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Abstract 

Tokenization is an important preprocessing step in natural language processing that may have a significant influ-
ence on prediction quality. This research showed that the traditional SMILES tokenization has a certain limitation that 
results in tokens failing to reflect the true nature of molecules. To address this issue, we developed the atom-in-SMILES 
tokenization scheme that eliminates ambiguities in the generic nature of SMILES tokens. Our results in multiple 
chemical translation and molecular property prediction tasks demonstrate that proper tokenization has a signifi-
cant impact on prediction quality. In terms of prediction accuracy and token degeneration, atom-in-SMILES is more 
effective method in generating higher-quality SMILES sequences from AI-based chemical models compared to other 
tokenization and representation schemes. We investigated the degrees of token degeneration of various schemes and 
analyzed their adverse effects on prediction quality. Additionally, token-level repetitions were quantified, and gener-
ated examples were incorporated for qualitative examination. We believe that the atom-in-SMILES tokenization has a 
great potential to be adopted by broad related scientific communities, as it provides chemically accurate, tailor-made 
tokens for molecular property prediction, chemical translation, and molecular generative models.
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Introduction
Tokenization is an essential preprocessing step for 
sequential data to train and use natural language pro-
cessing (NLP) models. However, insufficient attention 
has been devoted to its effects on chemical applica-
tions. Tokenization can significantly influence prediction 

quality within the framework of text generation  [1]. In 
the field of chemistry, it covers processes used to split 
linear molecular representations into their constituent 
elements. As linear molecular representations are algo-
rithmic abstractions, their partitioning can alter the per-
ception of molecules. Herein, tokenization refers to any 
logical partitioning of molecular structures based on 
SMILES strings.

In general, a molecule can be perceived as an inher-
ent whole, owing to the internal relationships among its 
atomic components. Simplified Molecular Input Line 
Entry System (SMILES) strings  [2], the most commonly 
used molecular representation, are also defined to be 
meaningful as a whole. They represent molecular objects, 
which are rigid bodies and completely different from 
their constituent atoms. Notably, any sensible partition-
ing of a molecule will produce meaningful fragments. 
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However, to some extent, the abstraction level of the 
process will get tangled because considering atoms in a 
molecule is not a “realistic” approach. Likewise, SMILES 
tokens are merely sensible linear cuts of a string with 
reduced dimensionality.

A typical tokenization of SMILES is performed atom-
wise, i.e., character-wise. However, the SMILES represen-
tation consists of a small number of distinct characters 
including atomic symbols, integers for ring closure, and 
special symbols for bonds and chirality. In other words, 
all atoms with the same atomic number are represented 
identically. However, the characteristics of each atom 
even with the same atomic number may differ signifi-
cantly based on its environment. This statement is simi-
lar to the concept of atoms in molecules (AIM) [3], which 
describes the nature of molecules based on the electron 
density distribution attracted by each atom. Thus, the 
conventional atom-wise tokenization of SMILES may 
be too abstract and chemically inaccurate and it may 
obscure the learning process of a model and the under-
standing of the results.

Herein, we point out an analogy between the natural 
(spoken) language and constructed language of chemistry 
(see Table 1). The analogy provides a motivational ground 
for the use of NLP methods in chemistry problems  [4]. 
The intended analogy relies on the part-whole relation-
ship   [5, 6] and suggests that molecular substructures 
(typically composed of several atoms) can be considered 
as chemical “words” for the linguistic treatment of chem-
ical language. However, in practice, chemical words often 
become the tokens of SMILES that consists of atomic 
symbols and characters representing topological charac-
teristics, such as ring-closure or branches, which do not 
correspond to physical atoms. In this context, atoms are 
present in molecules by neglecting an essential aspect of 
the chemical reality. In the following paragraph, we ana-
lyze the token characteristics of sentences and SMILES 
strings for insight into the influence of the latter format 
on the translation mechanic.

According to the sentence length distribution of vari-
ous language corpora, a well-written sentence contains 
15–20 words on average [7]. The average sequence length 

of a SMILES string is typically three times longer than a 
natural language, whereas the token space is at least 1000 
times smaller than any developed language [8]. This is a 
consequence of repetitive tokens observed in SMILES 
strings. The most distinguishing feature of SMILES rep-
resentation is the token repeat, which causes atoms of 
molecules to be indistinguishable in the token space. The 
repetitive nature of SMILES syntax adds to the more gen-
eral issue of neural machine translation (NMT) decoders, 
yielding degenerative outcomes [9, 10].

Token order is another aspect of this comparison. 
Although the order of words in a sentence can be altered 
to enhance tone, meaning, or fluency, this cannot be 
applied to molecules. In fact, a single molecule can 
equally be represented by hundreds of SMILES enumera-
tions depending on its topology (more if branches and 
cyclic fragments exist)  [11]. Canonical SMILES refers to 
one of those many allowed permutations obtained by a 
unique and consistent atom numbering. In essence, while 
words tend to retain their semantic significance as they 
transition from isolated to contextual settings, with only 
minor semantic shifts that may occur over time, the same 
does not hold true for atoms within the realm of chem-
istry. For example, the atomic symbols within a SMILES 
string are treated equivalently to those in isolation, sig-
nifying that the chemical significance of these symbols 
is upheld throughout the tokenization process. Thus, 
tokens such as carbon (C) may appear identical in differ-
ent molecules despite their actual differences in chemi-
cal composition. However, it is important to distinguish 
between atom-in-SMILES (AIS, analogous to AIM) and 
corresponding tokens, as atoms lose their identities when 
they form molecules.

Inspired by the aforementioned comparative analysis out-
lined in Table  1, we develop a tokenization framework by 
introducing environmental information and show that it cor-
roborates the chemical viewpoint. In recent decades, vari-
ous methods have been developed to enhance or extend the 
SMILES language. Few of these methods include BigSMILES 
for describing macromolecules [12], CurlySMILES for supra-
molecular structures and nanodevices  [13], CXSMILES for 
storing the special features of molecules [14], OpenSMILES 
specification for specifying the stereochemistry and chiral-
ity  [15], DeepSMILES and SELFIES for machine learning 
applications  [16, 17], and canonicalization algorithms  [18, 
19]. The aforementioned approaches effectively solve par-
ticular problems originating from the internal structure of 
SMILES. In our approach, we do not treat syntactic prob-
lems; rather, we redefine SMILES tokens by introducing 
environmental information. To consider local chemical 
environments, atom environments (AEs) are used, which 
are circular atom-centered topological molecular fragments 
created with predefined radii of covalent bonds. Hence, our 

Table 1 Comparison of the important aspects of natural and 
chemical languages within the NLP framework

*practically less due to the rules of chemistry

Aspects Natural language SMILES language

Sequence length 15-20 words ∼ 3 times higher

Token space >100K ∼ 1000 times smaller

Token order Tone, meaning, fluency nC2  alternatives*

Meaning-wise isolation ≡ context isolation ≡ context
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approach entails utilizing AEs to produce environment-
aware atomic tokens analogous to atom-in-molecules. We 
term this custom tokenization scheme Atom-in-SMILES, 
AIS.

The AIS tokenization integrates key aspects of SMILES 
and AEs  [20]. The proposed approach accommodates all 
relevant information for a seamless bidirectional transfor-
mation between the two representations, to ensure practi-
cal implementation. We demonstrate that the AIS scheme 
performs better in translating between equivalent string 
representations of molecules using an exceptionally chal-
lenging dataset. It was also observed that training with AIS 
tokenization leads to more accurate models for single-step 
retrosynthetic pathway prediction, and molecular prop-
erty prediction tasks. We also evaluated prediction qualities 
by comparing AIS tokenization with the existing schemes: 
canonical SMILES-based tokens, atom-wise and SMILES 
pair encoding (SmilesPE)  [21], SELFIES, and DeepSMILES 
tokens. We show that AIS tokenization reflects the true 
chemical context, delivers better performance, and reduces 
token degeneration by 10%.

Implementation
Advanced tokenization schemes have emerged as a result 
of the evolution of natural language processing. Figure  1 
shows that state-of-the-art tokenization schemes, like 
BERT [22], GPT-2  [23], and XLM [24], divide words into 
sub-words to capture contextual relationships between 

them while conventional tokenization schemes used to 
break down sentences into words or characters. In the field 
of cheminformatics, atom-wise tokenization of SMILES is 
primarily used for training chemical language models. In 
addition to atom-wise SMILES tokenization, new molecu-
lar representations have been introduced such as SELFIES 
and DeepSMILES, and specialized tokenization schemes 
like SmilesPE imitating byte-pair encoding.

In the token space generated by atom-wise SMILES 
tokenization, all atoms with the identical atomic numbers 
are indistinguishable. As a toy example, in a glycine mol-
ecule (Fig.  2) carbons are represented as two identical 
carbon atoms following tokenization. Oxygen atoms are 
also treated similarly. Hypothetical atomic constituents 
obtained by tokenization are often degenerated. This is an 
intrinsic feature of SMILES representation, which does not 
correspond to chemical reality.

We propose the AIS tokenization scheme that expresses. 
The most natural formulation of this proposition is as fol-
lows. Let T1 and T2 be the token spaces of SMILES and AIS, 
respectively, and f : T1 → T2 be a mapping, which is one-
to-one and onto; then,

For any SMILES string, the function f simply tweaks 
each atom by selecting it as the central atom of the 

(1)f (X) =

{

AE|Xcentral
if X is an atom

X otherwise.

Fig. 1 Comparison of conventional and modern tokenization schemes in NLP and the tokenization methods in the chemical language domain
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corresponding atomic environments (AEs); otherwise, it 
is an identity operator from the token space. The chiral-
ity and aromaticity information of the central atom are 
preserved through the above-described mapping. Bond 
order and hybridization are the two intrinsic dimen-
sions of AIS tokens. As f is invertible, SMILES strings 
can be fully recovered by the SMILES projection. The 
proposed algorithm for generating AIS tokenization can 
be described through the presented pseudo-code (Algo-
rithm 1). The algorithm works by iterating over the atoms 
in a SMILES string and generates rich, environment-
aware variants.

Introducing the neighboring atoms interacting with the 
central atom generates tokens with greater diversity. As 
shown in Fig.  2 carbon and oxygen atoms are well distin-
guished according to their local chemical environments 
( C:1  ≡ C:2 , O:3  ≡ O:4 ). The token space stretches rela-
tive to the atom-wise tokenization. As another example, 
shown in Fig. 3, we can consider the tokens of the follow-
ing aromatic molecules: Clc1csc2nc3ncncn3c12 and 

Clc1csc2nc3nnccn3c12. The atom-wise tokens of these 
molecules are identical. However, the set of the symmetric 
difference of AIS tokens has three members, [cH;R;CN], 
[cH;R;NN], and [n;R;CN], rendering the carbon-nitro-
gen swap recognizable.

Fig. 2 A toy example illustrating the major differences between AIS and conventional SMILES tokenizations. The formal description of AIS 
tokenization contains three primary elements, (i) central atom, (ii) ring information, and (iii) neighbor atoms information, interacting with the central 
atom. The formalism ties everything together within a square bracket separated by a semi-colon. The chirality information can be attached to the 
central atom, which is labeled with either @ or @ @ suffixes. Aromaticity is reflected on the central atom with a lower case letter. Hydrogen atoms 
are explicitly specified on central atoms. The hybridization and bonding nature of organic elements can be easily deduced

Fig. 3 Token set comparison of two highly similar molecules. The 
molecules differ only in the position of a carbon and nitrogen atom in 
one of the rings
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Figure  4 provides insight into the inherent proper-
ties of various molecular representations, revealing their 
expressive power, token diversity, and chemical relevance. 
We evaluated the distributions of tokens and normalized 
repetition rates across a diverse set of molecular datasets 
with a wide range of structural complexities and configu-
rational changes, such as coordination compounds and 
ligands (metal complexes from Crystallography Open 
Database  [25]), ring structures and functional groups 
(steroids  [26]), long-chain formations (phospholipids 
and ionizable lipids   [27]), complex and diverse struc-
tures (natural products  [28]), small organic molecules 
(drugs  [29]), and configurational changes in molecular 
structure (octane isomers). Single-token repetition can 
be easily quantified as rep-l =

∑

|s|
t=1[st ∈ st−w−1:t−1] , 

where s and |s| denote the prediction and token count 
respectively [10]. We kept the number of considered pre-
vious token w sufficiently large (as large as the maximum 
sequence length). Normalized repetition rates, which 
measure the ratio of single-token repetitions to sequence 
length, is used to provide a meaningful measure of 

expressiveness. Lower repetition rates indicate more 
diverse and informative token sets that can alleviate the 
problem of degeneracy observed in model outcomes.

In Fig.  4, AIS tokens exhibit consistently lower rep-
etition rates compared to SMILES, SELFIES, and Deep-
SMILES, indicating a higher level of expressiveness. 
This difference in expressive power is particularly evi-
dent in drugs, natural products, and steroid datasets. 
However, in expressing long chains, as in the case of 
lipids, all tokenization schemes struggle. One limitation 
of AIS is that it lacks the ability to distinguish environ-
mentally similar substructures or those with a symmetry 
plane since it only considers nearest neighborhoods. The 
SmilesPE representation exhibits a low-lying distribution 
due to the relatively low number of pseudo-substruc-
tures with fewer or zero repetitions. It is worth noting 
that inherent repetitions in molecular representations 
can exacerbate the repetition problem observed in NLP 
model outcomes, highlighting the importance of diverse 
and informative token sets.
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Results and discussion
We tested the AIS tokenization on three challenging 
tasks: (i) input–output equivalent mapping (SMILES 
canonicalization), (ii) single-step retrosynthetic pre-
diction, and iii) molecular property prediction. For the 
first two functionality tests, we utilized NMT frame-
work that translates sequences from the source to the 
target domain with the most promising attention-based 
transformer encoder-decoder architecture  [30, 31]. We 
trained our models for 200,000 steps with the Adam opti-
mizer, negative log-likelihood loss, and cyclic learning 
rate scheduler. For these tasks, we report the percentage 
of exact prediction.

Input–output equivalent mapping
First, we tested how the learning efficiency of an NMT 
model is affected by the choice of the tokenization 
scheme, on the task of converting non-canonical SMILES 

strings into their canonical form. For rigorous test, we 
generated extremely confusing datasets consisting of 
many similar strings. To generate the datasets, we used 
the predefined subsets of the GDB-13  [32] database 
that contains drug-like molecules with up to 13 heavy 
atoms which consist of C, N, O, S, and Cl. The subsets 
were generated by applying cumulative pre-defined con-
straints  [33, 34], which were named as follows: a: No 
cyclic HetHet Bond; b: No acyclic HetHet Bond; c: Sta-
ble FG; d: No cyclic C=C and C:C bonds; e: No acyclic 
C=C and C:C bonds; f: No small rings; g: Fragment-
like, and h: Scaffold-like. Our training dataset consisted 
of one million randomly sampled molecules taken from 
the GDB-13, combined with 150K randomly sampled 
from the most stringent GDB-13 subset abcdefgh. 
We augmented the subset at different levels ( ×10, ×30, 
and ×50) to make the training set more confusing. This 
approach resulted in training datasets with a high degree 
of similarity between the input (non-canonical instances) 

Fig. 4 Comparison of expressiveness and normalized repetition rates across various molecular representations. Distributions showcasing the 
distinct characteristics of tokenization schemes on representative datasets, each designed to test different facets of molecular structures such 
as coordination compounds, ligands (metal complexes), ring structures and functional groups (steroids), long-chain formations (phospholipids, 
ionizable lipids), complex and diverse structures (natural products), small organic molecules (drugs), and configurational changes in molecular 
structure (octane isomers). Each dataset contains one hundred members, with the exception of steroids (59 members) and octane isomers (18 
members). The mean values of normalized repetitions and deviations from the mean are visually represented as horizontal and dashed vertical lines, 
respectively, accompanying the distributions
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and output (only canonical enumerations) SMILES 
strings, making it difficult to discern variations.

We quantified the performance on large (20K) GDB-13 
disjoint test sets of varying constraints (see Table 2). To 
highlight the benefits of our token design over SMILES 
tokenization, we utilized an approach shown in Fig.  5b. 
Table  2 and Fig.  5a, c demonstrate the limitations of 
SMILES tokenization and the characteristics of our 
tokens. The atom-in-SMILES scheme outperformed the 
SMILES atom-wise scheme on all subsets and augmen-
tation levels, with increasing performance gaps for more 
restrictive subsets (more similar). The highest prediction 
accuracy of 59.9% (x10) and 56.8% (x50) was achieved on 
the subset abcdefg, compared to 50.9% (x10) and 50.0% 
(x50) for the atom-wise scheme.

In our experiments, we observed that the added com-
plexity by data augmentation resulted in a degradation 
of performance, different from the typical degradation 
observed in overly complex models (overfitting)  [35]. 
Atom-wise tokens struggled to handle the increas-
ing complexity, resulting in a performance deficit of up 
to 10.7% on the abcdef subset. Notably, as the level of 
augmentation increased, the model’s token-level prob-
abilities decreased. However, we found that the AIS 
tokenization, trained on a dataset of extremely similar 
molecules, was better equipped to handle this problem. 
The greater string similarity led to consistent improve-
ments in predictive power, which we attribute to the 
richer and more expressive representation of AIS tokens.

Fig. 5 Performance of atom-wise (blue) and atom-in-SMILES (purple) tokenization schemes tested on various restricted GDB-13 test sets [33]. a Test 
results of × 10 augmented training set. b Model overview. c Test results of × 50 augmented training set. The training is conducted with one million 
randomly sampled molecules taken from the GDB-13, combined with 150K randomly sampled subset of the strictest cumulative abcdefgh data, 
which we augmented at different levels ( ×10, ×30, and ×50)

Table 2 Performance of atom-wise and atom-in-SMILES tokenization schemes tested on various restricted GDB-13 test sets [33]

The training is conducted with one million randomly sampled molecules taken from the GDB-13, combined with 150K randomly sampled subset of the strictest 
cumulative abcdefgh data, which we augmented at different levels ( ×10, ×30, and ×50)

GDB-13 subsets [33] 
(cumulative)

Prediction accuracy (%)

Atom-wise Atom-in-SMILES

x10 x30 x50 x10 x30 x50

ab 34.2 34.3 33.2 37.3 35.9 34.1

abc 31.0 30.8 29.6 33.7 32.1 30.4

abcd 30.8 30.4 29.2 34.3 32.3 30.5

abcde 48.7 47.6 45.5 53.6 50.0 47.0

abcdef 41.8 40.6 39.1 52.5 49.6 46.9

abcdefg 50.9 50.9 50.0 59.9 58.6 56.8
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Single-step retrosynthesis and token degeneration
Retrosynthetic prediction is a challenging task in organic 
synthesis that involves breaking down a target mol-
ecule into precursor molecules using a set of reaction 
templates. This process helps chemists identify poten-
tial routes for synthesizing novel chemical structures. 
However, conventional template-based methods have 
limitations such as coverage and template generation 
issues   [36, 37], and can be computationally expen-
sive [38]. Additionally, atoms have not been successfully 
mapped between products and reactants in these meth-
ods  [39]. To address these challenges, we implemented 
a template-free, direct translational method to suggest 
reactant candidates, which is extremely similar to the 
concept proposed by several groups   [40–44]. These 
approaches can provide high-quality and complete rec-
ommendations without the need for hand-crafted tem-
plates [45] or pre-existing reaction databases [46, 47].

We adopted the open-source ca. USPTO-50K reac-
tion benchmark dataset that is widely used for a single-
step retrosynthesis prediction task. This dataset was a 
subset of a larger collection from the U.S. patent litera-
ture obtained with a text-mining approach   [48, 49]. As 
a preprocessing step, we removed sequences longer 
than 150 tokens. The prediction quality is assessed by 
top-1 accuracy, string match. Additionally, we reported 
Tanimoto exactness (with hashed Morgan Fingerprint 
radius of 3 and bit size of 2048 [50]) since the predicted 
structures might fail on the string match tests  [51], but 
still can map to correct ground truth due to multiplic-
ity of SMILES representation. To determine the effect of 
the tokenization on the prediction quality, we compared 
the performance of the AIS tokenization with two other 
SMILES-based tokenization schemes, namely, atom-wise 
and SmilesPE, and two molecular representations Deep-
SMILES and SELFIES.

Repetition is a well-known issue in text generation 
models, where multiple tokens predict the same sub-
sequent token with high probability  [9, 56], leading to 
the generation of repetitive sequences. A sequence is 
said to have a repetition subsequence if and only if it 
contains at least two adjacent identical continuous sub-
sequences  [56]. Large-scale language models such as 
Transformer and GPT-2 have shown to exhibit this issue, 
resulting in a negative impact on the quality of generated 
text. The Table  3 demonstrates different types of token 
degeneration, including single-word repetition, phrase-
level repetition, sentence-level repetition, structural 
repetition, and subsequential repetition. The examples 
are drawn from a range of NLP tasks, such as sentence 
completion, summarization, generation from an initial 
tag line, product review generation, protein sequence 
generation, and molecule captioning. This emphasizes 

the prevalence of token degeneration and highlights the 
importance of addressing this issue to ensure the genera-
tion of high-quality natural language text.

Herein, we observed that molecular prediction tasks 
are also susceptible to token repetition. With the careful 
examination of non-exact predictions, we were able to 
summarize the common forms of problematic outcomes. 
Figure  6 displays six typical examples of token repeti-
tion in SMILES predictions within an NMT retrosyn-
thesis framework: long head and tail, repetitive rings and 
chains, and halogen repetitions on aliphatic and aromatic 
carbons. These outcomes are considered to be the most 
probable by the model and have a negative impact on the 
quality of predictions. The long head and tail result from 
the repeated addition of identical or similar substruc-
tures to a terminal, whereas repetitive rings and chains 
occur due to the repeated addition of the same substruc-
ture. The halogen repetitions on aliphatic and aromatic 
carbons occur when the model repeats the same halo-
gen substitution on similar carbons. Understanding and 
addressing these problematic outcomes is crucial for the 
development of accurate molecular prediction models.

Methods for quantifying the propensity of subse-
quent repetition are adapted from the recent studies by 
Welleck  [10] and Fu  [56] on neural text degeneration. 
We focused more on token-level measure for repetition 
than sequence-level repetition [9] because NMT typically 
uses a maximum log-likelihood training objective that is 
concerned with optimizing next-token conditional dis-
tributions. We used a token-level measure for repetition, 
rep-l, that counts the single-token repeats appearing in 
the preceding tokens. As there are so many single-token 
repeats appear in the ground truth SMILES, we reported 
the number of predicted SMILES with repetition rate 
higher than the ground truth.

In Table 4, top-1 string exact and Tanimoto exact accu-
racy are listed for various tokenization schemes along 
with the number of predicted SMILES with repeated 
tokens, rep-l|P − rep-l|GT ≥ 2 , where P and GT refer 
to prediction and ground truth. We observed perfor-
mance gains using the AIS tokenization, outperform-
ing the baseline by 4.3% in string exacts and 2.9% in T c 
exacts. Our methodology, having the fewest single-token 
repeats, alleviated the repetition problem by approxi-
mately 10% compared to the atom-wise tokenization 
scheme. DeepSMILES exhibited the worst degenerate 
repetition among all tokenization schemes, but its over-
all accuracy in predicting retrosynthesis was 3.5% lower 
than the baseline on average. Regardless of the repetition 
rate, SELFIES showed lower retrosynthesis prediction 
accuracy than the baseline of SMILES atom-wise tokeni-
zation. The overall performance of SmilesPE was about 
only half of the baseline. This clearly demonstrates that 
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the pseudo-substructures obtained with SmilesPE were 
not sufficient to capture the chemical change with ease.

Molecular property prediction tasks
The Table  5 provides a comprehensive comparison of 
various tokenization schemes for molecular property 
prediction tasks, highlighting the significance of tokeni-
zation in this domain. To evaluate the performance of 
these schemes, we used the MoleculeNet benchmark 
datasets  [58], which includes three regression tasks: 
ESOL for estimating solubility, FreeSolv for hydration 
free energies, and Lipophilicity for octanol/water distri-
bution coefficient, logD at pH 7.4 and three binary clas-
sification tasks: BBBP for barrier permeability, BACE 
for predicting binding results for a set of inhibitors of 
human beta-secretase 1, and HIV for predicting inhibitor 
activity. We trained random forest models with a 5-fold 
cross-validation strategy to ensure reproducible results. 
The tokenized form of the molecules was converted into 
one-hot encoding, which was used as the input feature 
representation for training the models. The regression 
tasks were evaluated using the root mean squared error 
(RMSE) metric, while receiver operating characteristic 
area under the curve (ROC-AUC) was used for evaluat-
ing the classification tasks.

Our findings indicate that the choice of tokenization 
scheme has a significant impact on the performance 
of molecular property prediction models. In terms of 
regression tasks, the AIS tokenization scheme dem-
onstrated superior performance, achieving the lowest 

RMSE values on ESOL (0.553), FreeSolv (0.441), and 
Lipophilicity (0.683) datasets. In terms of classifica-
tion tasks, AIS performed strongly, with the highest 
ROC-AUC values achieved on BBBP (0.885), and the 
second-highest value achieved on BACE (0.835) and 
HIV (0.729) datasets. In Table  5, the performances of 
SMILES, DeepSMILES, and SELFIES schemes were 
found to be comparable across all the conducted tasks, 
with SELFIES exhibiting a slightly more favorable per-
formance than SMILES. However, SmilesPE exhibited 
inconsistent results compared to other tokenization 
schemes. While it performed the best on the HIV and 
BACE datasets and performed well on the BBBP and 
Lipophilicity datasets, its performance was not consist-
ent across all datasets (worst in ESOL and FreeSolv). 
This inconsistency could be attributed to the limited 
vocabulary size of SmilesPE, resulting in an inaccurate 
representation of molecular substructures. Moreo-
ver, the representation of molecules as sequences of 
pseudo-words in SmilesPE may not be suitable for cer-
tain types of molecules, leading to poorer performance 
on specific datasets.

AIS as a fingerprint
Due to the compositional nature of the AIS tokeniza-
tion scheme, it can be readily converted to a fingerprint 
by simply removing non-atomic tokens. We considered 
the frequency of each AIS token from a string as its fin-
gerprint form. This is conceptually identical to counting 
the frequency of each distinct fragment during ECFP 

Table 3 Degenerate repetition observed in various tasks from state-of-the-art large-scale language models

The examples contain single-word repetitions, phrase-level repetitions, sentence-level repetitions, structural repetitions where tokens may vary within a repeating 
phrase, and subsequential repetitions. The first repeated unit in each example is  emphasized in bold.

Task [model] Context [Repetition pattern] output

Sentence completion 
[GPT2] ref. [10]

Prefix: Lyrically the song has excerpts of differ-
ent languages including French, Spanish,

[Single-word repetition] German, Italian, Portuguese, Spanish, Portu-
guese, Portuguese, Portuguese, Portuguese, Portuguese, Portuguese, 
Portuguese, Portuguese, Portuguese, .

Summarization [Trans-
former] ref. [52]

Article [Phrase-level repetition] ...cristiano ronaldo’s best footballer whereas 
barcelona talisman lionel messi’s best footballer whereas barcelona’s 
best footballer whereas barcelona talisman lionel lee whereas’s best 
footballer’s. (Truncated)

Generation from an 
initial tag line [GPT-2] 
ref. [9]

Tag: So what’s new in my life? 09/11/18 - Just 
got back from vacation

[Sentence-level repetition] Just got back from vacation. 09/10/18 - Just 
got back from vacation. Just got back from vacation. 09/09/18 - Just got 
back from vacation. Just got back from vacation. 09/08/18 - Just got back 
from vacation. Just got back from vacation.

Product review genera-
tion [GPT-2] ref. [53]

Initial context [Structural repetition] Great movie, although took a while to see at first it 
held my interest and kept me interested, plus i thought it was extremely 
good. also it was very good.

Protein sequence 
generation [ProtGPT-2] 
ref. [54]

No context [Subsequential repetition] MSNDTPTHDPTPPAPAPAPEPAPAPAPEPAPAPA-
PEPAPAPAPEPAPAPAPEPAPAPAPEPAPAPAPEPAPAPAPEPAPAPAPEPAPAPAPE-
PAPAPAPE.

Molecule captioning 
[Transformer] ref. [55]

SMILES: CC[N+](CC)=C1C=CC2=N 
C3=C(OC2=C1)C=C(N)C(C) =C3

[Single-word repetition] the molecule is a deuterated compound that is 
is is is is an isotopologue of chloroform in which the four hydrogen atoms 
have been replaced by deuterium. (Truncated)
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Fig. 6 The most commonly occurring repetitive patterns in an NMT retrosynthetic framework. Copious repetitions are highlighted in SMILES and 
molecular drawings. GT and P refer to the ground truth and prediction, respectively
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generation  [50]. It should be noted that computing the 
molecular similarity with AIS does not require any hash-
ing function. Thus, converting an AIS string to its finger-
print form requires much less computation than other 
fingerprint methods using hash functions. Based on this 
definition, we calculated the Tanimoto similarities of 2 
million pairs generated by pairwise combination of 2000 
randomly chosen ChEMBL molecules using the AIS fin-
gerprint and other widely used fingerprint schemes, and 
their probability densities are compared (Fig.  7). The 
most probable similarity between a random pair of mol-
ecules using the AIS fingerprint is 0.21. This is similar 
to those of HashAP and ECFP2 and lower than those of 
RDKit, Avalon, and MACCS. This indicates that the AIS 
fingerprint has better resolution power than MACCS, 
Avalon, and RDKit, and comparable to ECFP2 and 
HashAP.

This similarity between AIS and its fingerprint form 
may enhance the learning process of various chemi-
cal language models. In general, the loss functions of 

chemical translation and generation models are assessed 
through a token-wise comparison. However, few errors 
in a SMILES string may lead to an invalid or substan-
tially different molecule. Consequently, the loss value and 
molecular similarities may not be closely correlated. On 
the contrary, AIS strings with a few token errors repre-
sent similar molecules because of the fingerprint-like 
nature of AIS. Thus, loss values and dissimilarities of 
molecules due to token errors are more closely correlated 
with AIS than SMILES.

In a recent study, we established that fingerprint 
representations, such as ECFP2, ECFP4, and atom 
environments, can be transformed back into their cor-
responding SMILES strings with minimal ambiguity [44]. 
This suggests that fingerprint representations can serve 
as valuable and informative stand-alone representations. 
Employing fingerprints as input representations simpli-
fies the application of diverse AI models to chemistry, 
as bit vectors or straightforward token counts are more 
manageable than character sequences and can be effort-
lessly integrated with numerous existing algorithms. We 
contend that the strong resemblance between AIS strings 
and their fingerprint counterparts holds significant 
potential for further development in this domain.

Conclusion
This study demonstrated that tokenization has a sig-
nificant impact on the final prediction quality. We intro-
duced atom-in-SMILES (AIS) tokenization as a proper 
and meaningful custom tokenization scheme to improve 
the prediction quality in sequence prediction tasks 
achieving gains of up to 10.7% in equivalent SMILES 
mapping and 4.3% in a retrosynthetic prediction task. 

Table 4 Performance (top-1 accuracy) of various tokenization 
schemes on single-step retrosynthesis task and the number of 
predictions with token repetition

Tokenization 
schemes

rep-l|P − rep-l|GT ≥ 2 Acc.(%) greedy

String exact Tc exact

Atom-wise  
baseline [57]

– 42.00 –

Atom-wise (ref. [57] is 
reproduced)

801 42.05 44.72

SmilesPE (ref. [21]) 821 19.82 22.74

SELFIES (ref. [17]) 886 28.82 30.76

DeepSMILES (ref. [16]) 902 38.63 41.20

Atom-in-SMILES 727 46.32 47.62

Table 5 Performance analysis of tokenization schemes for 
molecular property prediction using MoleculeNet benchmark 
suite

Comparison of Random Forest regression and classification models with 5-Fold 
Cross-Validation. Bold emphasis  denotes the highest performing approach

SMILES DeepSMILES SELFIES SmilesPE AIS

Regression Datasets: RMSE
ESOL 0.628 0.631 0.675 0.689 0.553
FreeSolv 0.545 0.544 0.564 0.761 0.441
Lip 0.924 0.895 0.938 0.800 0.683
Classification Datasets: ROC-AUC 
BBBP 0.758 0.777 0.799 0.847 0.885
BACE 0.740 0.774 0.746 0.837 0.835

HIV 0.649 0.648 0.653 0.739 0.729

Fig. 7 Fingerprint nature of AIS. Pairwise similarity scores of 1 million 
pairs of molecules are computed for the commonly used structural 
fingerprints and their probability density functions are plotted. The 
Tanimoto coefficient is used to measure similarity scores
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AIS outperforms other tokenization methods in molecu-
lar property prediction tasks and aligns more closely with 
chemical perspectives.

We investigated the resolution of the fingerprint aspect 
of AIS, revealing that it encompasses all essential infor-
mation for seamless bidirectional transitions between 
SMILES and fingerprint representations, ensuring prac-
tical implementation. The study addressed the repetition 
issue in molecular predictions, akin to natural language, 
which impeded the quality of predicted molecules. 
The AIS tokenization scheme considerably diminished 
obstacles in repetitive loops (by around 10%) in the pre-
dicted SMILES. As far as we are aware, no prior research 
has examined token degeneration in AI-driven chemi-
cal applications. The AIS tokenization method can be 
employed by the broader community to deliver chemi-
cally precise and customized tokens for molecular pre-
diction, property prediction, and generative models.
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