher biological activity. To be specific, com-
pounds with  IC50 ≤ 1 μM were considered as active (posi-
tive samples), while compounds with  IC50 ≥ 10 μM were 
considered as inactive (negative samples). As a result, 
the final dataset consisted of 433 active and 409 inac-
tive compounds, respectively. Among these compounds, 
346 active and 327 inactive compounds were randomly 
selected for the construction of the training dataset 
(named AR-TRN), while the remaining compounds were 
used to create the independent test dataset consisting of 
87 active and 82 inactive compounds (named AR-IND).

Chemical space analysis
Chemical space analysis is a valuable way for explor-
ing, comprehending, and optimizing the vast range of 
potential compounds, and identifying promising new 
drug candidates. As mentioned above, all molecules 
were categorized into active and inactive groups based 
on their IC50 values. Here, we computed, graphed, and 
compared eight physicochemical properties related to 
Lipinski’s Rule of Five (Ro5) and molecular complexity 
for both groups, including molecular weight (MW), the 
Ghose-Crippen-Viswanadhan octanol-water partition 
coefficient (ALogP), number of hydrogen-bond acceptors 
(nHAcc), number of hydrogen-bond donors (nHDon), 

aromatic ratio (ARR), number of rings (nCIC), number 
of rotatable bonds (RBN), and number of benzene-like 
rings (nBnz). The Dragon software (version 6) [35] was 
employed to compute the molecular complexity descrip-
tors, whereas in-house scripts using ggplot2 package [36] 
in R program (version 4.2.2 [37]) were utilized to graph 
Lipinski’s Ro5 descriptors. In addition, we performed 
maximal, minimal, median, and mean values as well as 
determined statistical significance using p-values based 
on the Mann-Whitney U test (at the level of p < 0.001).

Molecular descriptor engineering
QSAR studies utilize molecular fingerprints to gather 
data with reference to substructures natively present in 
molecules or compounds of interest. In this study, we 
used the PADEL-descriptor software [38] to remove salt 
and normalize tautomers as part of the pre-processing 
step for standardizing compounds. The structural fea-
tures of the investigated compounds were obtained by 
using the SMILES notation as input values for the calcu-
lation of 12 molecular fingerprint descriptors (i.e., CKD, 
CKDExt, CKDGraph, AP2D, KR, MACCS, Circle, Estate, 
Hybrid, PubChem, FP4C and FP4). Table  1 highlights 
the details of each fingerprint descriptor. Herein, the 
Python environment was used for all molecular descrip-
tor extractions [39].

Deep learning‑based hybrid framework of DeepAR
Herein, DeepAR was developed based on the stack-
ing learning strategy. This strategy has been shown to 
provide an outstanding performance compared with 
single-feature-based models [40–44]. Specifically, the 
construction of the proposed DeepAR involves two main 
phases: baseline and meta models’ development (as illus-
trated in Fig.  1). In the first phase, we employ different 
ML algorithms and feature encodings to develop baseline 
models. The output of the first phase is used as the input 
to develop the meta-model based on a DL algorithm, in 
the second phase.

The first phase
In this phase, we applied 12 well-known feature encod-
ings to extract samples in the AR-TRN dataset, including 
CKD, CKDExt, CKDGraph, AP2D, KR, MACCS, Circle, 
Estate, Hybrid, PubChem, FP4C, and FP4. These molecu-
lar descriptors are widely used to represent several types 
of inhibitors [41, 45–48]. In the meanwhile, 13 popular 
ML algorithms were selected for the construction of 
baseline models, including RF, AdaBoost (ADA), light 
gradient boosting machine (LGBM), partial least squares 
(PLS), multilayer perceptron (MLP), naive Bayes (NB), 
decision tree (DT), extremely randomized trees (ET), 
extreme gradient boosting (XGB), k-nearest neighbor 
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(KNN), logistic regression (LR), support vector machine 
(SVM) combined with linear (SVMLN) and radial basis 
function (SVMRBF) kernels. As a result, we obtained 
a total of 156 baselines, which were trained and opti-
mized using the scikit-learn package (Additional file  1: 
Table  S1). In addition, we comprehensively investigated 
the contribution of the 12 feature encodings and 13 ML 
algorithms in AR antagonist prediction based on the ten-
fold cross-validation and independent tests. Herein, we 
determine the best-performing model in terms of cross-
validation MCC.

The second phase
After obtaining 156 baselines, we utilized them to gen-
erate a feature vector for the construction of the meta-
model. For a given compound C, each baseline model can 
provide the PF, which is in the range of 0–1. The feature 
vector ( FV(C) ) based on the 156 baselines can be defined 
by

where PFBMi,j is the PF derived from the baseline model 
trained with the ith ML algorithm in conjunction with the 
jth feature encoding. As a result, FV(C) was converted 
into a 156-dimensional (D) feature vector. In this study, 
we applied 1D-CNN for the construction of the meta-
model (named mCNN) because of its built-in capability 
of feature design and extraction [49–54]. For the mCNN, 
it was developed by using a single convolutional layer 
containing three region sizes (i.e., 3, 4, and 5) and each 
of region sizes involved 100 filters [55]. As a result, we 
obtained a total of 300 filters to perform 1-D convolution 
on the 156-D feature vector and created six feature maps. 
After that, the six feature maps were used to generate a 

(1)
FV(C) =

{

PFBM1,1 ,PFBM1,1 ,PFBM1,1 , . . . ,PFBMi,j , . . .PFBM13,12

}

6-D feature vector. Finally, the 6-D feature vector was 
used as input in the softmax layer for the prediction of 
compound C to be active or inactive against AR. In order 
to maximize the utilization of mCNN, we utilized the 
grid search approach to determine its optimal parameters 
(epochs ∈ {20, 50, 100, 200} and learning rate ∈ {0.00001, 
0.0001, 0.001, 0.01) by performing tenfold cross-valida-
tion on the AR-TRN dataset.

Evaluation criteria
To assess the predictive capability of our proposed model, 
we employed six well-known metrics, including F1, sen-
sitivity (Sn), specificity (Sp), Matthew’s coefficient cor-
relation (MCC), accuracy (ACC), and the area under the 
receiver operating characteristics (ROC) curve (AUC). 
These metrics are described as follows [40, 56, 57]:

where TP, FP, TN, and FN the number of true positive, 
false positive, true negative, false positive and false nega-
tive compounds, respectively.

(2)F1 = 2×
TP

2TP+ FP+ FN

(3)Sn =
TP

(TP + FN )

(4)Sp =
TN

(TN + FP)

(5)

MCC =
TP × TN − FP × FN

√
(TP + FP)(TP + FN ) (TN + FP)(TN + FN )

(6)ACC =
TP + TN

(TP + TN + FP + FN )

Table 1 Summary of twelve molecular fingerprints used in this study

Fingerprint Abbreviation #Feature Description Ref.

2D atom pair AP2D 780 Presence of atom pairs at various topological distances [83]

CDK CKD 1024 Fingerprint of length 1,024 and search depth of 8 [84]

CDK extended CKDExt 1024 Extends the fingerprint with additional bits describing ring features [84]

CDK graph only CKDGraph 1024 A special version that considers only the connectivity and not bond order [84]

Circle Circle 1024 Circular fingerprint [85]

EState EState 79 Electrotopological state atom types [86]

Hybrid Hybrid 1024 CDK hybridization fingerprint [85]

Klekota–Roth KR 4860 Presence of chemical substructures [87]

MACCS MACCS 166 Binary representation of chemical features defined by MACCS keys [88]

Pubchem Pubchem 881 Binary representation of substructures defined by PubChem [89]

Substructure FP4 307 Presence of SMARTS patterns for functional groups [90]

Substructure count FP4C 307 Count of SMARTS patterns for functional groups [90]
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Molecular docking
Herein, we collected a set of 3,811 compounds described 
with various cell-based assays (i.e.,  EC50,  Ki,  Kd, potency 
and percentage inhibition) from the CHEMBL database 
[34]. Among these compounds, DeepAR was employed 
to identify which compound was the most potential 
one, where the compounds having the highest probabil-
ity scores were deemed as promising compounds having 
activity against AR. Please note that these compounds 
were not found in the AR-TRN and AR-IND datasets. 
Molecular docking was performed to investigate the 
binding modality of the ten top-ranked compounds 
(PDB ID: 2YHD) [19]. The protein structures were pre-
pared by extracting the co-crystal ligand, removing water 
molecules and calculating the Gasteiger charges using 
MGLTools [58]. OpenBabel was used to optimize and 
generate structures with low-energy conformers of the 
input ligands [59]. The grid boxes were generated and a 
seed number of 1000 was defined using the default para-
ments of the Autodock Vina software [60]. Upon redock-
ing, the calculated RMSD between the co-crystal ligand 
and its re-docked ligand was 2.32  Å, which is satisfac-
tory for further investigation. Consequently, the built-in 
scoring function was utilized for calculating the bind-
ing energy of the predicted AR antagonists. The binding 
modality of all docked ligands were analyzed using Pro-
tein–ligand interaction Profiler (PLIP) [61] and visualized 
using PyMOL (Schrodinger, Inc.).

Results and discussion
Exploratory data analysis
In this section, we performed the chemical space analy-
sis to characterize the patterns between active and inac-
tive compounds. Initially, the general chemical space was 
visualized based on MW versus ALogP. Additionally, the 
Ro5 descriptors were employed to compare the active 
and inactive compounds. Ro5 determines the drug like-
ness of compounds based on their molecular properties 
including MW (< 500), ALogP (< 5), nHAcc (< 10), and 
nHDon (< 5) [62]. The visualization of the MW chemi-
cal space as a function of ALogP is displayed in Addi-
tional file  1: Fig. S1. The majority of compounds were 
clustered within the MW range of 200–500  Da with an 
ALogP between 1 and 6. Furthermore, Additional file 1: 
Fig. S2 shows the distribution of active and inactive com-
pounds based on the Ro5 descriptors. It was observed 
that the compounds adhered to the Ro5 criteria with a 
MW of less than 500  Da, ALogP less than 5, and nHB-
Don and nHBAcc less than 10. The statistical analysis 
computed through the Mann–Whitney U  test revealed 
a significant difference (p < 0.001) between the active and 
inactive compounds in terms of MW. Most of the active 

compounds had lower MW (347.15 ± 85.69) than inac-
tive compounds (364.13 ± 87.57), as observed from the 
mean values of boxplots in Additional file 1: Fig. S2. Simi-
larly, nHBAcc values of 3.32 ± 2.07 and 3.62 ± 2.01 were 
significantly different between the active and inactive 
compounds, respectively. However, the ALogP values for 
active (3.71 ± 1.14) and inactive (3.92 ± 1.38) compounds 
were only slightly significant. Additionally, both active 
and inactive compounds had similar nHBDon values, 
which were not statistically significant.

Furthermore, the clinical success of a compound 
depends on various factors, including its molecular com-
plexity, which is determined by properties such as aro-
maticity, the number of rings, chiral centers, fused rings, 
functional groups, and the number of rotatable bonds 
[54]. These properties, in turn, can impact crucial bio-
logical events such as solubility, oral bioavailability, and 
toxicity [55]. In this study, we analyzed four descriptors 
–ARR, nCIC, RBN, and nBnz—to determine the molecu-
lar complexity of the studied compounds and compared 
them between the active and inactive groups. Additional 
file 1: Fig. S3 displays a box plot of these descriptors. Our 
results indicate that active compounds possess a lower 
ARR ratio, fewer rotatable bonds, and benzene-like rings 
compared to inactive compounds, and these differences 
are statistically significant (p < 0.001).

Overall prediction results from different ML algorithms 
and molecular descriptors
In this section, we conducted a comparative analysis of 
156 ML classifiers trained with 13 ML algorithms and 12 
molecular descriptors. The performance of each classifier 
was evaluated based on both tenfold cross-validation and 
independent tests. As mentioned above, the ML classifier 
having the highest cross-validation MCC was deemed as 
the best-performing model. Figure 2 and Additional file 1: 
Tables S2–S4 show the performance of all the ML classi-
fiers developed herein. We notice that the top five pow-
erful ML classifiers consisted of LGBM-Circle, ET-Circle, 
SVMRBF-PubChem, LGBM-PubChem, and SVMRBF-
Hybrid with respective MCC of 0.758, 0.755, 0.752, 0.752, 
and 0.752. In the meanwhile, Additional file 1: Table S4 
shows that the top three important descriptors were 
Hybrid, Circle, and PubChem with respective average 
MCC of 0.701, 0.698, and 0.695. Interestingly, all of the 
top five ML classifiers were developed from these impor-
tant descriptors. This indicates that Hybrid, Circle, and 
PubChem could be more important for AR antagonist 
prediction as compared with the remaining molecu-
lar descriptors. Based on the cross-validation results, 
LGBM-Circle was indicated as the best-performing 
model, while this model had MCC of 0.752 with ACC 
of 0.876 and AUC of 0.938 in terms of the independent 
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test. On the other hand, RF-Hybrid provided the high-
est MCC of 0.834 with ACC of 0.917 and AUC of 0.935 
in terms of the independent test. This evidence indicates 

that single-feature-based models could not provide a 
stable performance on both the AR-TRN and AR-IND 
datasets.

 

A 

B 

Fig. 2 MCC values of 156 baseline models in terms of tenfold cross-validation (A) and independent (B) tests
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Performance evaluation of DeepAR
In order to improve the stable performance of AR antag-
onist prediction, we integrated several ML classifiers to 
develop a meta-model by using the stacking strategy. 
Specifically, we employed CNN model in conjunction 
with the 156-D feature vector for the construction of the 
meta-model (DeepAR). As seen in Tables  2, 3, DeepAR 
achieves MCC of 0.762 and 0.823 in terms of the AR-
TRN and AR-IND datasets, respectively. Remarkably, 
DeepAR provided ACC of 0.911, Sn of 0.897, Sp of 0.927, 
and AUC of 0.945 on the AR-IND dataset. In addition, 
we compared its performance with that of other meta-
models trained with 13 ML algorithms and the same 

156-D feature vector. In Table 2, we notice that DeepAR, 
mRF, and mLGBM achieved a similar performance and 
outperformed other meta-models in terms of cross-
validation MCC with a range of 0.762–0.770. In case of 
the independent test results, ACC and MCC of DeepAR 
were 2.34 and 4.63–4.80% higher than mRF and mLGBM 
(Table 3).

DeepAR is able to improve the predictive performance
To show that our proposed DeepAR is better than 
other conventional ML classifiers, we designed two 
sets of the comparative analysis. For the first com-
parative analysis, we compared the performance of 

Table 2 Cross-validation results of different stacked models on the training dataset

Meta‑model ACC Sn Sp MCC AUC F1

DeepAR 0.880 0.861 0.899 0.762 0.941 0.880

RF 0.884 0.887 0.881 0.770 0.952 0.887

LGBM 0.880 0.898 0.859 0.762 0.945 0.885

SVMRBF 0.878 0.893 0.862 0.758 0.923 0.882

XGB 0.877 0.901 0.850 0.755 0.942 0.882

LR 0.877 0.901 0.850 0.755 0.946 0.883

PLS 0.877 0.893 0.859 0.755 0.946 0.881

NB 0.877 0.887 0.866 0.755 0.919 0.881

ET 0.875 0.887 0.862 0.753 0.949 0.880

MLP 0.874 0.881 0.866 0.750 0.938 0.877

KNN 0.869 0.887 0.850 0.739 0.869 0.874

SVMLN 0.866 0.887 0.844 0.735 0.921 0.872

ADA 0.854 0.867 0.841 0.711 0.923 0.860

DT 0.853 0.846 0.859 0.709 0.853 0.854

Table 3 Independent test results of different stacked models on the independent test dataset

Meta‑model ACC Sn Sp MCC AUC F1

DeepAR 0.911 0.897 0.927 0.823 0.945 0.912

RF 0.888 0.862 0.915 0.777 0.941 0.888

LGBM 0.888 0.885 0.890 0.775 0.947 0.890

SVMRBF 0.864 0.851 0.878 0.728 0.913 0.865

XGB 0.864 0.839 0.890 0.729 0.949 0.864

LR 0.893 0.874 0.915 0.788 0.949 0.894

PLS 0.893 0.874 0.915 0.788 0.951 0.894

NB 0.888 0.862 0.915 0.777 0.906 0.888

ET 0.899 0.897 0.902 0.799 0.952 0.902

MLP 0.876 0.839 0.915 0.754 0.927 0.874

KNN 0.834 0.816 0.854 0.670 0.835 0.835

SVMLN 0.846 0.816 0.878 0.694 0.913 0.845

ADA 0.858 0.828 0.890 0.718 0.922 0.857

DT 0.822 0.816 0.829 0.645 0.823 0.826
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DeepAR with single-feature-based models. As can be 
seen from Table  4, DeepAR achieved an overall best 
performance compared with the best single-feature-
based model (i.e., LGBM-Circle) in terms of ACC, Sp, 
MCC and AUC on both the AR-TRN and AR-IND 
datasets. On the AR-IND dataset, MCC, ACC and Sp 
of DeepAR were 7.10, 3.53, and 3.66% higher than the 
LGBM-Circle, respectively. In addition, we also com-
pared the performance of DeepAR with ML classifiers 
trained with all the 12 molecular descriptors in the 

second comparative analysis. Additional file  1: Tables 
S5, S6 show that the highest MCC in terms of the ten-
fold cross-validation test is achieved by MLP (referred 
MLP-All herein). By comparing with MLP-All on the 
AR-IND dataset, DeepAR exhibited better MCC, ACC, 
Sn, and Sp with respective increase of 4.74, 2.34, 2.30, 
and 2.44% (Fig.  3 and Table  4). Taken together, these 
results confirmed the predictive capability of DeepAR 
for enhancing the AR prediction performance. Fur-
thermore, its high Sp and MCC values reveal that the 

Table 4 Performance comparison of DeepAR and conventional ML classifiers on the training and independent test datasets

Evaluation strategy Method ACC Sn Sp MCC AUC F1

Cross-validation LGBM-Circle 0.878 0.890 0.865 0.758 0.938 0.882

MLP-All 0.886 0.907 0.862 0.774 0.934 0.891

DeepAR 0.880 0.861 0.899 0.762 0.941 0.880

Independent test LGBM-Circle 0.876 0.862 0.890 0.752 0.938 0.877

MLP-All 0.888 0.874 0.902 0.776 0.949 0.889

DeepAR 0.911 0.897 0.927 0.823 0.945 0.912

Fig. 3 Performance comparison of DeepAR with LGBM-Circle and MLP-All on the Main-TRN (A, B) and Main-IND (C, D) datasets. Prediction results of 
StackPR with the top five baseline models in terms of MCC, Sn, Sp and MCC (A, C). ROC curves and AUC values of StackPR with the top five baseline 
models (B, D)
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proposed DeepAR could precisely identify active AR 
compounds from a huge number of compounds found 
in several public databases.

Application of DeepAR to characterize AR antagonists
Herein, the popular SHAP framework [70] implemented 
by Lundberg and Lee [63] was utilized to reveal which 
features are beneficial for DeepAR. Specifically, features 
contributing to the global impact of active and inactive 
compounds are indicated by positive and negative SHAP 
values, respectively, where positive and negative SHAP 
values indicated on the positive and negative scales 
are highly impactful for active and inactive compound 

substructures, respectively. Figure  4A, B show that five 
top-ranked important features for DeepAR consist of 
KNN-CKDExt, KNN-Hybrid, MLP-CKD, MLP-Circle, 
and MLP-CKDExt. It is worth noting that the LGBM-
PubChem model ranked at number 11. This model is con-
sidered interpretable due to its utilization of PubChem 
substructure fingerprint descriptors, which are known 
for their interpretability. Thus, we employed this model 
in conjunction with the SHAP framework to provide bet-
ter understanding of potential substructures of AR antag-
onists. As seen in Fig. 4C, D along with Table 5, six out 
of the top-twenty informative features involve four nitro-
gen-containing (i.e., PubChemFP821, PubChemFP419, 

Fig. 4 Feature importance from DeepAR (A, B) and LGBM-PubChem (C, D) as ranked by SHAP values based on the training dataset. A, C Magnitude 
and direction of the contribution of each feature to the model prediction of AR antagonists. B, D Mean absolute SHAP values, where positive and 
negatives SHAP values influences the predictions toward positive and negative samples, respectively
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PubChemFP800, and PubChemFP338) and two aromatic 
features (i.e., PubChemFP797 and PubChemFP777). This 
indicates that compounds with nitrogen and aromatic 
features represent substructures having a high influence 

on AR antagonism. Exploring further into the description 
of the PubChem features (Table 5), provides insight that 
the nitrogen-containing features pertain to N-methylcy-
clohexanamine and a cyano group. These scaffolds are 
observed as part of an active substructure in extensively 
studied AR antagonists bicalutamide, apalutamide, enza-
lutamide, and darolutamide where the cyano group of the 
benzonitrile moiety has been identified as a key interac-
tion involved in amino acid binding in the LBD [8]. In 
addition, nitrogen-containing heterocyclic moieties make 
up 75% of current market available drugs approved by the 
FDA as they exhibit anticancer pharmacological profiles 
[8, 64, 65].

Application of DeepAR for the large‑scale identification 
of novel AR antagonists
In this section, we employed DeepAR to calculate the 
probabilities of 3,811 compounds in order to determine 
the most potential compounds having activity against 
AR. Table 6 lists the top-ten compounds with the high-
est probability scores of being AR antagonists, while 
Additional file 1: Fig. S4 shows the structures of the com-
pounds. In addition, we conducted molecular docking 
to discern the binding mode and binding affinities of the 
compounds. As previously mentioned, the AF2 site offers 
an alternate binding target and thus, the crystal structure 
of AR with the antagonist bound to the allosteric AF2 site 
(PDBID: 2YHD) was used for the docking study. Table 6 
shows that CHEMBL3233070, CHEMBL3238281, and 
CHEMBL3233072 achieved similar docking scores of 
− 6.8, − 6.9, and − 6.7 kcal/mol, respectively. To be spe-
cific, the ranks (probability, docking score) of the top-
three compounds, CHEMBL3233070, CHEMBL3238281, 
and CHEMBL3233072 were (5, 2), (9, 1), and (10, 3), 

Table 5 Summary of the top-twenty important features ranked 
by SHAP values along with their corresponding SMARTS patterns 
and substructure description

Feature SMARTS pattern Substructure description

PubChemFP821 CC1C(N)CCCC1 2-methylcyclohexan-1-amine

PubChemFP419 C≡N Cyano group

PubChemFP800 CC1CC(N)CCC1 3-methylcyclohexan-1-amine

PubChemFP712 C–C(C)-C(C)-C 2,3-dimethylbutane

PubChemFP516 [#1]-C = C-[#1] Ethene

PubChemFP259  ≥ 3 aromatic rings Greater than 3 cyclic rings

PubChemFP564 C = C–C = C Buta-1,3-diene

PubChemFP818 CC1C(C)CCCC1 1,2-dimethylcyclohexane

PubChemFP299 N–H Imidogen

PubChemFP797 CC1CC(C)CCC1 1,3-dimethylcyclohexane

PubChemFP403 N(:C)(:C)(:C) N,N-dimethylmethanamine

PubChemFP338 C(~ c)(~ c)(~ H)(~ N) Propan-2-amine

PubChemFP186  ≥ 2 saturated or 
aromatic carbon-
only ring size 6

Greater than 2 saturated or aro-
matic carbon-only six-member 
cyclic ring

PubChemFP185  ≥ 2 any ring size 6 Greater than 2 six-member cyclic 
ring

PubChemFP777 cc1ccc(o)cc1 4-methylphenol

PubChemFP15  ≥ 2 N Greater than 2 nitrogen atoms

PubChemFP641 O-C–C-C = C But-3-en-1-ol

PubChemFP422 N = N Diazene

PubChemFP193  ≥ 3 saturated or 
aromatic carbon-
only ring size 6

Greater than 3 saturated or aro-
matic carbon-only six-member 
cyclic ring

PubChemFP495 C-N–C:C N-methylethanamine

Table 6 Summary of the top ten compounds from DeepAR screening with their SMILES notation, probability and corresponding 
docking scores

CHEMBL ID SMILES Probability Docking 
score (Kcal/
mol)

CHEMBL3238279 C[C@](O)(COc1ccccc1Cl)C(= O)N1CCc2c(C#N)cccc21 0.96041 − 6.0

CHEMBL3233069 COc1ccc(OC[C@](C)(O)C(= O)N2CCc3c(C#N)cccc32)c(Cl)c1 0.96038 − 5.2

CHEMBL3238280 C[C@](O)(COc1ccc(Br)cc1)C(= O)N1CCc2c(C#N)cccc21 0.96033 − 6.5

CHEMBL3238276 C[C@](O)(COc1ccccc1F)C(= O)N1CCc2c(C#N)cccc21 0.96032 − 6.6

CHEMBL3233070 C[C@](O)(COc1ccc(Cl)cc1F)C(= O)N1CCc2c(C#N)cccc21 0.96030 − 6.8

CHEMBL3238274 C[C@](O)(COc1ccc(F)cc1)C(= O)N1CCc2c(C#N)cccc21 0.96029 − 6.4

CHEMBL3238278 C[C@](O)(COc1cccc(Cl)c1)C(= O)N1CCc2c(C#N)cccc21 0.96023 − 6.3

CHEMBL3238277 C[C@](O)(COc1ccc(Cl)cc1)C(= O)N1CCc2c(C#N)cccc21 0.96022 − 6.4

CHEMBL3238281 C[C@](O)(COc1ccc(C(F)(F)F)cc1)C(= O)N1CCc2c(C#N)cccc21 0.96022 − 6.9

CHEMBL3233072 C[C@](O)(COc1ccc(Br)cc1F)C(= O)N1CCc2c(C#N)cccc21 0.96022 − 6.7
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respectively. Thus, these three compounds were chosen 
for further investigation.

Figure  5 shows the protein structure of AR with the 
top-three compounds (Additional file 1: Fig. S5) as deter-
mined by docking. The binding poses of the docked com-
pounds in the AF2 binding site were flanked by residues 
of H3, H5, and H12. Upon binding of agonist or antag-
onist, H12 undergoes a conformational change which 
modulates AR activation. Structural analysis has revealed 
the role of key residues (i.e., Val716, Lys720, Met734, 
Ile737, Gln738, Met894, and Glu897) involved in the 
binding of coactivator proteins which shows differential 
binding when bound to antagonist as compared to ago-
nist. The structural change of H12 is a key factor that 
blocks the AF2 site from binding to coactivator protein 
[15]. Figure  6 illustrates the residues involved in mak-
ing polar and hydrophobic contacts between the AF2 
allosteric site and the top three compounds. As can be 
observed from Fig. 6A, C, E, all three compounds form 
hydrogen bonds with Lys720, Gln733, and Gln738with 
the exception of CHEMBL3238281 which has an extra 
hydrogen bond with Val713. In addition, hydrophobic 
interactions were observed with residues Val713, Val716, 

Met734, and Ile737 for all the three compounds with 
the exception of CHEMBL3233070 which did not form 
a hydrophobic interaction with Val713. Interestingly, 
Val713 has not previously been observed as a residue 
involved in hydrophobic interactions to either co-activa-
tor or the antagonist ligand (co-crystal structure) of the 
AR protein. Hence, contact made with these residues by 
the top three compounds may contribute to the overall 
antagonistic effect.

Taking it a step further, we applied the combination of 
LGBM-PubChem and SHAP waterfall plots on the top-
ten individual compounds to elucidate their features gov-
erning substructures for being AR antagonists (Fig. 6 and 
Additional file 1: Fig. S5). Figure 6B, D, F shows the SHAP 
waterfall plots of the top-three compounds. The contri-
bution of each input value, either positive or negative, is 
highlighted through the SHAP waterfall plot towards the 
overall plausibility of a compound being an AR antago-
nist. As can be observed, the top-three features (i.e., 
PubChemFP821, PubChemFP419, and PubChemFP800) 
were present in all of the top-three compounds with 
high SHAP value (red colour) for all the compounds. Of 
note, the top-three features present in all compounds 
were also shown to be the top-three features in the top-
twenty informative features mentioned above (Fig.  3). 
This indicates that PubChemFP821, PubChemFP419, 
and PubChemFP800 could be important substruc-
ture features for being AR antagonists and they per-
tain to 2-methylcyclohexan-1-amine, cyano group and 
3-methylcyclohexan-1-amine (Table  5), respectively 
which have been discussed in the previous section.

Delving deeper into the individual compound features 
to investigate the underlying scaffold structures, it can 
be observed that all three compounds have an indoline-
4-carbonitrile backbone and differ only at their side 
chains (Additional file 1: Fig. S4). The indole ring moiety 
forming part of the N-heterocyclics are commonly found 
in the natural environment and have been utilized as 
structural components of many therapeutic drugs for the 
treatment of microbial infections, cancers and inflamma-
tion [65]. Besides the top three features, PubChem342, 
PubChem299, and PubChem328 are unique contribut-
ing features for CHEMBL3238281, CHEMBL3233070, 
and CHEMBL3233072 respectively. Along with these, 
PubChem259 and PubChem308 corresponding to cyclic 
rings and hydroxide (OH) group, respectively were 
significant contributing features present in the com-
pounds. PubChem342 pertains to fluromethane which 
is directly correlated to the trifluromethyl group  (CF3) 
seen in CHEMBL3238281. The primary feature contrib-
uting trifluoromethyl analogue allows for the formation 
of hydrogen bond with Val713 in the AF2 site which is 
absent in the interactions of the other two compounds 

Fig. 5 Superimposed docked pose of AR (PDB ID: 2HYD) and the 
top three compounds with highest probabilities as measured by 
DeepAR where green, orange and magenta colours represent 
the carbon backbone of CHEMBL3238281, CHEMBL3233070 and 
CHEMBL3233072, respectively
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Fig. 6 Close-up views of the binding interactions and corresponding SHAP waterfall plot of AR-CHEMBL3238281 (A) and (B), AR-CHEMBL3233070 
(C) and (D) and AR-CHEMBL3233072 (E) and (F). Hydrogen bond and hydrophobic interactions are shown with straight line and dotted lines, 
respectively while SHAP values are shown in red (high value) and blue colours (low value) influencing the predictions toward positive and negative 
samples, respectively
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(Fig. 6A, C, E). 20–25% of pharmaceutical drugs contain 
fluorine either by direct fluorination or by incorporation 
of fluorinated functional groups. The existence of fluo-
rine in these drugs has been shown to influence hydro-
gen bonding and electrostatic interactions of bound 
ligands [66, 67]. Furthermore, non-steroidal selective 
androgen receptor modulators (SARMs) such as Enobo-
sarm, contains a CF3 group and has been fast-tracked by 
the FDA for the treatment of patients with AR-positive, 
ER-positive, and human epidermal growth factor recep-
tor 2 (HER2)-negative metastatic breast cancer, based on 
data from the phase 3 ARTEST clinical trial [68]. In addi-
tion, the influence of trifluoromethyl can be due to their 
strong electron-withdrawing property [69–71].

PubChem299 feature corresponds to N–H which is 
part of the pyrrole heterocyclic ring forming the indole 
substructure of CHEMBL3233070 (Additional file 1: Fig. 
S4). Interestingly, the pyrrole moiety is present in vari-
ous active compounds exhibiting anticancer, antibacte-
rial, anti-inflammatory and anti-hypertensive properties 
[72]. Numerous research into the potential of pyrrole 
and its derivatives as a highly active scaffold has previ-
ously been explored [73–75]. In addition, recent studies 
pertaining to pyrrole-imidazole modified compounds 
have shown potency against castration resistant prostate 
cancers which develop through resistance to androgen 
depletion therapy [76] and enzalutamide-resistant pros-
tate cancers activated by an alternative nuclear hormone 
receptor such as GR [77]. Thus, compounds contain-
ing this privileged substructure are promising for future 
investigations.

PubChem328 corresponds to isopropyl bromide which 
is a halogenated hydrocarbon. CHEMBL3233072 has 
a bromine substituent as part of its molecule. Although 
the Br substituent does not make direct interactions with 
residues in the AF2 binding pocket (Fig. 6E), it could still 
contribute through atomic parameter contributions (i.e., 
electrostatic or Van der Waals interactions). In addition, 
the presence of halogen (Cl, F, and Br)-substituted com-
pounds were shown to have remarkable inhibitory activ-
ity when compared with electron-donating substituents 
as deduced from SAR studies [78, 79]. Intriguingly, sev-
eral research has indicated the potency of brominated 
small molecule derivatives which have displayed anti-
cancer activity toward both prostate and breast cancer 
cells while exhibiting no viable effect on noncancer cells 
[80–82]. Therefore, halogenated compounds warrant fur-
ther investigation for their role as potential AR inhibitors. 
Taken together, the feature importance analysis based 
on SHAP and their contributions towards candidate AR 
antagonists predicted by our proposed framework, pro-
vide useful insights into further design and development 
of AR antagonists.

DeepAR webserver
Herein, a webserver for our proposed model DeepAR, 
has been constructed to provide the scientific com-
munity with a practical tool that can be widely used 
for performing high-throughput identification of AR 
antagonists in an economic manner. Precisely, the 
chemical compound of interest is input as a SMILES 
notation into the DeepAR webserver after which, the 
prediction results are attained. A step-by-step guide-
line on the usage of the webserver is available for access 
at http:// pmlab stack. pytho nanyw here. com/ about_ 
DeepAR. This user-friendly web server is available at 
http:// pmlab stack. pytho nanyw here. com/ DeepAR.

Conclusion
In this study, we have presented DeepAR, which is a 
DL-based hybrid framework for accurate AR antago-
nist identification in an economic manner. Specifi-
cally, DeepAR was constructed by using a collection of 
156 baseline models trained with 12 types of molecu-
lar descriptors and 13 different ML algorithms. Then, 
all the 156 baseline models were used to generate 156 
PFs. Finally, the combination of all the 156 PFs were 
inputted into 1D-CNN for the construction of the 
meta-model by using the stacking strategy. The major 
contributions of DeepAR are as follows: (i) DeepAR is 
the first stacked ensemble learning framework designed 
for the identification and interpretation of AR antag-
onists. Remarkably, DeepAR is able to identify AR 
antagonists by using the SMILES notation without the 
use of structural information, highlighting its great 
capability for the high-throughput identification of AR 
antagonists.; (ii) DeepAR is capable of extracting and 
learning the key information embedded in AR antago-
nists by integrating a total of 156 baseline models; (iii) 
Comparative analysis in terms of the independent test 
dataset was sufficient to demonstrate the superior per-
formance of DeepAR compared with several conven-
tional ML classifiers, by achieving ACC of 0.911, MCC 
of 0.823, and AUC of 0.945; (iv) The SHAP-derived 
important features can determine the contributions of 
individual components for being AR antagonists which 
attribute to N-heterocyclics, halogenated substituents 
and cyano group; (v) Molecular docking highlights 
the interactions of potential AR antagonists identified 
through DeepAR; and (vi) We implemented an online 
web server (at http:// pmlab stack. pytho nanyw here. com/ 
DeepAR) to facilitate experimental researchers for the 
large-scale identification of novel AR antagonists for 
follow-up experimental validation.

http://pmlabstack.pythonanywhere.com/about_DeepAR
http://pmlabstack.pythonanywhere.com/about_DeepAR
http://pmlabstack.pythonanywhere.com/DeepAR
http://pmlabstack.pythonanywhere.com/DeepAR
http://pmlabstack.pythonanywhere.com/DeepAR
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Cross-validation results of 13 different ML algorithms trained with the 
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Ghose-Crippen-Viswanadhan octanol-water partition coefficient (ALogP) 
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of the chemical space of inhibitors against AR, where active and inactive 
compounds are shown in peach and teal colors, respectively. Figure S2. 
Box plots of Lipinski’s rule-of-five descriptors. The four rule-of-five descrip-
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(A), CHEMBL3233069 (B), CHEMBL3238280 (C), CHEMBL3238276 
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