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Abstract 

Three-dimensional (3D) conformations of a small molecule profoundly affect its binding to the target of interest, 
the resulting biological effects, and its disposition in living organisms, but it is challenging to accurately characterize 
the conformational ensemble experimentally. Here, we proposed an autoregressive torsion angle prediction model 
Tora3D for molecular 3D conformer generation. Rather than directly predicting the conformations in an end-to-end 
way, Tora3D predicts a set of torsion angles of rotatable bonds by an interpretable autoregressive method and recon-
structs the 3D conformations from them, which keeps structural validity during reconstruction. Another advancement 
of our method over other conformational generation methods is the ability to use energy to guide the conformation 
generation. In addition, we propose a new message-passing mechanism that applies the Transformer to the graph to 
solve the difficulty of remote message passing. Tora3D shows superior performance to prior computational models in 
the trade-off between accuracy and efficiency, and ensures conformational validity, accuracy, and diversity in an inter-
pretable way. Overall, Tora3D can be used for the quick generation of diverse molecular conformations and 3D-based 
molecular representation, contributing to a wide range of downstream drug design tasks.
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Graphical Abstract

Introduction
Molecular conformation is important for determining 
a molecule’s chemical and physical properties. Con-
formation generation is also important in applications 
such as quantitative structure–activity relationships 
(QSAR), docking, and virtual screening for drug devel-
opment [1–5]. The intersection between deep learning 
and conformation generation has recently drawn atten-
tion to their accuracy and efficiency. Deep learning 
methods generate small molecular conformations set 
with high accuracy and efficiency, which can acceler-
ate molecular docking and improve its accuracy. Deep 
learning-based models can also learn molecular rep-
resentations incorporating 3D structural information, 
which provides a way forward to improve the predictive 
modeling of small molecule bioactivities and properties 
[6].

Over the past decades, generating an accurate 3D 
structure for a small chemical compound is not trivial. 
Molecular conformation can be physically determined 
using X-ray crystallography, but it is prohibitively costly 
for industry-scale tasks [7]. Ab  initio methods can 
accurately predict molecular geometry, such as density 
functional theory (DFT) [8], but these approaches usu-
ally take up to several hours per small molecule [9]. To 
handle large-scale molecules, people start turning to 
classical force fields methods, like UFF [10] or MMFF 
[11], to estimate conformations, which is efficient but 
extremely inaccurate [12]. In addition, there are some 
classical methods to generate low-energy conforma-
tions by iteratively enumerating all possible conforma-
tions. Systematic search methods such as Monte Carlo 
simulation (MC) [13], and Distance geometry (DG) [14] 
are effective in exploring the conformational space, but 

they can converge to a local minimum rather than the 
global minimum. Stochastic methods such as Genetic 
Algorithm (GA) [15] randomly modify the structural 
parameters of the molecules to increase the probability 
of finding a global minimum, but the associated com-
putational cost is an important limitation. In systematic 
search methods, rule-based fast conformational search 
algorithms such as Omega [3] and Conformator [2] are 
preferred for sampling large molecular libraries to gen-
erate representative conformation ensembles.

Recent deep learning developments hold promise for 
improving the prediction of the conformation ensembles 
of small molecules. Generative deep learning can pro-
duce structural candidates by predicting possible valid 
coordinates or distance matrices of a molecule. Since 
directly generating the 3D coordinates of atoms from the 
molecular graph like CVGAE [7] faces the problem of 
SE-(3) invariance, many researchers go for the prediction 
of the atomic pairwise distances, i.e. distance matrices 
which are invariant to rotation and translation. GraphDG 
[16] proposes to  model the distribution of inter-atomic 
distances, while CGCF [17] and ConfVAE [18] take the 
distribution of distances as intermediate variables to gen-
erate conformations. Recently, Ganea et  al. [19] further 
proposed GeoMol to solve the SE-(3) invariance by gen-
erating local 3D structures and torsion angles. There are 
also deep learning models that take an iterative approach 
to find low-energy conformations. ConfGF [20] directly 
estimates the gradient field of the log density of the 
atomic coordinates. GeoDiff [21] uses an SE-(3) equivari-
ant score model to reverse a diffusion process that adds 
independent Gaussian noise to each atomic coordinate 
in Euclidean space. These methods can generate a con-
formation accurately by denoising a point cloud where 
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atoms are in random initial positions but are much more 
time-consuming. GeoDiff [21] takes about 5000 denois-
ing steps, which costs 9–10  min to generate conforma-
tions for a molecule on average.

Although deep learning models have been explored for 
molecular conformation generation in the hope of com-
bining high accuracy with fast sampling, they typically 
have the drawback of generating invalid conformations. 
Most graph neural network (GNN)-based methods fail to 
learn long-range interactions in graphs, and thus cannot 
accurately capture dependencies among dihedral angles, 
which would lead to conflicts among local structures. In 
addition, it is difficult for distance geometry-based meth-
ods to enforce geometric graph constraint [22], hence the 
accumulated errors in bond angle and length would lead 
to invalid local structures. To address the problem, sys-
tematic search methods assume that bond lengths and 
some local structures in molecules are essentially con-
stant, and promote slight variations in rotatable bonds to 
gradually change the conformation of the molecules [23] 
while avoiding the conflict between the local structures. 
Recently, some studies have also proposed that rotatable 
bonds play a crucial role in determining the conforma-
tion of molecules, such as Torsion Library [24] and Tor-
sionNET [25].

Here, we build a deep learning model, namely Tora3D, 
to predict the torsion angles combinations of all rotatable 
single bonds in a molecule from a 2D molecular graph, 
to obtain the set of predicted conformations. Like sys-
tematic approaches, our methodology follows a basic 
assumption that the conformational space mainly origi-
nates from the rotation of single bonds in the molecule, 
while keeping bond lengths and angles [23] constant. 
We replace the time-consuming and compute-inten-
sive iterative process of rotatable bonds in a systematic 
method with an autoregressive deep learning model. The 

combination of deep learning and prior knowledge guar-
antees the accuracy, speed and validity of conformation 
generation while avoiding the disadvantages of the sys-
tematic method. The framework of Tora3D is designed 
to address the problems inherent in previous  methods: 
(1) An autoregression neural network with an attention 
mechanism can guarantee the overall structural validity 
of the molecular conformation. The autoregressive neu-
ral network predicts the torsion angles of rotatable bonds 
in a molecule one by one. Hence, Tora3D could consider 
the dependencies among each dihedral angle to avoid 
clashes among local structures, and the attention mecha-
nism can explain the dependencies and ensure spatial 
rationality. (2) Reconstructing the conformation by a 
two-stage generation procedure can guarantee the local 
structural validity in molecular conformation. Tora3D 
utilizes predicted torsion angles to assemble valid local 
structures that were constructed of bond lengths and 
angles determined by standard cheminformatics tools. 
Compared with directly generating conformations in 
an end-to-end way, the two-stage generation procedure 
of Tora3D can significantly reduce the dimensionality 
of the sample space and avoid local structural invalidity 
caused by wrong bond lengths and angles. (3) Tora3D 
could generate a set of relatively low-energy molecular 
conformations quickly by giving relative energies when 
making inferences. Overall, Tora3D aims at achieving a 
balance among three aspects of performance in the con-
formational generation including accuracy, validity, and 
diversity.

Method
Notation
Firstly, the symbols and notations used here were sum-
marized in Table  1. G = (V ,E) represents a molecular 
graph, in which V = {v1, v2, . . . , v|V |} is the set of feature 

Table 1 List of symbols and notations used in the paper

Symbol Description

G The molecular graph

V = {v1, v2, . . . , v|V |} The set of feature vectors of atoms (nodes)

E =
{
eij
∣∣(i, j) ∈ V × V} The set of feature vectors of bonds (edges)

htv The representation of the atom v in the t  layer

αl A true normalized torsion angle value

α̂l A predicted normalized torsion angle value

A = {α1,α2,α3,α4, . . . ,αl , . . . } The sequence of true normalized torsion angle values

Â = {α̂1, α̂2, α̂3, α̂4, . . . , α̂l , . . . } The sequence of predicted normalized torsion angle values

τ 0l  or τl The torsion angle representation

T 0 =
{
τ 01 , τ

0
2 , τ

0
3 , τ

0
4 , . . . , τ

0
l , . . .

}
or T = {τ1, τ2, τ3, τ4, . . . , τl , . . .} The sequence of torsion angle representations

k The true number of conformations of a molecule
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vectors of atoms (nodes) and E =
{
eij
∣∣(i, j) ∈ V × V } is 

the set of feature vectors of bonds (edges). The atomic 
and bond feature vectors were drawn from the input 
features employed by AttentiveFP, a molecular struc-
tural representation scheme based on the graph atten-
tion mechanism [26]. The h0v and hTv  represent the initial 
and updated atomic representations, respectively. The 
αl represents a true normalized torsion angle value (the 
normalized operation will be discussed later) and α̂l is a 
predicted one. The A = {α1,α2,α3,α4 . . . ,αl , . . . } and 
Â = {α̂1, α̂2, α̂3, α̂4, . . . , α̂l , . . . } represents the sequence 
of true and predicted normalized torsion angle val-
ues, respectively. Both τ 0l  and τl represent the torsion 
angle representations, where τ 0l  represents the torsion 
angle obtained by the Torsion representation mod-
ule and used as the initial input of the Transformer 
module, while τl denotes the updated torsion angle 
representation (these two modules will be described 
below). The T 0 =

{
τ 01 , τ

0
2 , τ

0
3 , τ

0
4 , . . . , τ

0
l , . . .

}
 and 

T = {τ1, τ2, τ3, τ4, . . . , τl , . . .} denotes all torsion angle 
representations of a molecule, namely the sequence of 
torsion angle representations. The k denotes the true 
number of conformations of a molecule.

Overview
In this section, we want to outline our approach. 
Tora3D is a neural network model that can predict 
a series of sequences of torsion angles of all rotatable 
single bonds in a molecule from a 2D molecular graph 
(Fig. 1). Inputting a molecular graph (containing infor-
mation about nodes and edges, as well as topology), 
Tora3D was trained to predict all torsion angle values 
of the molecule. Tora3D is divided into two parts: Tor-
sion representation module ( Fr ) and Transformer mod-
ule ( Ft ). The former obtains the sequence of torsion 
angle representations  (T0) of the molecule from the 2D 
molecular graph (G) (Eq. 1), and the latter obtains the 
sequence of normalized torsion angle values Â from 
 (T0) (Eq.  2). Once the torsion angle values have been 
predicted by Tora3D, they can be used to rebuild con-
formations of the small molecule from the initial con-
formation (Fig. 1).

To avoid over parametrization, the normalized tor-
sion angle defined by Ganea et al. was used here, which is 

(1)T 0 = Fr(G)

(2)Â= Ft

(
T 0

)

Fig. 1 The framework of Tora3D and the usage of it to generate small molecule conformations. For the case molecule with 3 rotatable bonds 
(orange, red and green), Tora3D generates 2 k sequences of 3 torsion angles, which can be used to rebuild 2 k predicted conformations
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uniquely determined independent of the choice of termi-
nal atoms [19]. Specifically, the normalized torsion angle 
αl is calculated as Eq. 3 to Eq. 5.

where ambn refers to the angle of twist with terminal atom 
am and bn as shown in Fig.  2b. And c is a constant, to 
avoid sambn canceling each other out due to summation. 
It has been demonstrated that when a rotatable bond 
rotates by an angle γ, the normalized torsion angle α cor-
respondingly rotates γ [19].

Torsion representation module
The first part of Tora3D is the Torsion representation 
module ( Fr) (Fig. 2a), which obtains the sequence of tor-
sion angle representations  (T0) of the molecule from the 
2D molecular graph (G) (Eq. 1). First, the position infor-
mation pos is concatenated to the initial feature vectors 
v of each atom to obtain the initial representation h0v 
of each atom (Eq.  6 and  Eq.  7). Then, the initial repre-
sentations { h0v1 , h

0
v2
, . . . , h0v|V |

 } of the atoms are put into 
self-attention based �update to updates the atomic rep-
resentations  denoted as hTv  (Eq.  8). Finally, the updated 
atomic representations are combined with corresponding 
edges’ representations to obtain the initial representation 
τ 0l  for each torsion angle by �readout (Eq. 9 to Eq. 12). Fol-
lowing are the detailed algorithms.

The position vector ( pos ) in Eq. 7 consists of three parts 
to ensure that it can contain the position information of 
nodes throughout the molecular graph. The first part 
pos_wl = WeisfeilerLehman(G) is a vector calculated 
using the Weisfeiler-Lehman (WL) algorithm [27], which 
is used to detect graph isomorphism. By WL, nodes with 
the same topology have the same pos_wl . The second part 
pos_d = embedding(degree) is the degree’s embedding of 
the atom. The third part pos_a = FC(Adjacencymatrix) is 
the position vector representation of each atom obtained 
from the adjacency matrix that can provide connection 
information of the graph.

Concatenating these three parts (Eq. 6), the final posi-
tion vector pos replaces the position scalar in the original 
transformer added to each token, and it is concatenated 
with the initial feature vectors v of an atom to obtain the 
initial representation h0v of each atom (Eq. 7).

(3)sambndef

[
cos

(
�ambn

)

sin
(
�ambn

)
]

(4)s def
∑

m,nc · sambn

(5)αl def− arctan

(
s

�s�

)

�t
update(Eq. 8) is the atomic update module that updates 

the initial representation of each atom, i.e. 
{ h0v1 , h

0
v2
, . . . , h0v|V |

 }. The algorithm is borrowed from the 
self-attention module in the transformer to overcome the 
difficulties of traditional GNN’s long-distance messaging. 
After T (hyperparameter, Additional file  1: Table  S1) 
times, the updated representations { hTv1 , h

T
v2
, . . . , hTv|V |

 } 
were obtained, in which each atom interacts with all 
other atoms of the graph through attention.

Given the updated atomic representations 
H = {hTv1 , h

T
v2
, . . . , hTv|V |

} and the edge informa-
tion E , the initial representations of torsion angles 
T 0 =

{
τ 01 , τ

0
2 , τ

0
3 , τ

0
4 , . . . , τ

0
l , . . .

}
  are obtained by �readout 

(Eq. 9).

Specifically, the representation of each torsion angle τ 0l  
is obtained by integrating information about the neigh-
boring edges of each rotatable bond and the correspond-
ing atoms (Eq. 10).

Here, eedges for each edge is the concatenated infor-
mation of itself eij with its neighboring edges eai and 
ebj (Eq. 11).

For example, as shown in Fig.  2b, 
eai =

(
ea1i + ea2i + . . .

)/
|eai| is the integrated representa-

tion of edges between atom i and atom a1 , a2 and a3 , and 
ebj =

(
eb1j + eb2j + . . .

)/∣∣ebj
∣∣ denotes the integrated rep-

resentation of edges between atom j and b1 and b2.
Similarly, the two atoms of a rotatable bond concate-

nate information about themselves hi and hj , with all ter-
minal atoms ha =

(
ha1 + ha2 + . . .

)/∣∣ha
∣∣ and 

hb =
(
hb1 + hb2 + . . .

)/∣∣ha
∣∣ to obtain the representation 

of atoms hatoms (Eq. 12).

(6)pos = pos_wl
∥∥pos_d �pos_a

(7)h0v = v�pos

(8)

ht+1
v1

, ht+1
v2

, . . . , ht+1
v|V |

= �t
update

(
htv1 , h

t
v2
, . . . , htv|V |

)

= self − attention
(
htv1 , h

t
v2
, . . . , htv|V |

)

(9)T 0 = �readout(H ,E)

(10)τ 01 = hatoms

∥∥eedges

(11)eedges = eai
∥∥eij

∥∥ebj

(12)hatoms=ha
∥∥hi

∥∥hj
∥∥hb
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Fig. 2 a Torsion representation module ( Fr ). b The calculation of the normalized torsion angle α of bond ij. There are three options for end atom a 
and two options for end atom b in this case
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Thus, by the above process of �readout , the initial repre-
sentation of torsion angles  T0 is obtained from the overall 
atomic representation of each side of a rotatable bond. 
Unlike some models that predict atomic extrinsic coordi-
nates of a molecule from atom representation, Tora3D is 
SE (3)-invariant by focusing on torsional space specific to 
the molecule (intrinsic coordinates).

Transformer module
The Transformer module ( Ft ) (Fig.  3) is used to accept 
the sequence of torsion angle representations  T0 as input 
and output the sequence of predicted torsion angle val-
ues Â (Eq.  2). Compared to the original Transformer’s 

framework, the Transformer module has a few changes 
as detailed below.

Transformer encoder
Transformer encoder maps an input sequence of tor-
sion angle representations  T0 to the sequence of updated 
torsion angle representations T (Fig.  3). Gaussian noise 
(hyperparameter, Additional file 1: Table S1) with a mean 
of zero and standard deviation of 5.0, which is deter-
mined by hyperparameter searching, was added to  T0 
to allow the model generates multiple conformations 
by introducing an element of randomness. The position 
coding of the original Transformer was removed since τ 0l  

Fig. 3 The transformer module has an encoder-decoder structure that uses stacked self-attention and fully connected layers. The sequence of 
initial torsion angle representations  T0 was input into the encoders (left) and updated for N (hyperparameter, Additional file 1: Table S1) times to 
obtain a sequence of continuous representations T. Given T, the M (hyperparameter, Additional file 1: Table S1) stack of decoders (right) generates an 
output sequence, i.e., normalized torsion angle values Â , one element at a time. At each step the model is autoregressive, consuming the previously 
generated angle values as additional input when generating the next
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already contains the position information, as defined in 
the Torsion representation module.

Transformer decoder
Given T, the decoder generates the sequence of pre-
dicted normalized torsion angle values Â (Fig.  3). The 
model predicts each Â  with reference to the previously 
predicted torsion angle values i.e., â , and their corre-
sponding position encoding ( posτi ), as well as the rela-
tive energy (kcal/mol) for each molecular conformation. 
Such an autoregressive approach avoids local structural 
clashes. Moreover, the relative energy as input also allows 
the model to generate energy-specific conformations.

Conformation generation
As shown in Fig.  1, Tora3D predicts the torsion angle 
value of rotatable bonds consisting of heavy atoms. Once 
the torsion angles of all the rotatable bonds of a small 
molecule have been predicted, the fragments of the small 
molecule can be assembled to form the overall confor-
mation. There are already some accurate and effective 
knowledge-based algorithms for generating conforma-
tion ensembles from fragments have been demonstrated, 
represented by the commercial algorithm Omega [3] and 
the freely available algorithm Conformator [2]. Thus, we 
directly use one of the conformations generated by the 
Conformator as the initial conformation and twist it to 
obtain the predicted conformation based on the torsion 
angle values predicted by the Tora3D. The comparison 
between the initial conformations and Tora3D’s gener-
ated conformations are shown in supporting informa-
tion, Additional file  1: Figure S4 and Additional file  1: 
Table S4. To be specific, we reset the torsion angles of an 
initial conformation by the SetDihedralDeg function in 
RDKit [28].

Experiments
Dataset and split
Following previous works [17, 20], the Geometric Ensem-
ble Of Molecules (GEOM)-Drugs dataset was used for 
building the model. The GEOM-drugs dataset contains 
118,434,901 molecular conformations of 304,466 unique 
molecules, generated by advanced sampling and semi-
empirical DFT. Relative energy of each conformation is 
also included in GEOM-drugs, which is the difference 
between the absolute energy of a conformation and that 
of the lowest-energy conformation. A value of 0 kcal/mol 
signifies the energy of the lowest-energy conformation. 
The molecules in GEOM-Drugs are annotated by experi-
mental data related to biophysics, physiology, and physi-
cal chemistry [1]. The test set of Shi et al. containing 200 

molecules was also used here for performance evaluation 
(test set I) [20]. Analysis showed that the number of con-
formations of each molecule in test set I is less than 100, 
while the number of conformations of each molecule in 
the GEOM-Drugs dataset ranges from 0 to 12,000 (Addi-
tional file 1: Figure S1). Thus, Test set I is not reflective of 
the overall modeling dataset. Therefore, an additional test 
set II was collected, which contains randomly selected 
1000 molecules and their conformation number ranges 
from 0 to 500, same as the range of conformation number 
of molecules in the GEOM-Drugs dataset. With a simi-
lar distribution to the entire dataset, test set II consists of 
more conformations with higher diversity than test set I, 
which was used to further evaluate model performance 
affected by conformational flexibility.

Evaluation indicators
Coverage (COV) and Matching (MAT) score are used to 
measure the diversity and accuracy respectively. COV 
score reports the percentage of reference conformers 
that are produced by the predicted ensemble. MAT score 
reports the minimum RMSD between a generated con-
former and the references. Following the conventional 
Recall measurement, COV-R and MAT-R can be defined 
as [21]:

Here, Sg is the set of generated conformations and Sr is 
the set of reference conformations of a molecule. R̂ and R 
refer to a generated conformation and a reference con-
formation, respectively. The δ is set as  1.25. The above 
equations are used for calculating COV-R and MAT -R 
(Recall). And to calculate COV-P and MAT -P (Preci-
sion), Sg and Sr should be swapped. Generally, higher 
COV rates or lower MAT score suggest that more real-
istic conformations are generated. And the Recall metrics 
concentrate more on the diversity, while the Precision 
metrics depend more on the quality. Consistent with pre-
vious work, we predicted and generated twice as many 
conformations as the number of true conformations for 
each molecule.

Results
Model performance in conformational diversity 
and accuracy
We have compared Tora3D with several recent popu-
lar models of molecular 3D conformation prediction: 
CVGAE [7], GraphDG [16], CGCF [17], ConfVAE[18], 

(13)

COV - R
(
Sg , Sr

)
=

1

|Sr |

∣∣∣
{
R ∈ Sr |RMSD

(
R, R̂

)
< δ,R ∈ Sg

}∣∣∣

(14)MAT - R
(
Sg , Sr

)
=

1

|Sr |

∑

R∈Sr

min
R̂∈Sg

RMSD
(
R, R̂

)
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GeoMol [19], ConfGF [20], and GeoDiff [21]. In addi-
tion, we have conducted the comparisons with torsion 
angle prediction methods including Torsion Library [24] 
and TorsionNET [25]. The implementation is shown in 
supporting information, Additional file 1: Figure S3 and 
Additional file 1: Table S3. As shown in Table 2, Tora3D 
shows superior performance compared to the above-
mentioned models in conformational diversity (higher 

COV) and accuracy (lower MAT) on the same test set 
(Test set I) that was reported in Shi et al. [20]. Although 
its COV-R is slightly lower than GeoDiff, Tora3D makes 
a trade-off between accuracy and efficiency. Tora3D is 
relatively fast and can predict all conformations of a mol-
ecule within 5 to 8.4 s, while GeoDiff needs about 10 min 
for a molecule.

Position embedding is devised to capture the position/
location of the node within the broader context of the 
graph structure to tackle the problem that conventional 
GNN architecture hardly learns long-range patterns in 
graphs. The importance of the position embedding in 
Tor3D is verified by an ablation experiment by removing 
the position embedding from the model or replacing it 
with a learnable position embedding that represents the 
position of atoms. It can be seen in Table 3 that Tora3D 
with the specially designed position embedding provides 
better performance, especially on conformation accu-
racy and coverage. The results in Table  3 demonstrate 
that removing positions embedding for nodes in Tora3D, 
which is just like a conventional GNN architecture, does 
harm the quality of conformation generation. And our 
strategy addresses the issue of capturing long-range node 
dependencies, leading to better accurate and diverse con-
formations than learnable-position embedding.

In addition, Tora3D uses a basic assumption same 
to systematic methods that the only factor changing 
the conformation of a molecule is rotatable bonds. The 
number of rotatable bonds (nRotb) plays a decisive role 
in molecular flexibility, as the space of possible con-
formations grows exponentially with it. Thus, nRotb 
would affect the prediction performance (Fig.  4). We 
have implemented ConfVAE and GeoMol [19] to test 
the effect of nRotb based on test set II. Here ConfVAE 
and GeoMol were selected for comparison because they 

Table 2 Performance comparison of models on the GEOM-
drugs dataset (Test set I)

* The results of CVGAE[7], GraphDG[16], CGCF[17], ConfGF[20], and GeoDiff[21] 
are borrowed from Shi et al.[20]. The experiments of ConfVAE and GeoMol[19] 
were implemented by ourselves. The inference speed for a molecule of each 
model was tested by ourselves

Models COV-R(↑) MAT-R(↓) COV-P(↑) MAT-P(↓) Speed (s/
molecule)

CVGAE 0.00 3.0702 – – –

GraphDG 8.27 1.9722 2.08 2.4340 –

CGCF 53.96 1.2487 21.68 1.8571 -

ConfVAE 55.20 1.2380 22.96 1.8287 10–16

GeoMol 67.16 1.0875 – – 1–4

ConfGF 62.15 1.1629 23.42 1.7219  > 600

GeoDiff 82.96 0.9525 48.27 1.3205 540–600

Tora3D 80.37 0.9272 62.22 1.1524 5–8.4

Table 3 Performance of different position embedding

Models COV-R(↑) MAT-R(↓) COV-P(↑) MAT-P(↓)

Without position embed-
ding

57.32 1.1742 62.05 1.4200

Learnable-position 
embedding

73.21 1.0109 62.85 1.4459

Tora3D 81.92 0.9297 62.16 1.1600

Fig. 4 Prediction performance of the model for different numbers of rotatable bonds. The x-axis indicates the number of rotatable bonds, and the 
y-axis indicates the prediction performance
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showed relatively good performance and acceptable 
speed (Table 2). As shown in Fig. 4, for each of the mod-
els, essentially, the more rotatable bonds a molecule has, 
the more difficult it is to predict its conformations. More 
importantly, the performance of Tora3D consistently sur-
passes ConfVAE and GeoMol when the molecule has less 
than 10 rotatable bonds (Table 4), which is also an impor-
tant criterion for the drug-likeness of a molecule [29].

Conformational validity
Given that some inherent defects in typical conformation 
prediction models would cause conformational invalidity 
and undermine model performance, we have introduced 
some strategies into Tora3D to improve its validity.

The first and most important strategy of Tora3D is its 
autoregressive algorithm. Tora3D predicts the torsion 
angles of rotatable bonds in a molecule one by one to 
avoid arising conflicts among local structures, and thus 
the current torsional angle value is determined not only 
by the molecular graph but also by the previously pre-
dicted torsion angle values. Most deep learning-based 
conformation generation models do not consider the 
dependencies among the local structures of a molecule 
and predict each dihedral angle as an independent vari-
able, which will inevitably lead to invalidity of the overall 
molecular conformation. For example, topologically dis-
tant fragments of a molecule may conflict with each other 
in space. Figure  5 shows examples of the torsion angle 
predictions of Tora3D, GeoMol and ConfVAE. With the 
autoregressive algorithm, Tora3D could consider every 
rotatable bond sequentially to avoid clashes among local 
structures, but GeoMol and ConfVAE can not explicitly 
capture the global interactions as the torsion angles are 
predicted independently.

At the same time, the autoregressive approach could 
further ensure the spatial rationality of the whole mol-
ecule by attention mechanism. As shown in Fig.  5, the 
1th bond of the first molecule shows higher attention 

with respect to the more distant 5th and 4th bonds but 
lower attention to the closer 2nd bond. The attention 
scores are consistent with the observation that the incor-
rect rotations of the 5th and 4th bond would cause the 
spatial conflict between the trifluoromethyl and 1-meth-
ylimidazole, and thus the 1st bond have a stronger rela-
tion to the 5th and 4th bond torsion angle than the closer 
2nd bonds. In the second molecule, the 1st bond shows 
higher attention to the 2nd bond, whose improper rota-
tion would cause serious spatial conflict between the ter-
minal structures in the molecule.

The other strategy is to incorporate prior knowledge of 
local 3D structures of each non-terminal atom, to ensure 
the validity of conformational generation. The main chal-
lenge in molecular conformation generation comes from 
the enormous size of the 3D structure space consisting of 
bond lengths, bond angles, and torsion angles. However, 
the molecular graph imposes specific constraints on the 
set of possible stable local structures, which can be pre-
dicted by fast cheminformatics methods. Thus, Tora3D 
incorporates the prior knowledge about bond lengths 
and angles to guarantee validity by assembling fixed local 
structures directly from an initial conformation.

Using fixed local structures can avoid the prediction 
error for symmetric graph nodes (i.e., nodes with the 
same topology in graph) and ring structures that seri-
ously undermines the accuracy of many 3D prediction 
model. For example, GeoMol and ConfVAE generate 
invalid conformation of non-planar rings, such as hexa-
hydropyridine shown in Fig. 6. GeoMol explicitly models 
and predicts bond angles and length, but the accumu-
lated errors cause flattened or severely distorted ring; the 
distance matrix used in ConfVAE is difficult to enforce 
geometric graph constraint and inevitably lead to seri-
ously implausible structures. Whereas Tora3D could cor-
rectly maintain the chair conformation that conforms to 
the chemical rules by assembling from the initial confor-
mation. Another case is predicting pairs of atoms that are 
completely structurally symmetrical in a molecule. The 
classical message-passing neural networks (MPNNs) will 
embed symmetric graph nodes to the same point in the 
embedding space and thus generate identical coordinates 
for them. Previous works often add noise, augment atom 
features or design complex loss functions to avoid the 
overlapping of symmetric graph nodes [30]. In the case 
of the 1,2,3-trimethoxybenzene group (Fig.  6), though 
appending initial random noise feature vectors does 
avoid the overlapping of the symmetrical benzene ring 
and the methoxyl groups in GeoMol and ConfVAE, as 
Ganea et al. stated that symmetric graph nodes that are 
less than 3 hops away are indistinguishable by MPNNs 
in general, the matching information between the ring 

Table 4 Performance comparison of models on the GEOM-
drugs dataset (Test set II)

Models COV-R(↑) MAT-R(↓) COV-P(↑) MAT-P(↓)

ConfVAE 40.06 1.3771 - -

GeoMol 72.50 1.1000 61.15 1.2009

Tora3D 81.92 0.9297 62.16 1.1600
ConfVAE
(nRotb ≤ 10)

42.43 1.3296 – –

GeoMol
(nRotb ≤ 10)

76.36 0.9380 57.29 1.1611

Tora3D
(nRotb ≤ 10)

83.03 0.8704 63.81 1.0906
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plane of benzene with the ground true conformation 
nodes is lost.

Hence, as the accuracy of local structures signifi-
cantly impacts many models’ performance, Tora3D 
reconstructing the conformation by a two-stage gen-
eration procedure that utilizes predicted torsion angles 

to assemble fixed local structures can be of practical 
value. Even if a conformation generated by Tora3D is 
not in the provided conformation set, it still conforms 
to the chemical rules and is thus valid and usable.

Fig. 5 Comparisons of the conformations predicted by Tora3D, GeoMol, and ConfVAE. The 2D molecule graphs in the first row are marked by the 
score of attention paid by one of the torsion angles to other bonds (i.e., the bond pointed by the red arrow). Their attention scores toward other 
torsion angles are indicated by the highlighting. Bonds colored magenta refer to high attention and cyan refer to low attention
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Energy-guided conformational generation
Common methods of conformational sampling in 
machine learning-based models are random initializa-
tion and RDKit initialization. An RDKit initialization can 
achieve better accuracy by providing a more accurate 
starting point, while a random initialization can achieve 
better coverage by the sufficient sampling of the space 
[31]. To promote diverse conformation ensembles with 
both good coverage and accuracy, a mixture of random 
initialization and energy-specific input is used in Tora3D 
for the conformational generation process. In addition to 
Gaussian noise that is added to  T0 that allows the model 
generates multiple conformations, Tora3D can gener-
ate a set of conformations with geometrical diversity 
by varying relative energies as model input. As shown 
in Fig. 7, the Tora3D predictions of conformations with 
various relative energies could reproduce the ground 
true conformations of depicted molecules. The high 
structural quality, as well as the competitive COV score 
achieved by Tora3D, suggest that relative energies can 
be used to guide the generation of a diverse collection of 
conformations.

Conclusion
Due to the extension of the application scope of molec-
ular 3D structure in the field of drug development, 
the methodology of molecular conformation genera-
tion continues to develop. Here, combining systematic 

search methods and advanced deep learning models, 
we propose a deep learning-based model to predict the 
torsion angles of rotatable bonds in a molecule, thereby 
predicting molecular conformations. Tora3D is superior 
to a series of baseline models with comparatively high 
accuracy but does not sacrifice efficiency. In the aspect 
of conformational validity, Tora3D employs an autore-
gressive approach to predict all torsion angles, so that 
the problem of the collision between local structures can 
also be solved in an interpretable way. The autoregressive 
algorithm could consider every rotatable bond sequen-
tially to avoid clashes among local structures, and further 
improve the spatial rationality of the whole molecule by 
attention mechanism. At the same time, reconstructing 
the conformation by a two-stage generation procedure 
avoids many invalid local structures. In the aspect of 
conformational diversity, by varying relative energies as 
model input, Tora3D can generate energy-specific con-
formation ensemble with good coverage. In addition, as 
an improvement in model structure to promote accu-
racy, we proposed a new method of position encoding on 
graphs that compensates for the difficulties of traditional 
GNN long-distance messaging. The ablation test of the 
position vector verified that Tora3D outperformed tradi-
tional GNN to solve the problem of long-distance infor-
mation passing.

Tora3D is a promising tool to generate valid and 
diverse molecular conformation sets with competitive 

Fig. 6 Comparison of conformations predicted by different models. The first column shows the real conformation, and the other columns show 
the conformations predicted by Tora3D, GeoMol, and ConfVAE, respectively. The first row shows their differences in the predicted structure 
(hexahydropyridine), and the second row shows their differences in the predicted symmetrical structure (1,2,3-trimethoxybenzene)
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accuracy and efficiency. Its performance is particularly 
high for drug-like molecules with rotatable bonds less 
than 10. Especially, energy-guided conformational gen-
eration provides many possibilities for model application 
in the field of drug design, as conformational energy is 
crucial to understand how a molecule binds to a specific 
target protein. In future work, we will do more rigorous 
explorations and we expect that Tora3D will be applied 
in a variety of downstream tasks including large-scale vir-
tual screening, molecular property prediction, and drug-
target interaction prediction, thus speeding up areas of 
drug discovery.
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