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Abstract 

Machine learning-based scoring functions (MLSFs) have shown potential for improving virtual screening capabili-
ties over classical scoring functions (SFs). Due to the high computational cost in the process of feature generation, 
the numbers of descriptors used in MLSFs and the characterization of protein–ligand interactions are always limited, 
which may affect the overall accuracy and efficiency. Here, we propose a new SF called TB-IECS (theory-based interac-
tion energy component score), which combines energy terms from Smina and NNScore version 2, and utilizes the 
eXtreme Gradient Boosting (XGBoost) algorithm for model training. In this study, the energy terms decomposed from 
15 traditional SFs were firstly categorized based on their formulas and physicochemical principles, and 324 feature 
combinations were generated accordingly. Five best feature combinations were selected for further evaluation of 
the model performance in regard to the selection of feature vectors with various length, interaction types and ML 
algorithms. The virtual screening power of TB-IECS was assessed on the datasets of DUD-E and LIT-PCBA, as well as 
seven target-specific datasets from the ChemDiv database. The results showed that TB-IECS outperformed classical 
SFs including Glide SP and Dock, and effectively balanced the efficiency and accuracy for practical virtual screening.

Keywords Scoring function, Machine learning, Virtual screening, Theory-based interaction energy component

Introduction
Structure-based virtual screening (SBVS) has become 
one of the common approaches for drug discovery. As a 
core technology widely used in SBVS, molecular docking 
can predict the binding modes of protein–ligand com-
plexes and estimate the binding affinities using scoring 
functions (SFs). A number of docking programs, such 

as Surflex, AutoDock, Glide, and Gold, have been devel-
oped and widely used by pharmaceutical companies and 
research institutions [1–4] The reliability of docking 
programs largely depends on the quality of conforma-
tional sampling methods and SFs. Unfortunately, most 
SFs implemented in the docking programs are calculated 
simply by multiple linear regression, which in many cases 
leads to insufficient accuracy [5, 6].

Classical SFs can be roughly divided into three cat-
egories: force-field based, knowledge-based, and empir-
ical-based. Linear additive feature is one of the simplest 
algorithms and is often utilized to characterize pro-
tein–ligand interactions in these models [7, 8] However, 
linear SFs are incapable to capture the accurate descrip-
tion of the various binding patterns of ligands and may 
be less effective in large-scale VS applications [9] With 
the rapid increasing of computational capacity and the 
explosive growth of available protein–ligand structures 
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and binding affinity data, MLSFs based on a wide range 
of descriptors generated from protein–ligand complexes 
have been developed, and some of them exhibit better 
performance over traditional SFs [5, 6, 9–16] To con-
struct a reliable MLSF, three components are required: 
(1) an appropriate ML algorithm for classification and/
or regression analysis, (2) a good representation of 
protein–ligand interactions, and (3) an authoritative 
benchmark for constructing and testing models. Sup-
port vector machine (SVM), random forest (RF), gradi-
ent boosting decision tree (GBDT) and artificial neural 
network (ANN) are the most frequently used ML algo-
rithms in MLSFs. For instance, RF-Score constructed by 
Pedro J. et al [17] could increase considerably the accu-
racy in certain scenarios. In recent years, deep learning 
(DL) algorithms, including graph neural network (GNN) 
and convolutional neural network (CNN), have drawn 
increasing attention in MLSF study [7, 18–22] Within 
the CNN-based SFs, KDEEP and RosENet have demon-
strated significant effectiveness, while InteractionGraph-
Net, PIGNet, and RTMScore exemplify the performance 
of GNN-based SFs [18, 20, 23–25] Each of these models 
offers a high level of accuracy in predicting binding affin-
ity. DL algorithms hunger for large scale high-quality 
datasets, but the available experimentally determined 
data are often limited, which makes it difficult to develop 
an accurate and robust model. Hence, traditional ML 
algorithms such as RF and GBDT are still regarded as 
powerful tools in MLSF development. From the perspec-
tive of descriptors, SFs can be improved by developing 
more descriptors to comprehensively capture key pro-
tein–ligand interactions. A common approach to extract 
the features from protein–ligand complexes is to decom-
pose existing traditional SFs into individual energy terms 
[26] For example, Ashtawy et  al. developed two models 
named BgN-Score and BsN-Score using the descriptors 
extracted from X-score, AffiScore, GOLD, and RF-score 
[27] Li et  al. proposed a SF called XGB-Score based on 
the eXtreme Gradient Boosting (XGBoost) algorithm 
using the energy terms from RF-Score and Vina [28] 
However, it remains unclear whether the regrouped 
energy terms with redundant features could successfully 
capture protein–ligand interactions.

In this study, we proposed a new SF, named theory-
based interaction energy component score (TB-IECS), 
developed by the classical XGBoost algorithm based on 
the energy terms obtained from Smina and NNScore 2. 
During the modeling process, we systematically explored 
the impact of different feature combinations, ML algo-
rithms and feature vector lengths on model performance. 
Besides, the screening power of the models was assessed 
based on the DUD-E and LIT-PCBA datasets [29, 30] In 
order to explore the screening power of TB-IECS, seven 

TB-IECS models were trained for seven different drug 
targets and utilized to screen the ChemDiv database. In 
this study, we aimed to clarify the following questions: (1) 
Can feature combinations based on formula representa-
tion and physicochemical properties improve the pre-
dictive performance? (2) How do features affect model 
accuracy and efficiency? (3) Can TB-IECS be applied to 
VS?

Materials and methods
Dataset collection
The benchmarks used in this study are the diverse subset 
of DUD-E (Dataset I) and a subset of LIT-PCBA (Data-
set II). DUD-E contains 22,886 ligands with the experi-
mental activity data against 102 targets. For each active 
compound, 50 decoys with similar physicochemical 
properties but dissimilar 2-D topology are provided. The 
diverse set was provided by the DUD-E database, where 
112,796 ligands associated with eight targets from differ-
ent protein families were included.

Considering the hidden bias in DUD-E as observed 
by numerous studies [30–33], we also tested our models 
on the relatively unbiased LIT-PCBA dataset reported 
by Tran-Nguyen et  al. [31, 32] LIT-PCBA was specially 
designed for VS and ML benchmark. It was unbiased by 
the asymmetric validation embedding (AVE) procedure, 
and contains 15 diverse targets with a total of 7844 active 
and 407,381 inactive compounds. Five targets, includ-
ing ADRB2, ESR1_ago, OPRK1, IDH1, and PPARG, were 
removed in this study because the number of the active 
compounds for each target is less than 50, which may not 
provide sufficient information for a ML algorithm. Given 
that multiple protein structures are available in LIT-
PCBA, the ligands were docked into all the available crys-
tal structures of each target, and the P-values between 
docking scores of actives and decoys were subsequently 
calculated. The crystal structure with the lowest P-value 
for each target was retained for further descriptor gen-
eration. The statistical significance data can be found in 
Additional file  1: Figure S1, and the details of the two 
datasets used in this study are shown in Table 1. Besides, 
another dataset (Dataset III) was constructed by expand-
ing the decoy sets of 7 targets in LIT-PCBA (i.e., ALDH1, 
FEN1, GBA, KAT2A, MAPK1, PKM2, and VDR) using 
compounds randomly extracted from the ChemDiv 
database.

Preparation and ligand docking
All the structures in the Datasets I and II were first pre-
pared using the Protein Preparation Wizard module in 
Schrödinger [34] More specifically, the bond orders were 
assigned and the hydrogen was re-added. Then, each 
protein structure was repaired by creating necessary 
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bonds to proximal sulfurs, filling missing side chains 
and missing loops, and optimizing the hydrogen bond-
ing (H-bond) network with the OPLS3 force field [35] 
PROPKA was used to generate the protonation states of 
residues at pH = 7.0 and Epik was employed to generate 
the ionized states of heteroatoms [36, 37] The small mol-
ecules in the benchmark datasets were prepared using 
the LigPrep module, including correcting the hydro-
gen atoms, and generating the protonation states at 
pH = 7.0 ± 2.0, stereoisomers and tautomers enumeration 
[34].

The binding site for each target was determined based 
on the position of the co-crystallized ligand [2, 38] Then, 
all the prepared ligands were docked into the correspond-
ing structures by Glide SP docking or Smina docking, 
and only the top-1 scored binding pose was retained for 
each ligand. Although the top-1 scored binding pose may 
not be the correct binding conformation, retaining the 
top-1 scored binding pose for modelling has the follow-
ing advantages: (1) it significantly enhances the compu-
tational efficiency, which is crucial when screening large 
ligand libraries [14, 39–41], (2) it aligns with common 
practice in the field as evidenced by previous research 
[23, 24, 42, 43], and (3) it may improve the generaliza-
tion ability of the machine learning model by training on 
docked poses rather than crystalized structures, thereby 
potentially improving its performance.

Scoring functions and energy terms
In this study, 15 traditional scoring functions were used 
to re-score the binding poses obtained from docking, 
and the descriptors were extracted from the output 
scoring files [2–4, 38, 42, 44–49] The detailed infor-
mation of the SFs was listed in Table 2 and Additional 
file  1: Part1. According to the physical principles, the 
energy terms from the 15 SFs can be roughly catego-
rized into the following groups:

Van der Waals interaction
The van der Waals interaction in SFs usually refers to 
the non-bonded interactions that are not electrostatic, 
which is of great significance for prediction of pro-
tein–ligand binding [2, 38, 42, 46–53] In most SFs, it 
is described as the Lennard–Jones potential [38, 46, 
53, 54]. However, empirical potential functions are also 
used to improve efficiency [2, 51].

Electrostatic interaction
Electrostatic energy gives a description of the potential 
of attractions or repulsions between polar atoms, and is 
calculated by the Coulomb potential function based on 
the partial atomic charges 2, 38, 42, 46, 51, 53].

Hydrogen bond interaction
Hydrogen bonding happens when a hydrogen atom 
covalently bound to an electronegative ‘‘donor’’ atom 
undergoes dipole–dipole attraction to an electronega-
tive ‘‘acceptor’’ atom. It is generally denoted as D-H…A, 
with proper distance and angle for a donor–acceptor 
pair. As one of the most important interactions in bio-
molecular systems, H-bond interactions are explicitly 
included in most SFs [2, 4, 38, 42, 46, 48, 49, 51–53, 55].

Hydrophobic energy term
During the formation of a protein–ligand complex, 
the water molecules are released from the nonpolar 
molecular surface to the solvent, which is related to 
the hydrophobic effects. Multiple strategies have been 
introduced to calculate the hydrophobic term by con-
sidering the potential buried hydrophobic surface of 
the ligand, the number of the hydrophobic atom pairs, 
and whether a hydrophobic ligand atom is in a hydro-
phobic binding site [2, 4, 38, 42, 46, 48, 49, 51, 52].

Solvation effect
The solvation term calculates the free energy cost of 
breaking the interactions between solvent and protein/
ligand upon ligand binding. Due to the difficulty of cal-
culating this term, SFs usually simplify this term based 
on some hypotheses. For example, ligand binding to the 

Table 1 Information of the diverse subset of DUD-E and LIT-
PCBA after preparation

Target PDB_ID Active Decoys Total Active/
decoys 
%

akt1 3cqw 674 33,484 34,158 2.01

ampc 1l2s 95 5831 5926 1.63

cp3a4 3nxu 840 19,918 20,758 4.22

cxcr4 3odu 871 8779 9650 9.92

gcr 3bqd 179 8649 8828 2.07

hivpr 1xl2 3476 58,731 62,207 5.92

hivrt 3lan 867 23,265 24,132 3.73

kif11 3cjo 334 13,313 13,647 2.51

ALDH1 5l2n 7554 149,358 156,912 5.06

ESR1_ant 2iog 111 6189 6300 1.79

FEN1 5fv7 696 502,274 502,970 0.14

GBA 3ril 319 423,463 423,782 0.08

KAT2A 5h86 306 494,569 494,875 0.06

MAPK1 4qte 442 91,185 91,627 0.49

MTORC1 4dri 157 42,223 42,380 0.37

PKM2 3me3 665 301,123 301,788 0.22

TP53 3zme 113 5779 5892 1.96

VDR 3a2i 678 216,464 217,142 0.31
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pocket causes the variation in the number of H-bonds 
formed among protein, ligand and solvent, so one way 
to describe the solvation effect is to determine the dif-
ference of H-bond numbers before and after docking 
[38, 46, 53].

Entropy effect
During the docking process, the conformation of ligand 
and protein will be constrained by fixing their rotat-
able bonds. The entropy term, also called deformation 
effect, is associated with the change of flexibility of the 
protein or ligand in the binding process. However, in 
most cases, only ligand entropy is considered since the 
protein is usually treated as rigid in a docking system 
[2, 4, 47–49, 51, 52].

Clash effect
This term penalizes the irrational close contact between 
ligand and protein to prevent the generation of inap-
propriate geometries in docking [4, 55, 56].

Metal interaction
The metal-binding term is typically computed as a 
sum over all possible metal-ion acceptor pairs, where 
the acceptor is an atom in the ligand that is capable of 
binding to a metal [2, 51, 55].

Internal potential
This component usually refers to a physics-based energy 
term counting for the torsion energy of the ligand [4, 55, 
56].

All the interactions mentioned above are the most 
frequently implemented terms in SFs. The other energy 
terms that only appear in specific SFs were summarized 
and provided in the Additional file 1.

Model training
Three ML algorithms, namely SVM, RF and XGBoost, 
were applied to model MLSFs based on different fea-
ture combinations. During the training process, SVM 
was used to find the best hyperplane to divide the posi-
tive and negative samples with the help of kernel func-
tion, while RF and XGBoost were utilized to build a set of 
base estimators (decision trees) to make predictions. In 
order to obtain better results, a voting estimator that uses 
the majority vote or the average of the probabilities from 
the base estimators was then used. Hyper-parameters are 
parameters that may significantly influence the perfor-
mance of models but cannot be learned through training. 
Therefore, hyperopt, a python package for hyper-parame-
ter tuning, was used to find proper hyper-parameters to 
train better models. For SVM with the Radial Basis Func-
tion (RBF) kernel, the regularization parameter C (from 
0.1 to 10, uniform distribution) and the kernel coefficient 
gamma (from 0.001 to 1, uniform distribution) were then 

Table 2 Information of the scoring functions and the corresponding energy terms

Scoring Functions Energy terms Number of 
descriptors

Autodock EvdW , Ehbond , Eelec , Etor,Esol 5

Affiscore Epolar , Esol,Ehydrophobic , Eentropy 4

Asp Einternal , Eclash,Emap 3

Chemscore Ehbond , Eentropy , Einternal , Eclash , Ehydrophobic,EMetal 6

DSX Epair , Einternal,Esol 3

GalaxyDock BP2 score EvdW , Ehbond , Eelec , Esol , Einternal , Ehydrophobic,Edrugscire 7

Goldscore �GvdW , �Ghbond,�Ginternal 3

NNScore EvdW , Ehbond , Ehydrophobic , Enn_pair,Enn_elec 5

ChemPLP Ehbond , EMetal , Eclash , Eplp,Einternal 5

Smina EvdW , Ehbond , Eelec , Ehydrophobic , Enon_hydrophobic,Esol 6

SMoG2016 EvdW , Eentropy,EKBP2016 3

Glide SP EvdW , Ehbond , Eelec , Ehydrophobic , EMetal,Eentropy 6

Glide XP EvdW , Ehbond , Eelec , Ehydrophobic , EMetal , Eentropy,Eπ−cation 7

Vina EvdW , Eentropy , Ehbond,Ehydrophobic 4

X-score EvdW , Eentropy , Ehbond,Ehydrophobic 4

Total EvdW , Ehbond , Eelec , Ehydrophobic , Esol , Eentropy , EKnowledge , Eclash , EMetal , Einternal , 
Enon_hydrophobic,Enn_pair

12
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optimized. For RF, the number of base estimators (from 
100 to 300, interval = 10), the maximum depth of the tree 
(from 6 to 100, interval = 1), the number of features used 
to find the best split (‘sqrt’ or ‘log2’) and the minimum 
number of samples required at a leaf node (from 3 to 10, 
interval = 1) were optimized. Similarly, the number of 
base estimators and the maximum depth of the tree were 
tuned for XGBoost within the same range for RF. Besides, 

two different hyper-parameters in XGBoost, i.e., the step 
size shrinkage used in update (from 0.1 to 0.5, uniform 
distribution) and the L2 regularization parameter (from 
0.5 to 3, uniform distribution), were also optimized.

In the training process, the datasets were first shuffled 
and split into the training set and test set at the ratio of 
4:1 by stratified sampling according to the labels. The 
raw features were normalized to the Gaussian distribu-
tion with zero mean and unit variance, and the features 
with low variance were subsequently removed. Then 
a one-hundred-step hyper-parameter tuning was per-
formed using hyperopt, and the tenfold cross validation 
(CV) was employed to evaluate the performance of mod-
els with different hyper-parameters. The model with the 
best hyper-parameter was regarded as the final model 
and assessed on the test set under different evaluation 
metrics.

Evaluation metrics
Our models were designed to distinguish binders from 
nonbinders for given targets. In this study, three met-
rics, including the F1 Score, the area under the curve 
(AUC) of receiver operation characteristic (ROC) curve 
and the enrichment factor at the 1% level (EF_1%), were 
adopted to assess the screening power of MLSFs. The F1 
Score (ranging from 1 to 0), which can be interpreted as 
a weighted average of precision and recall, is a balanced 
metric for classification. The ROC curve is plotted based 
on the sensitive and specificity under various thresholds, 
of which the AUC reflects the overall performance of 
classifiers in VS. The AUC value closer to 1 indicates the 
better overall predictive performance of the model, while 
a AUC value of 0.5 indicates a random prediction. The EF 
value is a widely used metric for validating the quality of 
VS protocol, which is defined as the proportion of active 
compounds identified by employing a certain VS strategy. 
The above-mentioned metrics are computed according to 
the formula, where TP represents true positive, FP repre-
sents false positive, TN represents true negative, and FN 
represents false negative.

Results and discussion
The complete workflow of this study is shown in Fig. 1. 
First, three datasets (i.e., Dataset I, Dataset II and Data-
set III) were collected, and the protein–ligand complex 
structures were predicted by docking. The top-1 ranked 
binding complex for each ligand in Dataset I and Data-
set II was selected for the generation of descriptors and 
rescored by 15 classical SFs (Table  2). The decomposed 
energy terms from 15 SFs were then used as the descrip-
tors for the construction of MLSFs. Before MLSFs mod-
elling, the energy terms were grouped in terms of their 
formula and physical principles. Two distinct feature 
combination strategies were devised to formulate theory-
driven feature combinations, aiming to encompass as 
many interaction types as possible, while avoiding feature 
redundancy. The first strategy amalgamates features of 
varying interaction types across different formulas, yield-
ing 288 combinations (Table 3). The alternative approach 
provides 36 feature combinations, adhering to the impor-
tance scores generated by a tree-based feature selec-
tion protocol (Table  3). Thus, a cumulative 324 feature 
combinations were obtained for further analysis. Next, 
the SVM algorithm was utilized for training and testing 
based on the 324 feature groups of Dataset I. According 
to the performances of the 324 models, the 5 best fea-
ture combinations were selected for further investigation 
of the influence of feature vector length, physiochemi-
cal energy component, and ML algorithms on the model 
performance. Finally, we proposed a new TB-IECS devel-
oped based on the energy terms obtained from Smina, 
NNScore 2 via XGBoost algorithm, and the screening 
power of TB-IECS was further assessed on Dataset I, 
Dataset II and Dataset III.

The performance of models trained on different features
The energy terms decomposed from all the 15 SFs provide 
comprehensive information of protein–ligand interac-
tions. Three approaches (i.e., Formula-based, Tree-based-
sum, and Tree-based-mean) were utilized to generate 

(1)precision =

TP

TP + FP

(2)recall =
TP

TP + FN

(3)F1 =

2 ∗ (precision ∗ recall)

precision+ recall

(4)EF1% =

The number of actives at 1% level/the number of molecules at 1%level

The total number of actives/the total number of molecules
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324 designed combinations of energy terms (Table  3) 
that were presumed to give more accurate description of 
protein–ligand interactions. Formula-based method aim 
to combinate features in terms of formula representa-
tion and physicochemical properties. The energy terms 
decomposed from the 15 SFs were first categorized into 

12 groups according to their physicochemical representa-
tion, namely van der Waals interaction, electrostatic inter-
action, H-bond interaction, hydrophobic effect, entropy, 
clash effect, solvation effect, metal interaction, internal 
potential, polar interaction, non-hydrophobic term, and 
knowledge-based term, where each group contained at 

Fig. 1 The workflow of this study, including dataset collection, ligand docking, descriptors generation, feature combination and experiments 
about best feature combination selection, impacts of energy terms, feature length and machine learning algorithms on model performance, the 
performance of TB-IECS on benchmarks and virtual screening
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least one formula expression. To avoid combinatorial 
explosion, only six frequently used energy terms (van der 
Waals interaction, electrostatic interaction, H-bond inter-
action, hydrophobic effect, entropy and clash effect) were 
involved in the feature combination, while the others were 
retained in default. For each of the six terms, the corre-
sponding terms from various SFs with different formula 
were selected, resulting in 288 formula-based combina-
tions of energy terms.

Tree-based feature selection is one of the most fre-
quently-used technologies in feature engineering, and it 
predicts and selects important features using the RF algo-
rithm. Hence, both the Tree-based-sum approach and 
Tree-based-mean approach were used to evaluate the sig-
nificance of each SF for specific interactions. Tree-based-
sum means that the importance of the energy terms 
was summed, while the Tree-based-mean approach cal-
culates the mean value of the importance of the energy 
terms. When multiple energy terms from distinct SFs 
describe the same interaction, and yield similar impor-
tance scores in different formulas representation, all such 
terms will be retained for feature combination. Glide and 
Vina docking were used for the generation of the bind-
ing poses, and the feature importance of the SFs in terms 
of various energy terms was calculated and summarized 
in the Supplementary Material (Additional file 1: Figure 
S2). The predicted feature importance varied when using 
different docking programs, which was mainly influenced 
by the distinct binding poses of the ligand from docking. 
Besides, different SFs also brought significant fluctua-
tions on the prediction of feature importance. For exam-
ple, ChemPLP rather than GalaxyDock BP2 achieved the 
highest importance score of the H-bond term (Additional 
file 1: Figure S2B) when docking poses were generated by 
Glide. Given that, 24 and 12 feature combinations were 
generated by Tree-based-mean and Tree-based-sum, 
respectively. In total, 324 groups of features were used to 
construct MLSFs based on SVM, and the performances 

of the models were shown in Fig. 2. The models were all 
trained using the theory-based features, but the predic-
tive performance differed among feature combinations, 
suggesting that a certain combination of interactions is 
of great significance to model accuracy and efficiency. 
According to the results, the Formula-based mod-
els generally achieved better performance (average F1 
Score = 0.680) compared to the Tree-based methods.

The performance of models trained on theory‑based 
features and on single SFs
The best feature combination from each group (i.e., For-
mula-based, Tree-based-sum, and Tree-based-mean) 
was retained for further assessment (Table  4). Besides, 
according to the predictions of feature importance from 
Tree-based methods, the energy components with the 
highest importance scores were combined, producing 2 

Table 3 Combination of energy terms

VdW, Hbond, and Elec represent the Van der Waals interaction, the Hydrogen bond interaction, and the Coulomb potential, respectively

Combination VdW Hbond Elec Hydrophobic Entropy Clash Combination 
number

Formula GalaxyDo-ck BP2
Goldscore
Smina

GalaxyDo-ck BP2
Goldscore
Smina

GalaxyDo-ck BP2
NNScore

Chemscor-e
Affiscore
X-score
Glide XP

SMoG20-16
Glide XP

Chemscor-e
ChemPL-P

288

Tree-sum Glide SP ChemPL-P Autodock
Glide XP

Glide XP
Affiscore

Chemscor-e
SMoG2016

Chemscor-e
ChemPL-P
ASP

24

Tree-mean Smina Smina NNScore Glide XP
Smina

SMoG20-16
Glide XP

Chemscor-e
ChemPL-P
ASP

12

Fig. 2 The performance of the 324 models. The performance of each 
model is listed in the (Additional file 1: Tables S1, S2, S3, S4)
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other feature combinations (i.e., Tree-based-mean-rank 
and Tree-based-sum-rank). Tree-based-mean/sum and 
the Tree-based-mean/sum-rank combinations share the 
same SFs for four out of six energy terms (the van der 
Waals, electrostatic, H-bond and hydrophobic effect 
terms). We also constructed models trained on all features 
(all the energy components from the 15 SFs), and further 

compared with the models trained on the selected five 
theory-based feature combinations. The F1 Scores of all 
the models were shown in Fig.  3. The all-features model 
achieved the best performance for almost all the tested tar-
gets. Our theory-based feature-combination models also 
showed satisfactory accuracy, and there were no significant 
differences in F1 Scores among models for most targets, 

Table 4 Theory-based feature combination with the best model performance

VdW, Hbond, and Elec represent the Van der Waals interaction, the Hydrogen bond interaction, and the Coulomb potential, respectively

Combination VdW Hbond Elec Hydrophobic Entropy Clash

Formula GalaxyDoc-k BP2 Goldscor-e NNScore X-score SMoG2016 Chemscore

Tree-mean Glide SP ChemPL-P Autodoc-k Glide XP SMoG2016 ASP

Tree-sum Smina Smina NNScore Glide XP Glide XP ChemPLP

Tree-mean-rank Glide SP ChemPL-P Autodoc-k Glide XP Chemscore Chemscore

Tree-sum-rank Smina Smina NNScore Glide XP SMoG2016 Chemscore

Fig. 3 The performance of models trained on theory-based features and on singe SFs and tested on Dataset I.(1) All: the model trained on 
all the energy components of the 15 SFs with feature selection, (2) Formula: the best model among the models using Formula-based feature 
combinations, (3) Tree-mean and Tree-sum: the best model among the models using Tree-based feature combinations, (4) Tree-*-rank: models 
trained on the features ranked first according to the importance, (5) others: models built on single SFs’ energy components
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especially the models using the Formula-based and Tree-
based-sum (rank) feature combinations. In contrast, the 
differences in F1 Scores between the theory-based models 
and most single-SF models (Fig. 3) reached statistical sig-
nificance, suggesting that the theory-based feature com-
bination generally improved model performance. It was 
not surprising since the theory-based features contained a 
more comprehensive description of interactions between 
the protein and ligand than the energy components from a 

single SF. Of note, several single SFs (NNScore, Smina, and 
Glide SP/XP) with relatively larger numbers of descriptors 
also achieved competitive performance, indicating that the 
feature vector length could also affect model performance.

The impact of interaction types and feature vector length 
on model performance
In order to study the influence of different interac-
tion terms on model performance, a series of feature 

Fig. 4 The impact of interaction energy terms on model performance: the performance of models trained on features lack of specific interactions. 
For example, the column ‘Vdw’ represents the performance of the model trained on the features without a description of Van der Waals’s interaction. 
A: heatmap of the performance of models with different features. B: the distribution of the performance of models with different features
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combinations, where one type of interaction terms was 
removed from each Formula-based feature combina-
tion, were subsequently created. As shown in Fig.  4A, 
no significant decrease in F1 Score was observed when 
any one type of the interaction term was missing, and 
the distributions of F1 scores kept unchanged (Fig. 4B). 
The models constructed based on the hybrid theory-
based feature combinations showed superiority over 
most SFs, since they contained a considerable number 
of descriptors that made them insensitive to the loss of 
a single type of interaction terms. For example, the loss 
of H-bond term may be compensated by the augmented 
description of electrostatic interaction. Another exam-
ple is the hydrophobic effect, which is well-acknowl-
edged as an entropy-driven process, associated with 
both the hydrophobic effect term and the entropy term. 
The loss of either term may have limited impact on 
overall efficiency.

We next evaluated the impact of the feature vec-
tor length on model performance. As shown in Fig.  5, 

the F1 Scores increased in all the tested targets as 
the number of features increased. A final steady state 
was reached after the number of features increased to 
around 200, where the use of more descriptors failed 
to improve accuracy. For further confirmation of the 
relation between model performance and descrip-
tor length, we removed the NNScore descriptors from 
the theory-based features (i.e., Tree-mean, Tree-sum, 
Tree-mean-rank and Tree-sum-rank) to decrease the 
feature number, and decomposed the energy terms 
from the SFs in GOLD (i.e., Asp, Chemscore, Gold-
score and ChemPLP) into the interaction fingerprints 
(IFP) to increase the feature number. The performances 
of the models built on these features were shown in 
Fig.  6 and Additional file  1: Figure S3, where the per-
formances of the models turned down as the feature 
vector length decreased. On the one hand, the model 
performance was enhanced after the energy compo-
nents were decomposed into IFPs, indicating that the 
model performance could be improved by transforming 

Fig. 5 The relationship between feature vector length and model performance. The performance of the model trained on features with various 
lengths on Dataset I. Some feature combinations with the same feature vector length were merged in the figure
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Fig. 6 The impact of feature vector length and interaction energy terms on model performance. A: the change of the model performance 
after feature vector length reduction, B: the change of the model performance after feature vector length increasing. The feature reduction 
was implemented by remove descriptors of NNscore from raw feature combinations while the feature vector length was increased through 
decomposed the raw energy terms into interaction fingerprints



Page 12 of 17Zhang et al. Journal of Cheminformatics           (2023) 15:63 

coarse-grained descriptors into fine-grained descrip-
tors that captured more detailed but distinct infor-
mation of protein–ligand interactions at atomic and 
residual levels, and avoided the issue of descriptor 
redundancy. On the other hand, the use of NNScore 
with complementary descriptors was found beneficial 
to improve model performance.

The impact of machine learning algorithms on model 
performance
To explore the influence of ML algorithms on model 
performance, SVM, RF and XGBoost were used for 
modeling based on formula-based features. According 
to the results shown in Fig.  7, the SVM models were 
the best based on the average F1 Score while the RF 
models showed the worst performance. However, there 
was no significant difference among the models using 

the same ML algorithm. Considering that the XGBoost 
models showed competitive performance with the SVM 
models but calculated faster than the SVM models, the 
XGBoost algorithm was used for further modeling.

The performance of models trained on better descriptors 
and ML algorithms
Based on the above results, we selected long theory-based 
features and XGBoost algorithms and tried to construct 
an accurate MLSF. As shown in Fig.  6B, decompos-
ing the single energy terms into the contribution scores 
(IFPs) of protein residues and ligand atoms could dra-
matically improve the model performance. The ChemPLP 
ifp was used as a new theory-based feature combination 
because the model built on this feature performed best 
among the 8 models in Additional file 1: Figure S3B. In 
addition, the energy components of NNScore and Smina 
were also implemented in the new theory-based features 

Fig. 7 The impact of machine learning algorithms on model performance

Table 5 New theory-based feature combination

VdW, Hbond, and Elec represent the Van der Waals interaction, the hydrogen bond interaction, and the Coulomb potential, respectively

Combination VdW Hbond Elec Hydrophobic Entropy Clash

Chemplp_smina_nn_smo Smina ChemPLP NNScore Smina SMoG2016 ChemPLP

Smina_nn Smina, NNScore Smina, NNScore Smina, NNScore Smina, NNScore Smina –
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because these two SFs provided a number of useful com-
plementary descriptors. The interaction components (i.e., 
entropy term and knowledge-based potential) that were 
not provided by ChemPLP ifp, NNScore and Smina were 
supplemented by SMoG2016 [47] As ChemPLP is one of 
the SFs in the commercial software GOLD, the model 
may be restricted for academic use, and the speed of 
generating ChemPLP ifp is very slow. For this reason, we 
introduced feature combinations consisting of descrip-
tors only from NNScore and Smina, which not only 
provided a full description of the protein–ligand interac-
tion but also showed faster calculating speed (shown in 
Table 5).

The XGBoost algorithm was further utilized to con-
struct the target-specific SF and the model was then 
tested on the DUD-E set (Table 6). In general, the models 
trained on the new theory-based feature combinations 
outperformed the classical SFs. The Smina_nn model 
performed the best under most circumstances, and the 
Chemplp_smina_nn_smo model also achieved com-
petitive performance. Therefore, Smina_nn model was 
retained as our final model named as the theory-based 
interaction energy component (TB-IEC) Score.

The performance of TB‑IECS on LIT‑PCBA and virtual 
screening
Although TB-IECS showed outstanding performance on 
DUD-E set (Dataset I), further validations on other data-
sets were still needed due to the existing hidden bias in 
the DUD-E set that had been described previously [31, 
32] LIT-PCBA (Dataset II), introduced by Tran-Nguyen 
et al. in 2020, is an unbiased dataset for MLSF assessment 
consisting of 15 diverse targets with a total of confirmed 
7844 active and 407,381 inactive compounds. As shown 
in Fig. 8, the AUC value of TB-IECS dropped from 0.986 
(on DUD-E set) to 0.652 (on LIT-PCBA set), indicating 
a sharp decrease in accuracy, but was still significantly 

higher than that of Glide SP. Of note, the numbers of 
actives and decoys in LIT-PCBA set were extremely 
unbalanced, which might have a huge impact on model 
accuracy. Besides, TB-IECS exhibited superiority in early 
recognition compared to Glide SP that showed poor 
screening power with  EF(1,2,5%) equaling to 0 (Table  7). 
In order to further explore the screening power of TB-
IECS, seven TB-IECS models were specifically trained for 
seven different targets and used to screen the ChemDiv 
database (Dataset III). More than 2 million ligands in the 
ChemDiv database were prepared and docked into cor-
responding proteins, followed by the TB-IECS screen-
ing. As shown in Fig. 9, the performance of TB-IECS on 
Dataset III was similar to that on LIT-PCBA in terms of 
AUC value. As for  EF(1%), both TB-IECS and Glide SP 
showed improved performance on Dataset III than on 
LIT-PCBA, but TB-IECS was also more effective than 
Glide SP. In brief, TB-IECS exhibited potential ability in 
virtual screening and outperformed Glide SP in different 
evaluations.

Conclusion
In this study, we collected multiple energy components 
from 15 classical SFs describing the important non-
bonded interactions in protein–ligand complexes and 
regrouped these energy terms to form a theory-based 
feature combination. A target-specific MLSF named 
TB-IECS was further constructed with strong screening 
power. A total of 324 theory-based feature combinations 
were generated based on two methods (Formula-based 
and Tree-based) and were used for modeling. We found 
that selection of appropriate feature combinations based 
on formula representations and physicochemical mean-
ings could improve model performance, and 5 theory-
based feature combinations were subsequently identified 
and used for model construction. We further explored 
the impact of interaction type, feature vector length and 

Table 6 Model performance on DUDE

The best performance under the perspective of three metrics for each target are shown in bold

Targets Chemplp_smina_nn_smo Smina_nn (TB‑IEC Score) Glide_SP DUDE_Dock

ROAUC F1_Score EF_1% ROAUC F1_Score EF_1% ROAUC EF_1% ROAUC EF_1%

akt1 0.976 0.733 50.896 0.993 0.833 50.610 0.584 5.054 0.720 29.4

ampc 0.892 0.462 36.228 0.979 0.519 41.610 0.558 1.057 0.789 8.3

cp3a4 0.941 0.618 24.970 0.993 0.789 25.000 0.597 2.985 0.631 2.4

cxcr4 0.994 0.927 11.063 1.000 0.986 11.090 0.639 2.885 0.902 17.5
gcr 0.997 0.727 50.286 0.995 0.742 49.060 0.746 18.074 0.439 8.9

hivpr 0.995 0.903 17.894 0.999 0.970 17.900 0.531 2.359 0.596 4.7

hivrt 0.944 0.662 27.855 0.959 0.746 27.900 0.563 7.125 0.644 6.5

kif11 0.955 0.660 41.273 0.973 0.825 40.750 0.635 16.524 0.769 34.5
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ML algorithms on model performance, and finally pro-
posed our TB-IECS.

During the modeling process, we found that the fea-
ture vector length had a great influence on model effi-
ciency. The model performance improved as the number 

of features increased. A final steady state was reached 
after the number of features increased to around 200, 
where the use of more descriptors did not help improve 
accuracy. Removing any one interaction descriptor from 
the feature combination had little influence on model 

Fig. 8 The performance of TB-IECS and Glide SP on DUD-E (Dataset I) and LIT-PCBA (Dataset II)

Table 7 Model performance on LIT-PCBA

Targets TB‑IEC score Glide_SP

ROAUC F1_Score EF_1% ROAUC EF_1%

ALDH1 0.610 0.031 8.960 0.482 0

ESR1_ant 0.697 0 2.80 0.324 0

FEN1 0.812 0 1.143 0.386 0

GBA 0.689 0 0 0.521 0

KAT2A 0.523 0 1.299 0.517 0

MAPK1 0.697 0 0 0.429 0

MTORC1 0.511 0 0 0.555 0

PKM2 0.632 0 1.198 0.439 0

TP53 0.654 0 7.279 0.417 0

VDR 0.609 0 0.543 0.530 0
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performance when using long feature vector length. Fur-
ther use of the decomposed energy terms from SFs that 
provided detailed information of protein–ligand interac-
tions dramatically improved the performance of MLSF. 
However, no significant difference of the overall perfor-
mance was found among ML algorithms including SVM, 
RF, and XGBoost.

Recently, several high-performance MLSFs by intro-
ducing atom features from graph neural networks were 
constructed and exhibited signs of great promise.22, 57 In 
this work, TB-IECS utilized pairwise atom features that 
allowed for effective capture of the energetic patterns 
in protein–ligand recognition. Validations on DUD-E 
set, LIT-PCBA set and real-scenario VS suggested that 

Fig. 9 The performance of TB-IECS on Dataset III. A: the ROC_AUC of TB-IECS and Glide SP, B: the EF of TB-IECS and Glide SP
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TB-IECS showed much better performance than most 
conventional SFs, and significantly increased the low 
early recognition rates by classical SFs. Besides, TB-
IECS performed far better than the MLSF constructed 
on energy terms from single SFs in terms of F1 Score, 
suggesting the superiority of using theory-based feature 
combination in MLSFs. Overall, TB-IECS represented as 
an accurate MLSF method and showed great promise in 
VS applications.
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