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Abstract 

We derived and implemented a linear classification algorithm for the prediction of a molecule’s odor, called Olfactory 
Weighted Sum (OWSum). Our approach relies solely on structural patterns of the molecules as features for algorithmic 
treatment and uses conditional probabilities combined with tf-idf values. In addition to the prediction of molecular 
odor, OWSum provides insights into properties of the dataset and allows to understand how algorithmic classifica-
tions are reached by quantitatively assigning structural patterns to odors. This provides chemists with an intuitive 
understanding of underlying interactions. To deal with ambiguities of the natural language used to describe odor, 
we introduced descriptor overlap as a metric for the quantification of semantic overlap between descriptors. Thus, 
grouping of descriptors and derivation of higher-level descriptors becomes possible. Our approach poses a large leap 
forward in our capabilities to understand and predict molecular features.
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Introduction
The sense of smell is one of the five classical human 
senses and plays an important role in our everyday life. 
Even newborns demonstrate olfactory capabilities by 
responding to the smell of their mother’s breasts [1] and 
human mate choice could be influenced by odor prefer-
ences [2]. Food odors influence appetite and hunger [3, 
4] and threat-relevant odors can strengthen human fear 
memory [5]. Despite their apparent importance, the Eng-
lish language has no abstract words for odors as it has 
for colors (e.g. “blue”) and even native speakers struggle 
when naming smells [6]. Our perception of odors, and 

therefore the naming of smells depends on many subjec-
tive factors such as age, cultural background or personal 
experience [7], or training (compare wine experts [8, 9]). 
Odors also play a significant economic role, particularly 
in the food or cosmetic industry, where the develop-
ment of new aromas and flavors and the identification 
of odor active molecules is essential. For the creation of 
new odorants, a predictive approach is necessary dur-
ing molecular design to reduce the space of candidate 
molecules from virtually anything to a promising range 
of molecule structures. Though many advances in odor 
prediction have been achieved in recent years [10–20], 
we unfortunately still know little about the relationship 
between a molecule’s structure and its odor [21–23] to 
an extent where we can provide chemists with a toolbox 
for designing molecular structures with a specific odor 
in mind. However, sophisticated computational methods 
have led to new insights into these relationships [24–26] 
and allow prediction whether a molecule is odorous at 
all [27]. Adding to the hurdles in the field, there is dis-
pute over the dimensionality of the odor space [7, 28]. 
To derive the rather vague property of odor from objec-
tively measurable or computable molecular properties, 
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a relationship between physicochemical parameters and 
odor can be employed. As such, the pleasantness of mol-
ecules was identified as one of the main dimensions in 
human olfactory perception [29-31]. Several methods 
have been proposed to predict the pleasantness of mol-
ecules [32] or odor mixtures [33, 34]. Overall, more and 
more machine learning approaches are applied in human 
olfactory research [35]. These can be combined with elec-
tronic noses [32, 36, 37], GC [38], MS [39, 40], or GC-O 
methodology [12].

To predict a specific odor, Keller et  al. [10] explored 
the performance of 22 different machine learning mod-
els regarding the prediction of 19 odor descriptors. Based 
on the good performance of linear models, the authors 
concluded that a linear, additive effect of the features 
on olfactory perception exists [10]. However, non-lin-
ear approaches like random forest and deep neural net-
works as well achieve high predictive accuracies [11, 15, 
16, 41], also for predicting the odor of mixtures [13]. 
Above-mentioned models use a wide range of computed 
molecular features and not all of them are easily inter-
pretable. Physicochemical as well as structural features 
were obtained for example using the Dragon chemoinfor-
matics software (Kode Chemoinformatics, Pisa), PaDel 
[42], or Mordred [43].

Though promising and useful in their own rights, the 
models mentioned above use a wide range of different 
features that do not allow a deep insight into the mecha-
nism of prediction. In addition, due to the opaque nature 
of the algorithms, the models in previous work rather 
act as black boxes. Therefore, even if high accuracies are 
achieved that enable a reliable odor prediction, we still 
lack knowledge of structure-odor  relationships using 
these models. Further, to predict an odor, the corre-
sponding molecule has to be already synthesized and/or 
knowledge about physical properties must exist. In addi-
tion, though naming smells is subjective, information was 
rarely provided on why specific descriptors were used for 
the prediction. As such, clustering odor descriptors is 
an effective strategy for predicting structure-odor  rela-
tionships [37, 44], but also the use of word embeddings 
[45]. Using quasi-primary odors [46] instead of spe-
cific descriptors could also reduce the dimensionality of 
descriptors.

In this paper, we present the new linear classification 
algorithm Olfactory Weighted Sum (OWSum) which is 
based on conditional probability models and the estab-
lished algorithm AWSum [47]. OWSum calculates  a 
conditional probability for each feature (i.e. structural 
pattern) and class (i.e. odor descriptor) that can be fur-
ther modified by applying a weighting function. This 
results in an influence value I per feature and descriptor. 
The highest sum per descriptor of all influence values of 

occurring features in a molecule predicts the odor (see 
Methods for a detailed explanation as well as Fig. 1 for a 
schematic overview).

Besides the prediction of odors, OWSum provides 
insights into the prediction process and allows ranking 
structural patterns and identifying their impact on the 
odor of a molecule. Quality in the choice of descriptors 
used to label odor impressions is crucial for predictive 
power. As such, we implemented the metric descriptor 
overlap, quantifying semantic similarity of two descrip-
tors. OWSum builds on the concept that the overall shape 
of a molecule is responsible for its odor [48, 49]. As prop-
erties like the molecular weight or topological molecu-
lar indices are also a result of the chemical structure of 
a molecule, OWSum succeeded to use solely the struc-
ture and its patterns (chemical fragments) as features for 
prediction. As a direct consequence, this approach gives 
insight into the relationship between a molecule’s struc-
ture and its odor. OWSum quantifies this relationship by 
assigning each structural pattern a value for its influence 
on an odor percept. This value can be interpreted as the 
impact of the pattern for the odor.

To analyze the semantic overlap of descriptors using 
descriptor overlap and perform odor prediction as well 
as gaining insight into structure-odor  relations using 
OWSum, we used molecules and their odors from 
Dravnieks’ database [50]. Our explicit databases are 
described in detail in the method section. Figure 1 shows 
a schematic overview of the workflow of OWSum.

Results and discussion
Olfactory databases are often the results of a panel test-
ing, in which panelists provide different descriptors while 
referring to the same smell due to subjective, individual 
preferences and experiences [7, 9]. This means that the 
databases provide a wide range of not necessarily mutu-
ally exclusive  descriptors, or even describe identical 
features. A problem with such databases is that for the 
prediction of the odor of molecules, descriptors should 
be as selective and specific as possible. Otherwise, the 
algorithm cannot learn efficiently from the training set. 
Further, if descriptors are included that describe a wide 
range of smells, pure guessing on these descriptors would 
reach high accuracy.

The metric descriptor overlap allows to optimize the 
choice of descriptors for prediction and learn about 
structure-odor  relationships. Analyzing 97 odor mol-
ecules belonging to eleven olfactory descriptors (‘aro-
matic’, ‘floral’, ‘fragrant’, ‘heavy’, ‘light’, ‘medicinal’, 
‘sickening’, ‘sweet’, ‘woody, resinous’, ‘fruity, other than 
citrus’ and ‘perfumery’) of Dravnieks’ atlas of odor 
character profiles [50] (see Method section for details 
how this database was created) revealed that more than 



Page 3 of 11Schicker et al. Journal of Cheminformatics           (2023) 15:51  

a third of the molecules of the database smell like more 
than one of these. Figure  2 visualizes this relationship 
and semantic overlap.

Computing the descriptor overlap pairwise for all 
descriptors, we quantitatively analyzed the descrip-
tors of the database to identify highly similar odors 
(Fig.  3). ‘Aromatic’ and ‘fragrant’ had a mean descrip-
tor overlap with the other descriptors of over 50%, ‘fra-
grant’ with the majority of the other descriptors even 
over 90%. Only in combination with the descriptors 
‘heavy’ and ‘sickening’ low descriptor overlaps occurred 
(< 20%): Whereas ‘aromatic’ and ‘fragrant’ belong to 
pleasant odors, ‘heavy’ and ‘sickening’ are perceived 
as unpleasant [51]. This confirms that both ‘aromatic’ 
and ‘fragrant’ are rather broad-spectrum descriptors 
and do not describe specific odors [52], but are used 
for a wide range of different pleasant smells. As such, 
the two descriptors act as higher-level categories. The 
same is valid for the descriptor ‘sweet’. After dropping 
the three descriptors ‘aromatic’, ‘fragrant’, and ‘sweet’, 
the mean descriptor overlap for all remaining descrip-
tors was lower than 25%. These properties describe spe-
cific smells with limited relationships. As a conclusion, 
the metric descriptor overlap can reliably detect non-
selective and non-sensitive descriptors in our data-
base and describe relations in a quantitative way. This 

Fig. 1 Schematic workflow of a two-dimensional prediction of the odor of a molecule using same-weighted OWSum. A training set contains 
molecules together with their descriptors (here floral and medicinal) and extracted features that are structural patterns. For simplicity, we only 
regard three features. Based on the training set, OWSum calculates the influence I by multiplying the weight G with the weighting factor a (here 
1 as we use the same-weighted OWSum). For the prediction of a molecule, all features that occur in that molecule are considered, in this case the 
first and the second feature ([CX4H3] and [CX4]). By summing up their influence, OWSum calculates one score per descriptor. As the score for floral 
(1.67) is higher than the score for medicinal (1.50), OWSum predicts the odor floral. As floral is in fact the odor of the molecule, the prediction is 
accepted as correct. See the Methods section for a detailed explanation of the algorithm. (Created with BioRender.com)

Fig. 2 Chord diagram displaying the connections between the 
eleven descriptors of the database. The thickness of a connection 
is proportional to the number of molecules belonging to both 
descriptors. The semi-elliptical area that is only about its starting 
descriptor is proportional to the total number of molecules smelling 
like that descriptor. Therefore, comparing the width of this area and 
the arc allows us to estimate the number of molecules smelling only 
like that descriptor. Most of the molecules of the upper half have 
connections to the descriptors ‘fragrant’, ‘aromatic’ and ‘sweet’ that are 
displayed in the lower half
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can be used to optimize the choice of descriptors for 
prediction.

Olfactory prediction performance of OWSum
To predict the specific odor of a molecule, we derived 
and implemented the novel linear classification algorithm 
OWSum. OWSum relies solely on structural patterns 
of the molecules as features for algorithmic treatment 
(see Fig.  1 for a schematic overview of the workflow of 
OWSum). We tested several variations of OWSum using 

five-fold cross-validation, which differ according to the 
weighting or application of feature selection, to select 
the best performing one and compare it to multilabel 
k-nearest neighbors classifier (mlKNN, optimized k = 1) 
(see Table  1). To be comparable to OWSum, mlKNN 
was modified to predict the class(es) with the maximum 
probability per molecule instead of using a threshold. 
Our dataset consisted of 64 molecules belonging to the 
descriptors ‘floral’, ‘medicinal’, ‘woody, resinous’, ‘sicken-
ing’, ‘fruity, other than citrus’ and ‘perfumery’ that we 
derived from analyzing Dravnieks’ database [50] with the 
descriptor overlap (see Method section).

All variations of OWSum were more than twice as 
performant as expected from random guessing. Pure 
guessing on one of the six descriptors would achieve an 
accuracy of 21.4% (on average, a molecule smells like 
1.28 different descriptors). Additionally, OWSum out-
performed mlKNN in terms of accuracy. OWSum in 
combination with tf-idf-weighting performed best with 
a predicted accuracy of 77.6%. This means that using the 
conditional probability that a structural pattern belongs 
to a molecule under the condition that the molecule 
smells like an odor multiplied with the tf-idf  value for 
this structural pattern was the best method to calculate 
the influence of the structural pattern for the odor. In all 
cases where we applied feature selection using idf  val-
ues or tf-idf-weighting, OWSum could not predict 3.2% 
of the molecules and therefore the overall accuracy was 
lower than the predicted accuracy. These 3.2% were the 
two molecules hexanol  (C6H14O, descriptor: ‘woody, res-
inous’) and thiophene  (C4H4S, descriptors: ‘sickening’). 
We shortly describe the reasons for that: Hexanol does 

Fig. 3 Heat map of the descriptor overlap. A dark color represents a 
high descriptor overlap and therefore a high analogy between the 
uses of these descriptors for one smell

Table 1 Performance of OWSum and mlKNN (optimized k = 1) regarding the prediction of the descriptors ‘floral’, ‘medicinal’, ‘woody, 
resinous’, ‘sickening’, ‘fruity, other than citrus’ and ‘perfumery’ using five-fold cross-validation. One-versus-rest ROC AUC values and MCC 
values are the averaged results over all classes. See Supplementary Material for ROC AUC and MCC values per class as well as ROC 
curves per odor for the best-performing variant

a Defined in the Methods Section
b We divide by the weight Pr(Fj|Ci) in order to find the importance of this weight and compare the improvement using Pr(Fj|Ci) and not Pr(Ci|Fj) as AWSum does [47]

Feature 
selection

Weighting
factor  ai,j for 
OWSum or 
mlKNN

Overall 
accuracy 
(%)a

Predicted 
accuracy (%)a

Non-
predictable 
molecules (%)

Mean ROC AUC 
(underestimated)a

Mean ROC AUC 
(overestimated)a

Mean MCC 
(underestimated)a

Mean MCC 
(overestimated)a

Five-fold cross-validation

- Same- weighted 46.8 46.8 0 0.62 0.67 0.24 0.40

idf Same-weighted 56.3 58.1 3.2 0.66 0.77 0.32 0.47

idf Tf-idf-weighted 75.0 77.6 3.2 0.75 0.81 0.47 0.63

idf Tf-idf-weighted ∙
1/Pr(F|C)b

68.8 71.4 3.2 0.71 0.76 0.41 0.57

idf Tf-idf-weighted ∙
1/Pr(F|C) Pr(C|F)b

64.1 66.6 3.2 0.70 0.75 0.38 0.54

- mlKNN 69.0 69.0 0 0.77 0.82 0.53 0.62

idf mlKNN 61.2 61.2 0 0.74 0.79 0.48 0.55
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not have any features that do not occur in each descriptor 
class. That means, all the features are extremely unspe-
cific with an idf  value equal to zero. Thiophene, on the 
other hand, in addition to such unspecific ones, exhibits 
features that are unique to thiophene in our database. 
That means that OWSum has not trained on these fea-
tures due to five-fold cross-validation and can therefore 
not consider them. In all cases where OWSum made a 
prediction, OWSum only predicted one descriptor. The 
prediction was therefore precise. Using OWSum with 
tf-idf weights, we achieved a training accuracy (i.e. we 
trained and tested on the whole dataset) of 90.5%. Out of 
all the 64 molecules, only the molecule hexanol was not 
predictable. This evaluation of the model showed that 
OWSum can replicate the odor of molecules by splitting 
them into their structural patterns. This also suggests that 
by using larger datasets, the performance of OWSum can 
be improved even further. In addition, if we want to lev-
erage OWSum to gain insights about structure-odor rela-
tionships instead of predicting molecules, the usage of 
OWSum on the complete dataset is an accurate approach 
(see next section).

Structure-odor relationships
Apart from solving classification problems, in particular 
odor prediction, OWSum also allows gaining insight into 
the classification. According to the high accuracies when 
predicting the odor of molecules, the principle of using 
structural patterns and their relevance to predict the 
odor is a good approach. More precisely, the influence  Ii,j 

is a value that quantifies the impact of a structural pat-
tern i on the odor j of a molecule. This value is optimized 
if we use the conditional probability that a structural pat-
tern occurs in a molecule given the condition that this 
molecule smells like a specific odor and multiply it with 
the tf-idf value of the pattern (see above section). Apply-
ing OWSum, we can extract these influences and gain 
direct insight into the prediction. This also allows us to 
learn about structure-odor relationships. For this aim, we 
trained OWSum on all of the available molecules.

We first looked at the number of features that can be 
extracted for molecules of a given odor and the number 
of features that remain after dropping the ones with an 
idf value equal to zero (Additional file 1: Figure S2). Those 
features are assigned a weight of zero for all descriptor 
classes and are thus not important for the classifica-
tion process. Features that were dropped because of an 
idf value equal to zero are especially small structural pat-
terns that occur in nearly all molecules like [CX4]. There 
was a high variability in the number of extracted features 
per descriptors. This was independent of the number of 
molecules per descriptor: For example, fewer than 5000 
features with an influence greater than zero belonged 
to the descriptor ‘sickening’ with 20 molecules, whereas 
more than 53,000 features belonged to the descriptor 
‘woody, resinous’ with only 15 molecules. As a conclu-
sion, molecules smelling like ‘sickening’ are more similar 
and probably less complex than molecules smelling like 
‘woody, resinous’.

Table 2 Important features per descriptor. For each descriptor, we give the value of the highest influence and the number of features 
with this influence. We present the smallest of these features and another example

Descriptor Floral Perfumery Woody, resinous Medicinal Sickening Fruity, other than 
citrus

Highest influence 
value [×  10–6]

17 14 13 77 354 110

Number of 
features with this 
influence

57 57 101 124 1 13

Smallest character-
istic feature

   
 

 
 

SMARTS of this 
feature

[#6](-[#6])
(-[#6]) = [#6]

[#6](-[#6])
(-[#6]) = [#6]

[#6](-[#6](-[#6]-
[#6])-[#6]-[#6])-[#6]

[#6]:[#6]-[#8] [OX2H1][CX3]
(= [OX1])[#6]

[#6](-[#6](-[#8]-[# 
6]-[#6]) = [#8])-[#6]

Smallest feature 
with another 
characteristic for 
this influence or 
second example

  
  

-

 

SMARTS of this 
feature

[#6]-[#6] = [#6]-[#6] [#6](-[#6]) = [#6]-
[#6]

[#6](-[#6])-[#6]
(-[#6]-[#6]-[#6]-
[#6])-[#6](-[#6])-
[#6]

[#6]:1(:[#6]:[#6]:[#6]:[#6]:[#6]:1)-
[#8]

- [#8] = [#6](-[#6]-
[#6])-[#8]-[#6]-[#6]
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To get deeper insight which features had a high impact 
on the odor of a molecule, we extracted the features with 
the highest influence per descriptor (Table 2). Molecules 
smelling like ‘perfumery’ and ‘floral’ had the exact same 
most important 57 features. This is in line with the high 
descriptor overlap for these descriptors of 92%, sug-
gesting to combine these groups of molecules. All these 
features contained a double bond between two carbon 
atoms, making this the most important characteristic. 
Outstanding structural patterns for molecules smell-
ing like ‘woody, resinous’ were branched alkyls. ‘Woody’ 
odorants are associated with rigid bulky hydrocarbon 
skeletons [23]. Whereas a subgroup discovery algorithm 
revealed the rule that ‘woody’ molecules are hydropho-
bic and rather not cyclic nor aromatic [24], investigations 
using a Transformer model suggested that woody mol-
ecules are often ring structures [26]. This is in accord-
ance with our results, where cyclohexane structures were 
assigned the second highest influence values whereas 
aromatic structures scored low. Oxygen atoms had 
high impact for the descriptors ‘medicinal’, ‘sickening’ 
and ‘fruity, other than citrus’. For the latter, the oxygen 
occurred as an ester. We cannot make such a specifica-
tion for molecules belonging to ‘sickening’ as the oxygen 
occurred as an ester or acid. For ‘medicinal’, the oxygen 
was single-bonded to the chain.

Above-mentioned features had a high impact on one 
odor of a molecule, but there is no guarantee that the 
molecule smells like this odor. OWSum considers this, 

as the algorithm uses every single pattern of a molecule 
to classify it. With OWSum, we can rank the features for 
each descriptor. As this is hard to display in a six-dimen-
sional case, we show this for features of the two descrip-
tors ‘fruity, other than citrus’ and ‘sickening’ in Fig. 4.

We cannot make general assumptions regarding what 
a molecule will smell like if it has a special feature in 
it. We can only assume e.g., that having a sulfur atom 
increases the probability that the molecule smells like 
‘sickening’, in accordance with literature stating that sul-
phurous molecules are perceived as unpleasant [23] or 
decayed [53]. We cannot make such assumptions regard-
ing esters. Using OWSum, the sole occurrence of an 
ester had no impact, as the feature was not included in 
the classification because of an idf-value equal to zero. 
That means this structural pattern was too general. If 
the ester occurred in a specific combination with other 
features, though, it was specific enough to be a predic-
tor. The occurrence of an ester with at least two carbon 
atoms on each side was a feature with the highest influ-
ence for molecules smelling like ‘fruity, other than citrus’ 
(see Table 2). This confirms that the main group of fruity 
odorants are esters [23], but esters are neither a neces-
sary nor a sufficient criterion for a molecule to smell 
fruity [21, 23].

To summarize, odor prediction needs to include a 
wide range of structural patterns. These patterns have a 
summative influence on odor perception. OWSum not 
only considers this for prediction but also quantifies 

Fig. 4 Importance of features for ‘fruity, other than citrus’ vs. ‘sickening’. By applying OWSum on molecules of the six descriptors ‘floral’, ‘medicinal’, 
‘woody, resinous’, ‘fruity, other than citrus’ and ‘perfumery’, we can extract quantitative values for structural patterns per descriptor. In this image, 
we display the difference between the influence value for features for the descriptors ‘fruity, other than citrus’ and ‘sickening’. To better visualize the 
important patterns, we combined all SMARTS-patterns if they belonged to a SMILES-structure in case they stand alone and display these.  (Created 
with BioRender.com)
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relationships by assigning each structural pattern a value 
for its influence on an odor percept.

Conclusions
We developed the linear classification algorithm OWSum 
that uses the statistical methods conditional probability 
and tf-idf  function which is often used in text retrieval 
systems. Our algorithm allows gaining insight into the 
process of arriving at a specific decision. By changing the 
weighting factor, the algorithm can be easily adapted to 
different classification problems and improved for bet-
ter accuracies. In addition to the algorithm, we intro-
duced the new metric descriptor overlap. Using this, we 
can quantify the semantic overlap between several odor 
descriptors. This allows grouping or detecting higher-
level descriptors. We applied OWSum on molecules and 
used solely their structural patterns as features to predict 
their odor. As such, OWSum allows olfactory predic-
tion even before synthesizing new molecules and with-
out knowledge about physical properties in contrast to 
previously proposed methods. Further, the workflow 
of OWSum is easily understandable and comprehen-
sible. Therefore, OWSum does not only make reliable 
predictions but also allows us to infer knowledge about 
structure-odor  relationships as quantitative values are 
assigned to structural patterns that describe the impact 
of the patterns for different odors. Using these values, 
further analysis about structure-odor  relationships can 
be accomplished in the future. Moreover, our proposed 
algorithm is applicable to other classification problems, 
including the prediction of other molecular properties 

such as toxicity, and poses a large leap forward in our 
capabilities to understand underlying structural reasons.

Methods
The algorithm described here serves to use structural 
features of molecules to infer their most relevant odor 
quality. A set of statistical methods was used, including 
the validation of our results, as described in the following 
section.

The classification algorithm OWSum
The algorithm OWSum was structured into three steps:

1. Feature selection
2. Calculation of the influence of the features regarding 

the classes
3. Classification

To make the description of the algorithm OWSum clear, 
we describe steps 2 and 3 before the feature selection. As 
OWSum can not only be applied for odor prediction but 
for many classification problems, we first describe the 
algorithm in general before specifying it for odor predic-
tion. To familiarize the reader with used variables, indices 
and equations, a schematic overview is displayed in Fig. 5. 
An applied schematic overview for odor-prediction with a 
simplified example is shown in Fig. 1.

Step 2: Calculation of the influence of the features 
regarding the classes. OWSum was based on the idea 
that each feature of the objects has a special influence on 
a class. To calculate this influence of a feature, we used 

Fig. 5 Overview of the classification algorithm OWSum. A Input matrix: Objects  Ok can have different features  Fj and belong to one or more classes 
 Ci. If a feature occurs to an object or if the object belongs to a class, the values of the cells are 1 otherwise 0. B Calculation of the influence values 
using Eqs. 1 and 2 and the tf-idf value (Eq. 3) as weighting factor (compare step 2) C Calculation of the score the prediction is based on (Eq. 4, 
compare step 3)
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the conditional probability of the feature value given the 
class. More specifically, for a feature Fj and a class Ci , the 
probability that Fj occurred under condition Ci , was cal-
culated by Pr

(

Fj|Ci

)

 and was called the weight Gj,i (Eq. 1).

To add additional information and therefore improve 
the performance of OWSum, a weighting factor ai,j 
could be multiplied to the weight Gj,i . This gave a single 
value called influence Ii,j of a feature Fj for a special class 
Ci (Eq.  2). If the same-weighted OWSum was used, all 
weighting factors ai,j were set to 1.

Another approach was to consider the relevance of a 
feature as a weighting factor on the classification. There-
fore, we could use the tf-idf value that is mostly used for 
information retrieval systems and document formaliza-
tion [54]. The tf-idf value is the multiplication of the term 
frequency tf and the inverse document frequency idf 
(Eq. 3). Using the tf value, features with higher frequency 
were weighted as more important than features with a 
lower frequency. The idf value considered that a feature 
was more important if it was specific and not distributed 
over many classes.

Fj = feature j
Ci = class i
|C| = number of classes
Cn = class n
If we used the tf-idf  values as weighting factors, we 

call this variation of the algorithm the tf-idf-weighted 
OWSum.

(1)Gj,i = Pr(Fj | Ci) =
Pr

(

Fj ∩ Ci

)

Pr(Ci)

Gj,i = weight of the jthfeature for class i

Fj = feature j

Ci = class i

(2)Ii,j = ai,j · Gi,j

Ii,j = influence of the jth feature for class i

ai,j = weight of the jth feature for class i

Gj,i = weight of the jth feature for class i

(3)tf − idfi,j =
#(Fj ,Ci)

len(Ci)
· log







|C|
�

Cn:Fj∈Cn

1







Step 3: Classification. To predict the class of an object, 
we had to consider all features occurring in that object. 
Therefore, for all features of that object  Ok, all influences 
Ii,j for a class Ci were added to a score Si,k (Eq. 4).

Si,k = score for the k th object to belong to class i
Fj = feature j
Ok = object k
Ii,j = influence of the j th feature for class i.
As a result, for an n-dimensional classification prob-

lem we got n scores. OWSum made the prediction by 
selecting the class(es) with the highest score. If an object 
belonged to more than one class and OWSum correctly 
predicted a subset of these, the prediction was accepted 
as correct. If OWSum predicted all possible classes, 
we considered this object as unpredictable as no valu-
able prediction could be given. Therefore, we did not 
only have true and false predictions but non-predictable 
objects as well.

Step 1: Feature selection. We could improve the accu-
racy of OWSum by applying feature selection as a first 
step. For our case, we used feature selection based on idf 
values (compare Eq.  3, second factor). This dropped all 
the features that had an idf value equal to zero. These fea-
tures occurred in all classes and were therefore not spe-
cific enough to contribute to the prediction.

Validation of OWSum
For the validation of the algorithm, we calculated accu-
racies, ROC AUC, and MCC values with five-fold 
cross-validation.

Accuracies: The overall accuracy was the proportion of 
correct predictions among the total number of examined 
cases (Eq. 5). We also calculated the predicted accuracy, 
which was the proportion of correct predictions among 
the total number of cases where OWSum made a predic-
tion (Eq. 6). The predicted accuracy is a better approach 
if we were interested in how many molecules had been 
predicted incorrectly.

ROC AUC and MCC: As there can be multiple descrip-
tors per object but OWSum only predicts one descrip-
tor, we calculated two versions of one-versus-rest ROC 
AUC values: If a molecule has more than one descriptor 
(e.g. molecule A smells perfumery and floral) and one of 

(4)Si,k =
∑

Fj ∈ OkIi,j

(5)predicted accuracy =
#true positives

#all predictable molecules

(6)overall accuracy =
#true positives

#all tested molecules
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those was predicted (e.g. floral), the ROC AUC value for 
this descriptor (floral, label 1) against rest (label 0) is cal-
culated using a true label of 1 and a predicted label of 1. 
If, however, the ROC AUC for another of those descrip-
tors (e.g. perfumery) is calculated, a true label of 1 and 
a predicted label of 0 is used (“underestimated ROC 
AUC” that is a lower bound). In this case, the prediction 
is treated as a false prediction – even if OWSum pre-
dicted another correct descriptor. Thus, resulting ROC 
AUC values underestimate the predictive performance of 
OWSum. An alternative is to assign a true label of 0 (rest 
class) to the molecule (this is also correct, as at least one 
descriptor is in the rest class), the predicted value is again 
0 (“overestimated ROC AUC” that is an upper bound). 
This however overestimates the predictive performance 
for this specific descriptor. We provide ROC curves per 
descriptor for the best-performing variant of OWSum in 
the Additional file 1. Analogous to above, we calculated 
under- and overestimated one-versus-rest MCC values. If 
the prediction vector and the ground truth just consisted 
of zeros, we used the strategy defined in [55], where in 
such a situation, the MCC is set as 1, providing us with 
an upper bound value for this metric. This only occurred 
for the overestimated MCC values.

OWSum for odor prediction
When using OWSum as a classification algorithm to pre-
dict the odor of molecules, a class represents an olfactory 
descriptor, objects refer to the molecules and features are 
structural patterns within these molecules. These struc-
tural patterns were extracted from the chemical structure 
of the molecules. The molecules were encoded as Simpli-
fied Molecular Input Line Entry Specification (SMILES) 
[56, 57] and features were encoded as SMILES ARbitrary 
Target Specification (SMARTS) [58]. As the features were 
not exclusive but organized in a hierarchical structure, 
the number of occurrences of a feature was stored indi-
rectly through the occurrence of another, higher feature 
in that molecule (e.g. that has a longer chain or additional 
elements). OWSum only considered whether a feature 
occurred in a molecule, not its frequency. This prevented 
an overrepresentation of small features. Figure  1 shows 
the workflow of OWSum using a simplified example. 
To test the performance and robustness of OWSum, we 
used five-fold cross-validation.

The metric descriptor overlap
To quantify the overlap of two descriptors, we introduced 
the new metric descriptor overlap. The descriptor overlap 
is the proportion of the number of molecules described 
by both descriptors to the number of molecules of the 

rarer descriptor (Eq.  7). An example is given in Addi-
tional file 1: Figure S3.

In terms of molecules as objects and olfactory descrip-
tors, a high descriptor overlap is an indication that the 
two descriptors refer to the same odor or one of the 
descriptors is a more general one that includes the other 
descriptor. If the descriptor overlap between two descrip-
tors desc1 and desc2 is equal to one and desc1 has more 
molecules than desc2, all molecules smelling like desc2 
also smell like desc1. A descriptor overlap of zero would 
mean that no molecule smells like both of the descriptors.

Database
For odor prediction and gaining insight using OWSum 
and the descriptor overlap, we used molecules and their 
descriptors from Dravnieks’ atlas of odor character pro-
files [50]. For this purpose, we binarized the features 
of the molecules in the dataset by first calculating the 
maximum common substructure between each pair of 
molecules in a reference corpus of molecules to create 
a reference dataset of features. The reference corpus for 
our task was the ZINC dataset [59] with all molecules 
under molecular weight of 200  Da and as a further fil-
ter, only molecules marked as ‘in-stock’ were selected. 
In total, there were 263,921 molecules in the reference 
dataset.

As we were interested in the characteristic and most-
perceived odors of a molecule, we only assigned a 
descriptor to a molecule if its percentage of applicabil-
ity was at least 25%. Furthermore, we only considered 
descriptors that matched at least ten molecules. This was 
important to have enough data for the training and test-
ing of OWSum. 97 odor molecules and eleven descrip-
tors (‘aromatic’, ‘floral’, ‘fragrant’, ‘heavy’, ‘light’, ‘medicinal’, 
‘sickening’, ‘sweet’, ‘woody, resinous’, ‘fruity, other than 
citrus’ and ‘perfumery’) remained after this initial filter-
ing step. For odor prediction, we excluded descriptors 
with a mean descriptor overlap over 49%, suggesting a 
non-selective and non-specific odor representation. To 
further optimize the choice of descriptors, we dropped 

descriptor overlap(desc1, desc2) =
#Mdesc1∩desc2

min
desc∈desc1,desc2

(#Mdesc)

(7)descriptor overlap(desc1, desc2) ∈ [0, 1]

desc1, desc2 = descriptors

Mx = object with descriptor x



Page 10 of 11Schicker et al. Journal of Cheminformatics           (2023) 15:51 

‘heavy’ and ‘light’: According to Iatropoulus et  al. [52], 
a high inconsistency exists between individuals using 
these descriptors and they are generally not associated 
with smell [52]. 64 molecules and six descriptors (‘flo-
ral’, ‘medicinal’, ‘sickening’, ‘woody, resinous’, ‘fruity, other 
than citrus’, and ‘perfumery’) remained. On average, a 
molecule smelled like 1.28 different descriptors, indicat-
ing a successful extraction of unique olfactory descrip-
tors. Our final resulting dataset consisted of 64 molecules 
and their corresponding structural features, which we 
used as input for OWSum.

Implementation
In terms of programming, OWSum and the descriptor 
overlap were implemented in Python 3.7. To determine 
the performance of OWSum, we performed five-fold 
cross-validation. Therefore, as well as for calculating 
ROC AUC and MCC values we used scikit-learn 0.24.1 
[60]. To compare OWSum against a multilabel k-near-
est neighbors classifier (mlKNN), we used multilabel k 
Nearest Neighbors from scikit-multilearn 0.2.0 [61]. We 
optimized k between 1 and 10 using GridSearchCV from 
scikit-learn. We adapted mlKNN, so that it predicts the 
class(es) with the maximum probability instead of using 
a threshold.
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