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Abstract 

The applicability domain of machine learning models trained on structural fingerprints for the prediction of biological 
endpoints is often limited by the lack of diversity of chemical space of the training data. In this work, we developed 
similarity‑based merger models which combined the outputs of individual models trained on cell morphology (based 
on Cell Painting) and chemical structure (based on chemical fingerprints) and the structural and morphological simi‑
larities of the compounds in the test dataset to compounds in the training dataset. We applied these similarity‑based 
merger models using logistic regression models on the predictions and similarities as features and predicted assay 
hit calls of 177 assays from ChEMBL, PubChem and the Broad Institute (where the required Cell Painting annotations 
were available). We found that the similarity‑based merger models outperformed other models with an additional 
20% assays (79 out of 177 assays) with an AUC > 0.70 compared with 65 out of 177 assays using structural models and 
50 out of 177 assays using Cell Painting models. Our results demonstrated that similarity‑based merger models com‑
bining structure and cell morphology models can more accurately predict a wide range of biological assay outcomes 
and further expanded the applicability domain by better extrapolating to new structural and morphology spaces.
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Introduction
The prediction of bioactivity, mechanism of action 
(MOA) [1], safety and toxicity [2] of compounds using 
only chemical structure is challenging given that such 
models are limited by the diversity in the chemical space 
of the training data [3]. The chemical space of this data 
on which the model is trained is used to define the appli-
cability domain of the model [4]. Among the various ways 
to calculate a model’s applicability domain, Tanimoto 
similarity for chemical structure is commonly used as a 
benchmark similarity measure for compounds. Tanimoto 
distance-based Boolean applicability has been previously 
used to improve the performance of classification mod-
els [5]. Expanding the applicability domain of structural 
models will improve the reliability of a model to predict 
endpoints for new compounds. One way to achieve this 
would be to incorporate hypothesis-free high-through-
put data, such as cell morphology [6], bioactivity data 
[7] or predicted bioactivities [8, 9] in addition to struc-
tural models [10]. This then has the potential to improve 
predictions for compounds structurally distant from the 
training data. This is because compounds having similar 
biological activity may not always have a similar struc-
ture; however, they may show similarities in the bio-
logical response space [11]. Recently, using Chemical 
Checker signatures derived from processed, harmonized 
and integrated bioactivity data, researchers demonstrated 
that similarity extends well beyond chemical properties 
into biological activity throughout the drug discovery 
pipeline (from in vitro experiments to clinical trials) [12]. 
Hence the use of biological data could significantly help 

predictive models that have often been trained solely on 
chemical structure [10].

In recent years, relatively standardized hypothesis-free 
cell morphology data can now be obtained from the Cell 
Painting assay [13]. Cell Painting is a cell-based assay 
that, after a given chemical or genetic perturbation, uses 
six fluorescent dyes to capture a snapshot of the cellular 
morphological changes induced by the aforementioned 
perturbation. The six fluorescent dyes allow for the vis-
ualization of eight cellular organelles, which are imaged 
in five-channel microscopic images. The microscopic 
images are typically further processed using image analy-
sis software, such as Cell Profiler [14], which results in a 
set of morphological numerical features aggregated to the 
treatment level. These numerical features representing 
morphological properties such as shape, size, area, inten-
sity, granularity, and correlation, among many others, 
are considered versatile biological descriptors of a sys-
tem [6]. Previous studies have shown Cell Painting data 
to be predictive of a wide range of bioactivity and drug 
safety-related endpoints such as the mechanism of action 
[15], cytotoxicity [16], microtubule-binding activity [17], 
and mitochondrial toxicity [18]. Recently, it has also been 
used to identify phenotypic signatures of PROteolysis 
TArgeting Chimeras (PROTACs) [19] as well as to deter-
mine the impact of lung cancer variants [20]. Thus, Cell 
Painting data can be expected to contain a signal about 
the biological activity of the compound perturbation, [6] 
and in this work, we explored how best to combine Cell 
Painting and chemical structural models for the predic-
tion of a wide range of biological assay outcomes.
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From the modeling perspective, several ensemble 
modeling techniques have been proposed to combine 
predictions from individual models [21]. One way to 
achieve this is an ensembling method shown in Fig.  1a, 
referred to as a soft-voting ensemble in this work. This 
method computes the mean of predicted probabilities 
from individual models and thus provides equal weight 
to individual model predictions. However, soft-voting 
ensemble models when combining two individual models 
give equal importance to each model [21]. This implies 
that if a model predicts a higher probability for a com-
pound to be active and another model predicts the same 
compound to be inactive but with a lower probability, the 
first model prediction is considered final without con-
sidering the individual model’s reliability. As shown in 
Fig. 1b, another way to combine predictions from differ-
ent models is via model stacking where the predictions 
of the individual models are used as features to build a 
second-level model (referred to as a hierarchical model 
in this work). Hierarchical models have previously been 

used by integrating classification and regression tasks 
in predicting acute oral systematic toxicity in rats [22]. 
The applicability range of predictions can be estimated 
by (i) the Random Forest predicted class estimates [23] 
(referred to as predicted probabilities in this study) and 
(ii) using the similarity of the test compound to training 
compounds (which in turn approximates the reliability of 
the prediction) [24]. Hence the hypothesis of the current 
work is that using the similarity of the test compound 
to training compounds in individual feature spaces and 
the predicted probabilities of the individual models built 
on those feature spaces, we can improve overall model 
performance.

The various ways of fusing structural models with mod-
els trained on cell morphology were recently exploited 
by Moshkov et al. [27] who used chemical structures and 
cell morphology data (from the Cell Painting assay) to 
predict the compound activity of 270 anonymised bioac-
tivity assays from academic screenings in the Broad Insti-
tute. They used a late data fusion (by using a majority rule 
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Fig. 1 Schematic Representation of workflow in this study to build (a) soft‑voting ensemble models that compute the mean of 
predictedprobabilities from individual models, (b) hierarchical models where the predictions of the individual models are used as features tobuild 
a second‑level model, and (c) the similarity‑based merger model. The similarity‑based merger model combined predicted probabilities from 
individual models and the morphology and structural similarity of compounds to active compounds in training data
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on the prediction scores similar to soft-voting ensembles) 
to merge predictions for individual models. The late data 
fusion models were able to predict 31 out of 270 assays 
with AUC > 0.9, compared with 16 out of 270 assays for 
models using only structural features. This showed that 
fusing models built on two different feature spaces that 
provide complementary information was able to improve 
the prediction of bioactivity endpoints. Previous work 
has also shown that combinations of descriptors can 
significantly improve prediction for MOA classification 
[15, 25, 26] (using gene expression and cell morphology 
data), cytotoxicity [16], mitochondria toxicity [18] and 
anonymised assay activity [27] (using chemical, gene 
expression, cell morphology and predicted bioactiv-
ity data), prediction of sigma 1 (σ1) receptor antagonist 
[28] (using cell morphology data and thermal proteome 
profiling), and even organism-level toxicity [29] (using 
chemical, protein target and cytotoxicity qHTS data). 
Thus, the combination of models built from complemen-
tary feature spaces can expand a model’s applicability 
domain by allowing predictions in new structural space 
[30].

In this work, we explored merging predictions of assay 
hit calls from chemical structural models with predic-
tions from another model using Cell Painting data for 88 
assays from public datasets from PubChem and ChEMBL 
(henceforth referred to as public dataset, assay descrip-
tions released as Additional file  1) and 89 anonymised 
assays from the Broad Institute [27] (henceforth referred 
to as Broad Institute dataset, assay descriptions released 
as Additional file  2). Cell Painting data, in general, may 
be assumed to be only highly predictive of the cell-based 
assay. However, in this study, we did not specifically select 
assays where this relation was obvious, as that would 
make our comparisons significantly favour the Cell Paint-
ing assay. In this work, we simply compare the two fea-
ture spaces, and for this, we use a wide range of assays (as 
mentioned above) while also later interpreting which fea-
ture spaces work better for which particular assays. That 
being noted, the Cell Painting assay is being constantly 
investigated for signals in not just in vitro assays but also 
in vivo effects; recent studies have established a signal for 
lung cancer [20] and drug polypharmacology [31].

From the modelling perspective, as shown in Fig.  1c, 
we merged predictions using a logistic regression model 
that not only takes the predicted probabilities from indi-
vidual models but also the test compound’s similarity to 
the active compounds in the training data in different 
feature spaces (as shown in Additional file 5: Fig S1). That 
is, the models are also provided with the knowledge of 
how morphologically/structurally similar the test com-
pound is to other active compounds in the training set. 
Here we emphasise using similarity-based merger models 

to improve the applicability domain of individual models 
(predicting compounds that are distant to training data 
in respective feature spaces) and the ability to predict a 
wider range of assays with the combined knowledge from 
the chemical structure and biological descriptors from 
Cell Painting assay.

Results and discussions
The 177 assays used in this study are a combination of 
the public dataset and anonymised assays from a Broad 
Institute dataset where required Cell Painting annota-
tions were available (see Methods section for details). 
The public dataset comprising 88 assays (with at least 100 
compounds) was collected from Hofmarcher et  al. [40] 
and Vollmers et  al. [42] (see Additional file  1 for assay 
descriptions) for which Cell Painting annotations were 
available from the Cell Painting assay [48]. The Broad 
Institute dataset comprises 89 assays (as shown in Addi-
tional file 2 for assay descriptions). We trained individual 
Cell Painting and structural models for all 177 assays. We 
used two baseline models for comparison,  a soft-voting 
ensemble and a hierarchical model. Finally, we com-
pared the results from the individual models and baseline 
ensemble models to the similarity-based merger models.

Similarity‑based merger models outperform other baseline 
models
As shown in Fig.  2, we found that similarity-based 
merger models performed with significantly improved 
AUC-ROC (mean AUC 0.66 using similarity-based 
merger models,) compared with Cell Painting mod-
els (mean AUC 0.62 using, p-value from paired t-test 
of 5.6 ×  10–4) and structural models (mean AUC 0.64, 
p-value from paired t-test of 7.3 ×  10–3) for 171 out of 
the 177 assays (all models for the remaining 6 assays 
have AUC < 0.50, hence any improvement is insignifi-
cant as the models’ performance remains worse than 
random). Additional file 5: Fig S2 shows that similarity-
based merger models significantly improved Balanced 
Accuracy and F1 scores compared with individual mod-
els. Overall, similarity-based merger models outper-
form other models in predicting bioactivity endpoints.

As shown in Fig.  3, 79 out of 177 assays achieved 
AUC > 0.70 with the similarity-based merger model, fol-
lowed by hierarchical models for 55 out of 177 assays. 
Structural models achieved AUC > 0.70 in 65 out of 177 
assays while for the Cell Painting models, this was the 
case in 50 out of 177 assays. Further 25 assays out of 177 
were predicted with AUC > 0.70 with all methods while 
only 12 out of 177 assays did not achieve AUC > 0.70 
with similarity-based merger models but did with the 
other models. When considering balanced accuracy, 51 
out of 177 assays achieved a balanced accuracy > 0.70 
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with similarity-based merger models compared with 44 
out of 177 assays for soft-voting ensemble models, as 
shown in Additional file 5: Fig S3.

Comparing performance for the Cell Painting and 
structural models by AUC individually (Additional file 5: 
Fig S4) we observed that structural models and Cell 
Painting models were complementary in their predic-
tive performance; while 96 out of 177 assays achieve a 
higher AUC with structural information alone, 81 out of 
177 assays achieve a higher AUC using morphology alone 
as shown in Additional file 5: Fig S4a. Hierarchical mod-
els outperform soft-voting ensembles for 106 out of 177 
assays as shown in Additional file 5: Fig S4b. Finally, the 
similarity-based merger model achieved a higher AUC 
score for 124 out of 177 assays compared with 52 out of 
177 with hierarchical models and 132 out of 177 assays 
compared with 45 out of 177 with soft-voting ensembles 
as shown in Additional file 5: Fig S3c, d. This shows that 
the similarity-based merger model was able to leverage 
information from both Cell Painting and structural mod-
els to achieve better predictions in assays where no indi-
vidual models were found to be predictive thus indicating 
a synergistic effect.

We next looked at the performance at the individual 
assay level (as shown in Additional file  3) as indicated 
by the AUC scores. We looked at 162 out of 177 assays 
where either the similarity-based merger model or the 

soft-voting ensemble performed better than a random 
classifier ( AUC = 0.50 ) We observed that for 127 out of 
177 assays (individual changes in a performance recorded 
in Additional file 5: Fig S5), the similarity-based merger 
models improved performance compared with the soft-
voting ensemble (with the largest improvement recorded 
at 65.1%) and a decrease in performance was recorded in 
35 out of 177 assays (largest decrease recorded at − 58.0% 
in performance). Further comparisons of AUC perfor-
mance in Additional file  5: Fig S6 show that similarity-
based merger models improved AUC compared with 
both structural models and Cell Painting models. This 
improvement in AUC was independent of the total num-
ber of compounds (or the ratio of actives to inactive com-
pounds) in the assays as shown in Additional file  5: Fig 
S7. Thus, we conclude that the similarity-based merger 
model outperformed individual models by combining the 
rich information contained in cell morphology and struc-
ture-based models more efficiently than baseline models.

Similarity‑based merger models expand the applicability 
domain compared with individual models
We next determined how individual and similarity-
based merger model predictions differ with compounds 
that were structurally or morphologically similar/dis-
similar to active compounds in the training set. We 
looked at predictions for each compound from the Cell 

Fig. 2 Distribution of AUC of all models, Cell Painting, Morgan Fingerprints, baseline models of a soft‑voting ensemble, hierarchical model, and 
the similarity‑based merger model, over 171 assays (out of 177 assays). An assay was considered for a paired significance test only if the balanced 
accuracy was > 0.50 and the F1 score was > 0.0 for at least one of the models
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Painting and structural models over the 177 assays and 
grouped them based on their morphological and struc-
tural similarity to active compounds in the training set 
respectively. We observed, as shown in Additional file 5: 
Fig S8, that similarity-based merger models correctly 
classified a higher proportion of test compounds which 
were less similar morphologically to active compounds 
in the training data. Further, as the structural similar-
ity of test compounds with respect to active compounds 
in the training set increased, the structural models cor-
rectly classified a higher proportion of compounds while 
similarity-based merger models correctly classified test 
compounds with both low and high structural similarity. 
For example, out of 360 compounds with a low structural 
similarity between 0.20 and 0.30, models using chemical 
structure correctly classified 56.2% of compounds while 
similarity-based merger models correctly classified a 
much greater 63.6% of compounds. Moreover, similar-
ity-based merger models were as effective as the models 
using chemical structure in classifying compounds with a 
higher structural similarity to training data (that is, there 
was no apparent worsening of performance). Out of 1525 
such compounds in this study, with a higher structural 
similarity between 0.90 and 1.00, models using chemical 
structure correctly classified 75.5% of compounds while 
the similarity-based merger models that correctly classi-
fied 75.2% of compounds. Overall, our findings show that 
similarity-based merger models have a wider applicability 
domain, as they are able to correctly predict a larger pro-
portion of compounds across a broader range of struc-
tural and morphological similarities to the training set.

For clarity of the reader, this is further illustrated in 
Additional file 5: Fig S9 as in the case of a particular assay, 

namely 240_714 from the Broad Institute, a fluorescence-
based biochemical assay. Here, the structural model cor-
rectly predicted toxic compound activity when they were 
structurally similar to the training set. The Cell Painting 
model performed better over a wide range of structural 
similarities but was often limited when morphological 
similarity was low. The similarity-based merger models 
learned and adapted across individual models from local 
regions in this structural versus morphological similar-
ity space in a manner best suited to compounds in that 
region to correctly classify a wider range of active com-
pounds with lowered structural and morphological simi-
larities to the training set.

Comparison of performance at gene ontology enrichment 
level
We next analysed the assays (and associated biological 
processes) where the Cell Painting model, the structural 
model, and the similarity-based merger model were most 
predictive and therefore if there was complementary 
information present in both feature spaces. Results pre-
sented here are from the PubChem dataset comprising 
88 assays as the Broad Institute dataset is not annotated 
with complete biological metadata, which renders some 
of the more detailed analysis downstream not viable.

Figure  4a shows a protein–protein network (anno-
tated by genes) from the STRING database labelled by 
the model performance where the respective individ-
ual model was better predictive (or otherwise equally 
predictive, which includes cases where different mod-
els are better predictive over multiple assays related to 
the same protein target). We found meaningful mod-
els (AUC > 0.50) were achieved for 27 out of 34 gene 

Fig. 3 (a) Number of assays predicted with an AUC above a given threshold. (b) Distribution of assays with AUC > 0.70 common and unique to all 
models, Cell Painting, Morgan Fingerprint, baseline models of a soft‑voting ensemble, hierarchical model, and the similarity‑based merger model, 
over all of the 177 assays used in this study
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annotations when using the Cell Painting and for 25 out 
of 34 gene annotations using the structural model. Of 
these, the Cell Painting models were better predictive 
for 25 out of 32 gene annotations (mean AUC = 0.65) 
compared with the structural models which were bet-
ter predictive for 23 out of 32 gene annotations (mean 
AUC = 0.56). We next compared the hierarchical model 
to the similarity-based merger model for 35 gene anno-
tations where either model achieved AUC > 0.50. The 
hierarchical model performed with higher AUC (mean 
AUC = 0.57) for only 4 out of 34 gene annotations com-
pared with the similarity-based merger model which was 
better predictive for 23 out of 34 gene annotations (mean 
AUC = 0.60). Thus, we observed that similarity-based 
merger models performed better over a range of assays 
(over 23 out of 34 gene annotations) capturing a wide 
range of biological pathways.

Cell Painting models performed better than structural 
models for assays associated with 6 gene annotations: 
ATAD5, FEN1, GMNN, POLI and STK33 (with an aver-
age AUC = 0.64 for Cell Painting models compared with 
AUC = 0.48 for structural models). These gene anno-
tations were associated with molecular functions of 
‘GO:0033260 Nuclear DNA replication’ and ‘GO:0006260 
DNA replication’ which are processes resulting in mor-
phological changes, which were captured by Cell Paint-
ing. Further, none of ATAD5, FEN1, GMNN, POLI, and 
STK33 was among the most abundant proteins present 
in U2OS cells [32]. Among gene annotations associated 
with the assays better predicted by structural models are 
TSHR, TAAR1, HCRTR1 and CHRM1 (with an aver-
age AUC = 0.70 for structural models compared with an 
AUC = 0.63 for Cell Painting models). These gene anno-
tations are associated with the KEGG pathway of ‘neu-
roactive ligand-receptor interaction’ and the Reactome 
pathway of ‘amine ligand-binding receptors’ which were 
captured better by chemical structure. Hence, we see that 
Cell Painting models perform better on assays captur-
ing morphological changes in cells or cellular compart-
ments such as the nucleus, while structural models work 
better for assays associated with ligand-receptor activ-
ity. In addition, the KEGG term ‘amine ligand-binding 
receptors’ is defined on the chemical ligand level explic-
itly, making the classification of compounds falling into 
this category from the structural side easier. The simi-
larity-based merger models hence combined the power 
of both spaces and were predictive for assays affecting 
morphological changes (average AUC = 0.58 for the 
similarity-based merger model) as well as related to the 
ligand-receptor binding activity (average AUC = 0.78 for 
similarity-based merger model).

This is further illustrated in Fig.  4b which shows 
enriched molecular and functional pathway terms from 
ClueGO [46] for the 34 gene annotations available. Both 
Cell Painting models and structure-based models were 
limited to predicting with AUC > 0.70 only 33% of gene 
annotations associated with only two pathways, namely, 
transcription coregulator binding and positive regula-
tion of blood vessel endothelial cell migration pathways. 
On the other hand, similarity-based merger models pre-
dicted 25–67% gene annotations associated with multiple 
pathways with an AUC > 0.70. These pathways included 
transcription coregulator binding, positive regulation of 
blood vessel endothelial cell migration pathways, posi-
tive regulation of smooth muscle cell proliferation and G 
protein-coupled receptor signalling pathways among oth-
ers. Hence this underlines the utility of similarity-merger 
models across a range of biological endpoints.

Comparison of performance by readout and assay type
Results presented here are from the Broad Institute data-
set comprising 89 assays (as shown in Additional file 3) 
which were released with only information about assay 
type and readout type (for details see Additional file  2 
and Additional file  5: Figure S10); we analysed the Cell 
Painting, structural and similarity-based merger model 
as a function of those.

As shown in Fig.  5, Cell Painting models perform 
significantly better with a relative 8.8% increase in 
AUC with assays measuring luminescence (mean 
AUC = 0.72) compared with assays measuring fluores-
cence (mean AUC = 0.66) while structural and similar-
ity-based merger model show no significant differences 
in performances. The better predictions in the case of 
luminescence-based assays, which are readouts specifi-
cally designed to answer a biological question, and can 
be related to the use of a reporter cell line and a rea-
gent that based on the ATP content of the cell, is con-
verted to a luciferase substrate which leads to a cleaner 
datapoint [33]. On the other hand, Cell Painting is an 
unbiased high-content imaging assay that takes into 
consideration the inherent heterogeneity in cell cul-
tures where we visualise cells (often even measuring 
at a single cell level), contrary to a luminescence assay 
where one measures the average signal of a cell popu-
lation. Further Cell Painting models performed signifi-
cantly better with a relative 18.1% increase in AUC for 
cell-based assays (mean AUC = 0.72) compared with 
biochemical assays (mean AUC = 0.61). This might 
be due to also the Cell Painting assay being a cellular 
assay, hence also implicitly including factors such as 
membrane permeability in measurements. Further, 
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most similarity-based merger models outperform base-
line models over assay and readout types as shown in 
Additional file  5: Figs S11, S12. Overall, Cell Painting 
models can hence be considered to provide comple-
mentary information to chemical structure regarding 
cell-based assays, which was particularly beneficial for 

the significant improvement in the performance of sim-
ilarity-based merger models.

Limitations of this work and future studies
One limitation of the study design is having to bal-
ance unequal data classes by under-sampling. Here, the 
data was therefore initially under-sampled to a 1:3 ratio 

Fig. 4 (a) STRING gene–gene interaction networks for 34 Genes annotations associated with 37 assays in the public dataset labelled by the model 
which was better predictive compared with the other models and a random classifier with an AUC > 0.50 (b) Molecular and functional pathway 
terms related to the 37 assays using the Cytoscape [45] v3.9.1 plugin ClueGO [46] labelled by percentage of gene annotations where an AUC > 0.70 
was achieved by the Cell Painting, structural and similarity‑based merger models
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of majority to minority class to build a similarity-based 
merger model, which leads to some loss of experimental 
data. Further, after splitting the dataset into training and 
test datasets, the training data needs to contain enough 
samples spread across the structural versus morphologi-
cal similarity map for the models to work well. In this 
study, we did not use a scaffold-based split because it 
would overly disadvantage structural models and make 
prediction easier for models using Cell Painting data, 
which is not the aim of this work. The use of Cell Painting 
data to increase the applicability domain when the test 
data is distant from the training data has previously been 
explored [16, 18]. In this study, however, we used the ran-
dom splitting approach which aims to give each model 
(using chemical structure or morphological features) an 
equal chance to contribute to the final prediction, rather 
than favouring one type of data over the others. In this 
way, we could reasonably test the similarity-based merger 
models. Finally, the current study design is also affected 
by methodological limitations such as feature selection 
required for Random Forest methods which affect the 
interpretation of features and biological endpoints [34, 
35]. In the current study design, the explicit definition 
of similarity of a compound in chemical and morpho-
logical space, which although used here for better inter-
pretability, could have been possible via different ways 
of learning the data directly, for example using Bayesian 
inference [36] or Graph Convolutional Neural Networks 

(GCNNs). While GCNNs have shown promise in the 
field of drug discovery, one of the main challenges in 
the context of our work is the limited size of the training 
datasets and the difficulty in interpreting similarity based 
on learned representations [37]. Additionally, GCNNs 
can be computationally intensive and may require sig-
nificant resources to train and optimize multiple times in 
repeated nested cross-validation setting for 170 + tasks 
as needed in this study. While Random Forests are not 
the ultimate choice for this task, they remain widely used 
as a baseline in the field of chemoinformatics for their 
robustness.

From the side of feature spaces, Cell Painting data is 
derived from U2OS cell-based assays which are usually 
different from the cell lines used in measuring the activ-
ity endpoint. However previous work has shown that 
Cell Painting data is similar across different cell lines 
and the versatile information present was universal, that 
is, the genetic background of the reporter cell line does 
not affect the AUC values for MOA prediction [38]. Thus 
Cell Painting data can be used to model different assays 
with different cell lines. The utilization of Cell Paint-
ing data from the U2OS cell line may present significant 
limitations for assessing certain protein targets, espe-
cially those that are not sufficiently expressed in U2OS 
[32]. Although this issue did not arise in our study due 
to our focus on a limited subset of 34 relevant genes and 
proteins for drug discovery, it is possible that the use of 

Fig. 5 AUC performance of models using Cell Painting, structural models, and similarity‑based merger model for 89 assays in the Broad Institute 
dataset based on readout type (fluorescence and luminescence) or the assay type (cell‑based and biochemical). Further details are shown in 
Additional file 5: Figs S10, S11
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the U2OS cell line may still impose some constraints for 
other protein targets. We believe that further exploration 
and validation of our approach using different cell lines 
and bioassays would be an interesting and such studies 
will also benefit from larger datasets, such as the JUMP-
CP consortium [39].

Conclusions
Predictive models that use chemical structures as fea-
tures are often limited in their applicability domain to 
compounds which are structurally similar to the training 
data. To the best of our knowledge, this is the first paper 
which uses both similarity and predictions from chemical 
structural and cell morphology feature spaces to predict 
assay activity. Our results should have clear implications 
for similarity-based merger models (that are shown to be 
comparatively better than baseline soft-voting ensembles 
and hierarchical models) and can be used to predict bio-
activity over a wide range of small compounds. In this 
work, we developed similarity-based merger models to 
combine two models built on complementary feature 
spaces of Cell Painting and chemical structure and pre-
dicted assay hit calls from 177 assays (88 assays from the 
public dataset and 89 assays from a dataset released by 
the Broad Institute) for which Cell Painting data were 
available.

We found that Cell Painting and chemical structure 
contain complementary information and can predict 
assays associated with different biological pathways, 
assay types, and readout types. Cell Painting models 
achieved higher AUC better for cell-based assays and 
assays related to biological pathways such as DNA rep-
lication. Structural models achieved a higher AUC for 
biochemical and ligand-receptor interaction assays. The 
similarity-based merger models, combining information 
from the two feature spaces, achieved a higher AUC for 
cell-based (mean AUC = 0.77) and biochemical assays 
(mean AUC = 0.70) as well as assays related to both bio-
logical pathways (mean AUC = 0.58) and ligand-receptor 
based pathways (mean AUC = 0.74). Further, the similar-
ity-based merger models outperformed all other models 
with an additional 20% assays with AUC > 0.70 (79 out 
of 177 assays compared with 65 out of 177 assays using 
structural models). We also showed that the similarity-
based merger models correctly predicted a larger pro-
portion of compounds which are comparatively less 
structurally and morphologically similar to the training 
data compared with the individual models, thus being 
able to improve the applicability domain of the models.

In conclusion, the similarity-based merger models 
greatly improved the prediction of assay outcomes by 
combining high predictivity of fingerprints in areas of 
structural space close to the training set with better gen-
eralizability of cell morphology descriptors at greater 
distances to the training set. On the practical side, Cell 
Painting assay is a single screen-based hypothesis-free 
assay that is inexpensive compared with dedicated assays. 
Being able to use such an assay for bioactivity prediction 
will greatly improve the cost-effectiveness of such assays. 
Similarity-based merger models used in this study can 
hence improve the performance of predictive models, 
particularly in areas of novel structural space thus con-
tributing to overcoming the limitation of chemical space 
in drug discovery projects.

Methods
Bioactivity datasets
We retrieved drug bioactivity data as binary assay hit calls 
for 202 assays and 10,570 compounds from Hofmarcher 
et  al. [40] who searched ChEMBL [41] for assays for 
which cell morphology annotations from the Cell Paint-
ing assay were available as shown in Additional file 5: Fig 
S13. We further added binary assay hit calls from another 
30 assays not included in the source above from Vollmers 
et  al. [42] who searched PubChem [43] assays for over-
lap with Cell Painting annotations. Additionally, we used 
270 anonymised assays (with binary endpoints) from the 
Broad Institute [27] as shown in Additional file  5: Fig 
S13b. This dataset, although not annotated in with bio-
logical metadata, comprises assay screenings performed 
over 10 years at the Broad Institute and is representative 
of their academic screenings.

Gene ontology enrichment of bioactivity assays
From the public dataset of 88 assays used in this study 
where detailed assay data was available, 37 out of 88 
assays where experiments used human-derived cell lines 
were annotated to 34 protein targets. Next, we deter-
mined using the STRING database [44], we annotated 
all 34 protein targets with the associated gene set and 
further obtained a set of Gene Ontology terms associ-
ated with the protein target. We used Cytoscape [45] 
v3.9.1 plugin ClueGO [46] to condense the protein tar-
get set by grouping them into functional groups to obtain 
the associated significance (using the baseline ClueGO 
p-value ≤ 0.05) molecular and functional pathway terms. 
In this manner, we associated individual assays with 
molecular and functional pathways for further evaluation 
of model performances.
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Cell painting data
The Cell Painting assay used in this study, from the Broad 
Institute, contains a set of circa 1700 cellular morpho-
logical profiles for more than 30,000 small molecule per-
turbations [47, 48]. The morphological profiles in this 
dataset are composed of a wide range of feature meas-
urements (share, area, size, correlation, texture etc. as 
shown in a demonstrative table in Additional file  5: Fig 
S13a). While preparing this dataset, the Broad Institute 
normalized morphological features to compensate for 
variations across plates and further excluded features 
having a zero median absolute deviation (MAD) for all 
reference cells in any plate [13]. Following the proce-
dure from Lapins et al., we subtracted the average feature 
value of the neutral DMSO control from the particular 
compound perturbation average feature value on a plate-
by-plate basis [15]. For each compound and drug combi-
nation, we calculated a median feature value. Where the 
same compound was replicated for different doses, we 
used the median feature value across all doses that were 
within one standard deviation of the mean dose. Finally, 
after SMILES standardisation and removing duplicate 
compounds using standard InChI calculated using RDKit 
[50], we obtained 1783 median Cell Painting features 
for 30,404 unique compounds (available on Zenodo at 
https:// doi. org/ 10. 5281/ zenodo. 75893 12).

Overlap of datasets
For both the public and Broad dataset, as shown in 
Additional file  5: Fig S13b (step 1) we used MolVS [49] 
standardizer based on RDKit [50] to standardize and 
canonicalize SMILES for each compound which encom-
passed sanitization, normalisation, greatest fragment 
chooser, charge neutralisation, and tautomer enumera-
tion described in the MolVS documentation [49]. We 
further removed duplicate compounds using standard-
ised InChI calculated using RDKit [50].

Next, for the public dataset, we obtained the overlap 
with the Cell Painting dataset using standardised InChI 
as shownin Additional file 5: Fig S13b (step 2). From this, 
we removed assays which contained less than 100 com-
pounds for the minority class with Cell Painting data-
sets (which were difficult to model due to limited data) 
as shown in Additional file 5: Fig S13b (step 3). For each 
assay, as shown in Additional file 5: Fig S13b (step 4) the 
majority class (most often the negative class) was ran-
domly resampled to maintain a minimum 3:1 ratio with 
the minority class to ensure that models are fairly bal-
anced. Finally, we obtained the public assay data for a 
sparse matrix of 88 assays and 9876 unique compounds 

(see Additional file 1 for assay descriptions). Similarly, for 
the Broad dataset, out of 270 assays provided, as shown 
in Additional file  5: Fig S13b, we removed assays that 
contained less than 100 compounds and randomly resa-
mpled to maintain a minimum 3:1 ratio with the minor-
ity class, resulting in a Broad Institute dataset as a sparse 
matrix of 15,272 unique compounds over 89 assays (see 
Additional file 2 for assay descriptions). Additional file 5: 
Fig S14 shows the distribution of the total number of 
compounds for 177 assays used in this study. Both data-
sets are publicly available on Zenodo at https:// doi. org/ 
10. 5281/ zenodo. 75893 12).

Structural data
We generated Morgan Fingerprints of radius 2 and 2048 
bits using RDKit [50] used as binary chemical finger-
prints in this study (as shown in a demonstrative table in 
Additional file 5: Fig S13a).

Feature selection
Firstly, we performed feature selection to obtain mor-
phological features for each compound. From 1783 Cell 
Painting features, we removed 55 blocklist features that 
were known to be noise from Way et al. [51] For the com-
pounds in the public assays, we further removed 1,012 
features which had a very low variance below a 0.005 
threshold using the scikit-learn [52] variance threshold 
module. Next, like the feature section implemented in 
pycytominer [53], we obtained the list of features such 
that no two features correlate greater than a 0.9 Pearson 
correlation threshold. For this, we calculated all pairwise 
correlations between features. To decide which features 
to drop, we first determined for each feature, the absolute 
sum of correlation across all features. We then dropped 
features with the highest absolute correlation (to all fea-
tures), thus retaining the subset of feature combina-
tions that pass the correlation threshold. In this way, we 
removed the 488 features with the highest pairwise cor-
relations. Finally, we removed another 44 features if their 
minimum or maximum absolute value was greater than 
15 (using the default threshold in pycytominer [53]). 
Hence, we obtained 184 Cell Painting features for 9876 
unique compounds for the dataset comprising public 
assays. Analogously, for the Broad Institute dataset, we 
obtained 191 Cell Painting features for 15,272 unique 
compounds (both datasets are available on Zenodo at 
https:// doi. org/ 10. 5281/ zenodo. 75893 12).

Next, we performed feature selection for the structural 
features of Morgan fingerprints. For the public assays, 

https://doi.org/10.5281/zenodo.7589312
https://doi.org/10.5281/zenodo.7589312
https://doi.org/10.5281/zenodo.7589312
https://doi.org/10.5281/zenodo.7589312
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we removed 1891 bits that did not pass a near-zero vari-
ance (0.05) threshold since they were considered to have 
less predictive power. Finally, we obtained Morgan fin-
gerprints of 157 bits for 9876 unique compounds. Anal-
ogously, for the Broad Institute dataset, we obtained 
Morgan fingerprints of 277 bits for 15,272 unique com-
pounds (both datasets are available on Zenodo at https:// 
doi. org/ 10. 5281/ zenodo. 75893 12).

Chemical and morphological similarity
We next defined the structural similarity score of a com-
pound as the mean Tanimoto similarity of the 5 most 
similar active compounds. The morphological similarity 
score of a compound was calculated as the median Pear-
son correlation of the 5 most positively correlated active 
compounds.

Model training
For each assay, the data was split into training data (80%) 
and held out test data (20%) using a stratified splitting 
based on the assay hit call. First, on the training data, we 
performed fivefold nested cross-validation keeping aside 
one of these folds as a test-fold, on the rest of the 4 folds. 
We trained separate models, as shown in Fig. 1c step (1) 
and step (2), using Morgan fingerprints (157 bits for the 
public dataset; 277 bits for the Broad Institute dataset) 
and Cell Painting data (184 features for the public dataset, 
191 features for the Broad Institute dataset) respectively 
for each assay. In this inner fold of the nested-cross vali-
dation, we trained separately, Random Forest models on 
the rest of the 4 folds with Cell Painting and Morgan fin-
gerprints. These models were hyperparameter optimised 
(including class weight balancing with parameter spaces 
as shown in Additional file 4) using cross-validation with 
shuffled fivefold stratified splitting. For hyperparameter 
optimisation, we used a randomized search on hyper-
parameters as implemented in scikit-learn 1.0.1 [52]. 
This optimisation method iteratively increases resources 
to select the best candidates, using the most resources 
on the candidates that are better at prediction [54]. The 
hyperparameter optimised model was used to predict the 
test fold. To account for threshold balancing of Random 
Forest predicted probabilities (which is common in an 
imbalanced prediction problem), we calculated on the 4 
folds, the Youden’s J statistic [55] (J = True Positive Rate—
False Positive Rate) to detect an optimal threshold. The 
threshold for the highest J statistic value was used such 
that the model would no longer be biased towards one 
class and give equal weights to sensitivity and specificity 
without favouring one of them. This optimal threshold 
was then used for the test-fold predictions, and this was 

repeated 5 times in total for both models using Morgan 
fingerprints and Cell Painting features until predictions 
were obtained for the entire training data in the nested 
cross-validation manner. As the optimal thresholds for 
each fold were different, the predicted probability val-
ues were scaled using a min–max scaling such that this 
optimal threshold was adjusted back to 0.50 on the new 
scale. Further for each test-fold in the cross-validation, as 
shown in Fig. 1c step (3) and step (4), we also calculated 
the chemical and morphological similarity (as described 
above in the “Chemical and Morphological Similarity” 
section) for each compound in this test-fold with respect 
to the active compounds in the remaining of the 4 folds. 
This was also repeated 5 times in total until chemical and 
morphological similarity scores were obtained for the 
entire training data.

Finally, on the entire training data, two Random For-
est models were trained with Cell Painting and Mor-
gan fingerprints with hyperparameter-optimised (in 
the same way as above using fivefold cross-validation). 
This was used to predict the held-out data, as shown in 
Fig.  1c step (5) (with threshold balancing performed 
from cross-validated predicted probabilities of the train-
ing data). We calculated the chemical and morphological 
similarity of each compound in the held-out data com-
pared with all active compounds in the training data and 
these were recorded as the chemical and morphological 
similarity scores respectively of the particular compound 
in the held-out dataset as shown in Fig. 1c step (6). The 
predicted probability values were again adjusted using a 
min–max scaling such that this optimal threshold was 
0.50 on the new scale.

Similarity‑based merger model
The similarity-based merger models presented here com-
bined individual scaled predicted probabilities from indi-
vidual models trained on Cell Painting and Structural 
data and the morphological and structural similarity of 
the compounds with respect to active compounds in the 
training data. In particular, for each assay, we evaluated 
the similarity-based merger model on the held-out data 
using information from the training data only to avoid 
any data or model leakage. We trained a Logistic Regres-
sion model (with baseline parameters of L2 penalty, an 
inverse of regularization strength of 1 and balanced class 
weights) on the training data which uses the Cell Paint-
ing and Morgan fingerprints models’ individual scaled 
predicted probabilities and the structural and morpho-
logical similarity scores (with respect to other folds in 
the training data itself ) as features and the endpoint as 

https://doi.org/10.5281/zenodo.7589312
https://doi.org/10.5281/zenodo.7589312
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the assay hit call of the compound, as shown in Fig.  1c 
step (7). Finally, this logistic equation was used to predict 
the assay hit call of the held-out compounds (which we 
henceforth call the similarity-based merger model pre-
diction) and an associated predicted probability (which 
we henceforth call similarity-based merger model pre-
dicted probability), as shown in Fig. 1c step (8). There is 
no leak of any held-out data assay hit call information but 
only its structural similarity and morphological similar-
ity to the active compounds in the training data, which 
can be easily calculated for any compound with a known 
structure.

Baseline models
For baseline models, we used two models, namely a soft-
voting ensemble [21] and a hierarchical model [22]. The 
soft-voting ensemble, as shown in Fig.  1a, combines 
predictions from both the Cell Painting and Morgan 
fingerprints models using a majority rule on the pre-
dicted probabilities. In particular, for each compound, 
we averaged the re-scaled predicted probabilities of two 
individual models, thus in effect creating an ensemble 
with soft-voting. We applied a threshold of 0.50 (since 
predicted probabilities from individual models were 
also scaled to the optimal threshold of 0.50 as described 
above) to obtain the corresponding soft-voting ensemble 
prediction.

For the hierarchical model, as shown in Fig. 1b, we fit a 
baseline Random Forest classifier (hyperparameter opti-
mised for estimators [100, 300, 400, 500] and class weight 
balancing using stratified splits and fivefold cross valida-
tions as implemented in scikit-learn [52]) on the scaled 
predicted probabilities for the entire training data from 
both individual the Cell Painting and Morgan fingerprints 
models (obtained from the nested-cross validation). We 
used this hierarchical model to predict the activity of the 
held-out test set compounds which gave us the predicted 
assay hit call (and a corresponding model predicted prob-
ability) which we henceforth call the hierarchical model 
prediction (and a corresponding hierarchical model pre-
dicted probability).

Model evaluation
We evaluated all models (both individual models, soft-
voting ensemble, hierarchical and similarity-based 
merger model) based on precision, sensitivity, F1 scores 
of the minority class, specificity, balanced accuracy, Mat-
thew’s Correlation Coefficient (MCC) and Area Under 
Curve- Receiver Operating Characteristic (AUC) scores.

Statistics and reproducibility
A detailed description of each analysis’ steps and sta-
tistics is contained in the methods section of the paper. 
Statistical methods were implemented using the pandas 
Python package [56]. Machine learning models, hyperpa-
rameter optimisation and evaluation metrics were imple-
mented using scikit-learn [52], a Python-based package. 
We have released the datasets used in this study which 
are publicly available at Zenodo (https:// doi. org/ 10. 5281/ 
zenodo. 75893 12). We released the Python code for the 
models which are publicly available on GitHub (https:// 
github. com/ sriji tseal/ Mergi ng_ Bioac tivity_ Predi ctions_ 
CellP ainti ng_ Chemi cal_ Struc ture_ Simil arity).
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Additional file 1: Assay descriptions of the public dataset comprising 88 
assays.

Additional file 2: Assay types and readout types of Broad Institute dataset 
comprising 89 assays.

Additional file 3: Performance of Cell Painting, structural models, soft‑
voting ensembles, hierarchical models, and the similarity‑based merger 
models over all 177 assays used in this study.

Additional file 4: Hyperparameters considered for optimising Random 
Forests.

Additional file 5: Figure S1. Features used in the similarity‑based merger 
models: a logistic regression model that takes the predicted probabilities 
from individual models and the test compound’s similarity to the active 
compounds in the training data in both feature spaces, structural and 
morphological. Figure S2. Distribution (a) Balanced Accuracy for 171 
assays (out of 177 assays) and (b) F1 scores for 177 assays for all models, 
namely, Cell Painting, structural models, baseline models of soft‑voting 
ensembles, hierarchical models, and the similarity‑based merger models. 
An assay was considered for a paired significance test only if the the 
balanced accuracy>0.50 and F1 score>0.0 for at least one of the models. 
Figure S3. (a) Number of assays that were predicted with a Balanced 
Accuracy above a given threshold. (b) Distribution of assays with Balanced 
Accuracy > 0.70 common and unique to all models, Cell Painting, Morgan 
Fingerprints, baseline models of soft‑voting ensemble, hierarchical model, 
and the similarity‑based merger models, over 177 assays used in this 
study. Figure S4. Distribution of AUC Scores for 177 assays used in this 
study for (a) Cell Painting and Structural Models, (b) Soft‑Voting Ensemble 
and Hierarchical Model, (c) Similarity‑based merger model and Hierar‑
chical Model, and (d) Similarity‑based merger model and Soft‑Voting 
Ensemble. Any assay above or below the diagonal ( x = y ) line performs 
better than the other model. Figure S5. Relative improvement (green) 
or deterioration (red) in performance on using similarity‑based merger 
models compared to soft‑voting ensemble methods over the public 
dataset comprising 162 assays out of 177 assays where either model per‑
formed better than a random classifier (AUC = 0.50). Figure S6. Relative 
improvement (green) or deterioration (red) in performance on (a) using 
similarity‑based merger models compared to Cell Painting models over 
the public dataset comprising 163 assays out of 177 assays where either 
model performed better than a random classifier (AUC = 0.50) , and (b) 
using similarity‑based merger models compared to structural models over 
the public dataset comprising 159 assays out of 177 assays where either 
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model performed better than a random classifier (AUC = 0.50). Figure 
S7. Distribution of AUC scores achieved by individual models for all 177 
assays used in this study in relation to (a) the total number of compounds, 
and (b) the ratio of the number of active compounds to the number of 
inactive compounds. Figure S8. Distribution of True and False Predictions 
on all compounds in the held‑out test for the public dataset over all 177 
assays from (a) Cell Painting model compared to the similarity in image 
space of the respective training set, (b) Structural model compared to the 
similarity structural space of the respective training set, and the similarity‑
based merger model compared to (c) the similarity in image space, and 
(d) the similarity structural space of the respective training set. Figure S9. 
Kernel density estimate (KDE) plot visualising the distribution of True Posi‑
tives using a continuous probability density curve. The plot shows true 
positives in the held‑out test of the assay 240_714 from the Broad Institute 
(a fluorescence based biochemical assay) from the individual Cell Painting 
model, structural model, soft‑voting ensemble, hierarchical model, and 
the similarity‑based merger model compared in the space of the similar‑
ity in image space and the similarity structural space to the training set 
used. Figure S10. Overview of the assay type and readout types of Broad 
Institute dataset comprising 89 assays. Figure S11. AUC performance 
of models using Cell Painting, Morgan Fingerprints, baseline models of 
soft‑voting ensemble, hierarchical model, and the similarity‑based merger 
models for 89 assays in the Broad Institute dataset based on readout type. 
Figure S12. AUC performance of models using Cell Painting, Morgan 
Fingerprints, baseline models of soft‑voting ensemble, hierarchical model, 
and the similarity‑based merger models for 89 assays in the Broad Institute 
dataset based on assay type. Figure S13. Datasets used in this study: 
(a) Demonstrative table of data values from bioactivity datasets (binary 
assay hitcalls), Cell Painting (continuous numerical values) and Morgan 
fingerprints (binary bit fingerprints) used in this study. (b) Workflow in 
pre‑processing of both bioactivity datasets used in this study, the public 
dataset comprising 88 assays, and the Broad Institute dataset comprising 
89 assays. Figure S14. Distribution of number of compounds in each of 
the 177 assays after under sampling as used in this study.
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