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Abstract 

In recent years, it has been seen that artificial intelligence (AI) starts to bring revolutionary changes to chemical 
synthesis. However, the lack of suitable ways of representing chemical reactions and the scarceness of reaction data 
has limited the wider application of AI to reaction prediction. Here, we introduce a novel reaction representation, 
GraphRXN, for reaction prediction. It utilizes a universal graph-based neural network framework to encode chemi-
cal reactions by directly taking two-dimension reaction structures as inputs. The GraphRXN model was evaluated 
by three publically available chemical reaction datasets and gave on-par or superior results compared with other 
baseline models. To further evaluate the effectiveness of GraphRXN, wet-lab experiments were carried out for the 
purpose of generating reaction data. GraphRXN model was then built on high-throughput experimentation data 
and a decent accuracy  (R2 of 0.712) was obtained on our in-house data. This highlights that the GraphRXN model can 
be deployed in an integrated workflow which combines robotics and AI technologies for forward reaction prediction.

Introduction
Organic synthesis is the foundation for the development 
of life science, such as pharmaceutics and chemical biol-
ogy [1, 2]. For decades, the discovery of chemical reac-
tion was driven by serendipitous intuition stemming 
from expertise, experience and mechanism exploration 
[3]. However, professional chemists sometimes have hard 
time to predict whether a specific substrate can indeed go 
through a desired reaction transformation, even for some 
well-established reactions [4, 5]. When optimizing reac-
tion yield or selectivity, small changes in reaction factors, 

including catalysts, temperature, ligands, solvents, and 
additives, may result in outcomes that deviate from the 
intended target.

With the development of artificial intelligence (AI), 
computational methods to predict the reaction out-
come and retro-synthesis route have been proposed to 
accelerate chemical research [6–12]. There is a rich his-
tory of computer assisted chemical synthesis. Jorgensen 
and coworkers introduced Computer Assisted Mecha-
nistic Evaluation of Organic Reactions (CAMEO [13]). 
This and other early approaches, including SOPHIA 
[14] and Robia [15], attempted to employ expert heuris-
tics to define possible mechanistic reactions. What these 
approaches suffered in common is the difficulties to ena-
ble prediction of novel chemistry. For specific reaction 
classes with sufficiently detailed reaction condition data, 
machine learning can be applied to the quantitative pre-
diction of yield [16]. As a sub-domain of AI, deep learn-
ing technologies were booming in the last decade and 
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have made huge impact on reaction prediction and retro-
synthesis modelling. For retro-synthesis planning, there 
are two types of deep learning model. One type is the so 
called template-based models, where combining reaction 
templates with deep neural networks [17–19] has been 
applied. Reaction templates are the classic approach to 
codifying the “rules” of chemistry [20–23], and is exten-
sively applied in computer-aided synthesis planning [24, 
25]. In contrast, without using any pre-defined reaction 
templates, various deep learning based machine transla-
tion models were employed to learn chemical reaction 
from data directly and can also been used for synthesis 
planning. That is called template-free-based model.

For the prediction of reaction outcome, Quantum-
mechanics (QM) based descriptors, representing elec-
trostatic or steric characterizations, calculated by density 
functional theory (DFT) or other semi-empirical meth-
ods [26–29] are frequently used for modelling. Doyle 
et al. [16] utilized QM-derived descriptors to build a ran-
dom forest model, which achieved good prediction per-
formance of the Buchwald-Hartwig cross-coupling of aryl 
halides with 4-methylaniline. Sigman et  al. [30] defined 
four important DFT parameters to capture the confor-
mational dynamics of the ligands, which were fed into 
multivariate regression modelling for the correlation of 
ligand properties and relative free energy. Denmark et al. 
[10] generated a set of three-dimension QM descriptors 
to develop an AI-based model for enantioselectivity pre-
diction. Applying QM descriptors to modelling offers 
the advantage of model interpretability, but it usually 
requires a deep understanding of reaction mechanisms, 
which may be difficult to transfer to other reaction pre-
diction tasks. Another kind of popular descriptors is the 
so-called reaction fingerprints. Glorius and co-workers 
[31] developed a multiple fingerprint features (MFFs) as 
molecular descriptors, by concatenating 24 different fin-
gerprints, to predict the enantioselectivities and yields for 
different experimental datasets. Although good results 
were observed, this method can be a time and resource 
intensive process, as a single molecule was represented in 
a 71,374-bit array. Reymond et al. [32] reported a molec-
ular fingerprint called differential reaction fingerprint 
(DRFP), by taking reaction SMILES as input which were 
embedded into an arbitrary binary space via set opera-
tions for subsequent hashing and folding, to perform 
reaction classification and yield prediction. Though the 
reaction fingerprints are easily built, the reaction finger-
print may lose certain chemical information due to the 
limited predefined substructures, and thus a task-specific 
representation which could learn from dataset is needed.

One possible solution to the issue of universal reaction 
descriptors is to apply graph neural networks (GNNs) on 
reaction prediction task [33, 34]. Owing to the powerful 

capacity for modelling graph data, GNNs have recently 
become one of the most popular AI methods and have 
achieved remarkable prediction performance on several 
tasks [11, 35–37]. Various graph-based models, such 
as graph conventional network(GCN) [11, 38], Graph-
SAGE [39], graph attention network(GAT) [40] and mes-
sage passing neural network(MPNN) [41], have been 
proposed to learn a function of the entire input graph 
over molecular properties, by either directly applying 
a weight matrix on the graph structure or using a mes-
sage passing and aggregation procedure to update node 
features iteratively. A molecule is regarded as a graph, 
where atoms are treated as nodes and bonds are treated 
as edges. Node and edge features are influenced by proxi-
mal ones, and these features are learned and aggregated 
to form the embedding of entire molecule graph [41, 42]. 
It was worth mentioning that in addition to the above 
mentioned graph model architectures, transformer neu-
ral network [43] was adopted for the direct processing 
of molecular graph as sets of atoms and bonds [44, 45]. 
For example, transformer based model Graphormer-
Mapper [46] was proposed to do reaction featurization, 
which is similar to the idea of learning molecular graph 
features with reaction data, but based on a transformer 
architecture.

In this work, we proposed a modified communicative 
message passing neural network (GraphRXN), which 
was used to generate reaction embeddings for reaction 
modelling without using predefined fingerprints. For 
chemical reactions comprised of multiple components, 
reaction features can be built up by aggregating embed-
dings of these components together and correlated to the 
reaction output via a dense layer neural network.

Another major challenge for reaction prediction is the 
access of high-quality data [47, 48]. Though numerous 
data were accumulated, bias toward positive results in 
the literatures led to unbalanced datasets. What’s more, 
extracting valid large-scale data from literature requires 
substantial human intervention. High-throughput exper-
imentation (HTE) is a technique that can perform a large 
number of experiments in parallel [49, 50]. HTE could 
serve as a powerful tool for advancing AI chemistry as 
it has the capability to significantly increase experiment 
throughput, and ensure data integrity and consistency. 
With this technology, several high-quality reaction data-
sets were reported [47], including Buchwald-Hartwig 
amination [16, 51, 52], Suzuki coupling [9, 53, 54], pho-
toredox-catalysed cross coupling [55]. These datasets 
contain both successful and failed reactions, which is 
critical for building forward reaction prediction models. 
Three public HTE datasets were used as proof of concept 
studies for our method and encourage results were dem-
onstrated. As further verification, we used our in-house 
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HTE platform to generate data of Buchwald-Hartwig 
cross-coupling reaction. The GraphRXN methodology 
was then applied on the in-house dataset and a decent 
prediction model was obtained  (R2 of 0.713), which high-
lights that our method can be integrated with reaction 
robotics system for reaction prediction. We expect that 
deep learning based methods like GraphRXN, combined 
with the data-on-demand reaction machine, could poten-
tially push the boundary of reaction methodology devel-
opment [56, 57].

Methods
GraphRXN framework
A deep-learning graph framework, GraphRXN, was pro-
posed to be capable of learning reaction features and pre-
dicting reactivity (Fig. 1).

The input of GraphRXN is the reaction SMILES where 
each reaction component (either reactants or prod-
ucts) is represented by the directed molecular graph 
G(V ,E) [58]. For each individual graph of the reaction, 
it learns through three steps, including message passing, 
information updating, and read out. All node features 
( Xv , ∀v ∈ V ) and edge features (X ev,w , ∀ev,w ∈ E ) are 
propagated in the message passing and updating stage as 
shown in Algorithm 1:

(a) for the v node at step k, its intermediate message 
vector mk(v) is obtained by aggregating the hidden 
state of its neighbouring edges at the previous step 
hk−1

(

eu,v
)

 , then the previous hidden state hk−1(v) 
is concatenated with its current message mk(v) and 
fed into a communicative function to obtain cur-
rent node hidden state hk(v);

(b) for the edge ev,w at step k, its intermediate message 
vector mk

(

ev,w
)

 is obtained by subtracting the pre-
vious edge hidden states hk−1

(

ev,w
)

 from hidden 
state of its starting node hk(v) , then the initial edge 
state h0

(

ev,w
)

 and weighted vector W •mk
(

ev,m
)

 
are added up and fed into an activation function 
( ReLU ) to form current edge state hk

(

ev,w
)

;

(c) After K  steps iteration, the message vector ( m(v)) 
is obtained by aggregating hidden states hK

(

eu,v
)

 of 
its neighbouring edges. The node message vector 
m(v) , current node hidden state hK (v) and initial 
node information x(v) are fed into a communicative 
function to form the final node embedding h(v).

(d) Gated Recurrent Unit (GRU) is chosen as the read-
out operator to aggregate the node vectors into a 
graph vector. The length of molecule feature vector 
is adjustable (here it is set to 300 bit). 

Algorithm 1.GraphRXN implementation.

The molecular feature vectors are then aggregated 
into one reaction vector by either summation or con-
catenation operation (named as GraphRXN-sum 
and GraphRXN-concat respectively). The length of 
GraphRXN-sum vector is set to 300 bit and GraphRXN-
concat is multiple times of 300 (depending on the maxi-
mal reaction components). If we take a two-components 
reaction (A + B → P), for example, when summation oper-
ation is selected to aggregate features of A, B and P, the 
length of reaction vector is 300 bit; when concatenation 
operation is selected to aggregate molecular features, 
the length of reaction vector is 900 bit. In addition, for 

Fig. 1 Model architecture of GraphRXN
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some reaction components which are inappropriate to be 
depicted by graph structure, such as inorganic reagents 
or catalysts, one-hot embedding will be used to charac-
terize them. Finally, a dense layer is used to fit reaction 
outcomes, including reaction yield and selectivity.

Data preparation
As shown in Table 1, in total, four reaction datasets were 
used to validate the performance of our GraphRXN 
model. Three of them are open-source HTE datasets and 
one of them is generated from in-house HTE platform (in 
Additional file 1).

The original outcome value x (including yields, selectiv-
ities, and ratios) was then treated with z-score normaliza-
tion, where µ is the mean of all samples, σ is the standard 
deviation of all samples.

Each dataset was split into training set and test set in a 
ratio of 80:20. To be mentioned, a validation set (20% of 
training set) was raised to avoid overfitting, i.e. when the 
model performance on validation set became stable, the 
training process would stop. From the k-fold cross valida-
tion (CV) task, we obtained averaged errors, rather than 
depending on one randomly split. To make a strict com-
parison, ten folds CV was adopted on dataset 1–2 which 
was consistent with the reported Yield-BERT study by 
Reymond et al. [8, 59], and dataset 3 which was consist-
ent with the reported study by Perera et al. [53]. Five folds 
CV was adopted in the in-house dataset.

Baseline models
Two previously published reaction prediction methods 
Yield-BERT [8, 59] and DeepReac +  [12] were used as 
baseline models for comparison.

(1) Yield-BERT is a sequence-based model which 
employ natural processing architecture to predict 
reaction related properties given a text-based rep-
resentation of the reaction, using an encoder trans-
former model combined with a regression layer. 

(1)x̂ =
x − µ

σ

The source codes of Yield-BERT were downloaded 
from https:// rxn4c hemis try. github. io/ rxn_ yields/.

(2) DeepReac + is also a graph based model. In terms 
of model architecture, unlike the message pass-
ing neural network used in GraphRXN, Deep-
Reac + employed GAT model, a variant of GNN, as 
the core building block. The source codes of Deep-
Reac + were downloaded from https:// github. com/ 
bm2- lab/ DeepR eac.

Hyper-parameters search and minor modifications 
were conducted for resolving some incompatibility issues 
of python environment. Other training details about four 
models (including hyper-parameters selection and train-
ing log) were supplemented in part 2 in supplementary 
materials.

Model evaluation
GraphRXN method along with two baseline models were 
applied on all four datasets. Regarding the performance 
measures, three evaluation metrics on the test set were 
used, including correlation coefficient  (R2), mean abso-
lute error (MAE) and root mean squared error (RMSE).

HTE platform
HTE, operated under standard codes, has been used 
to perform parallel experiments for rapid screening 
arrays of reactants or conditions, which generated large 
amounts of high-quality reaction data [60, 61]. We have 
developed an in-house HTE platform by assembling 
various state-of-the-art automated workstations/mod-
ules. All experiments in this study were carried out using 
HTE, including solid dispensing, liquid dispensing, heat-
ing and agitation, reaction workup, sample analysis and 
data analysis (Fig. 2). Exquisite design of experiment was 
required before THE [62].

Solid dispensing
Solid samples were stored in the dispensing containers. 
Then an overhead gravimetric dispensing unit delivered 

Table 1 Description of reaction datasets. Dataset 1–3 were available public datasets, and dataset 4 was generated by our in-house 
HTE platform

Entry Description Size Source

Dataset 1 Yield for Buchwald-Hartwig coupling reaction 4608 Doyle et al. [16]

Dataset 2 Yield for Suzuki–Miyaura coupling reaction 5760 Perera et al. [53]

Dataset 3 Stereo-selectivity for asymmetric N, S-acetal formation reaction 1075 Denmark et al. [10]

Dataset 4 Ratio for Buchwald-Hartwig coupling reaction 1558 In-house HTE dataset

https://rxn4chemistry.github.io/rxn_yields/
https://github.com/bm2-lab/DeepReac
https://github.com/bm2-lab/DeepReac
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target amounts of samples from dispensing containers to 
the designated 4 mL vials.

Liquid dispensing
Liquid samples were stored in uniform bottles. Then 
the liquid-handling robot transferred target volume of 
samples to the designated 4  mL vials in a programmed 
manner. With the amounts of solid and liquid samples 
dispensed in 4  mL vials, the liquid-handling robot was 
used again to make stock solution accordingly. All stock 
solutions were mixed thoroughly using vortex mixer. 
Stock solutions were transferred into the designated glass 
tubes of 96-well aluminium blocks for reaction setup 
using the liquid-handling robot.

Heating and agitation
The 96-well aluminium blocks were placed on orbital agi-
tators under pre-set temperature and time.

Reaction workup: After the reactions were stopped and 
cooled down, pipetting workstation was used to process 
the reaction mixtures in batches, including quenching, 
dilution and filtration. Then samples were prepared in 
96-well plates for UPLC-MS analysis.

Sample analysis
Samples were sequentially injected into UPLC-MS for 
expected substance determination and quantification.

Data analysis
Raw data generated by UPLC-MS were fed into Peaksel 
[63], an analytical software developed by Elsci, which was 

capable of executing batch-level integration rendering us 
the UV response area of target substance.

Experimental preparation
Buchwald-Hartwig coupling reaction was used as exam-
ined reaction in this study, to further evaluate GraphRXN 
on the in-house dataset as further verification (Fig. 3).

For the standard condition, we used t-BuXPhos-Pd-G3 
as catalyst, 7-Methyl-1,5,7-triazabicyclo[4.4.0]dec-5-ene 
(MTBD) as base, and DMSO as solvent (Fig. 3a). Firstly, 
the palladium precatalyst t-BuXPhos-Pd-G3 collocate 
with MTBD performed well with primary amines [64–
66]. Secondly, the catalyst and base are DMSO soluble 
which would facilitate the HTE process [67, 68].

As of substrates, a series of ortho-, meta-, and para-
substituted, including electron-donating and electron-
withdrawing groups, aryl-Br and aryl-NH2 were selected 
(Fig.  3b). In total, 50 primary amines (26 Ph-NH2, 24 
Py-NH2) and 48 bromides (24 Ph-Br, 24 Py-Br) were 
used in our dataset generation (see Additional file 2: Figs. 
S1–S2).

Experimental workflow on HTE platform
In this study, all reactions were carried out at 0.016 mmol 
scale in 96-well aluminum blocks using HTE platform. 
For reaction setup, all robots were embedded in a glove-
box filled with  N2. The 96-well aluminum blocks were 
sealed under  N2 and then subjected to orbital agitators 
with the pre-set parameter of 850 rpm and 65  °C. After 
16  h, the 96-well aluminum blocks were cooled down 
to room temperature. In total, 2127 reactions were 

Fig. 2 General workflow of HTE process
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successfully conducted on HTE platform (detailed HTE 
layout sees part1.4 in supplementary materials).

For each glass tube, 0.0625 equivalence of 4,4ʹ-Di-tert-
butyl-1,1ʹ-biphenyl was added as internal standard (IS). 
Reaction solutions were then transferred to filter plates 
and the filtrates were collected by 96-well plates. The 
sample plates were then analyzed by UPLC-MS. The UV 
responses of product and IS were obtained using Peaksel. 
The ratios of UV response of product over IS ( ratioUV  ) 
were calculated using the following equation, where 
Aproduct is the response area of the target product at the 
wave length of 254 nm,AIS is the response area of the IS 
at the wave length of 254 nm, c is a constant (0.0625 eq.), 
which represents the mole ratio of IS and product at 
100% theoretical yield:

During the course of data analysis, 569 reaction data 
derived from abnormal spectra were discarded. Eventu-
ally, 1558 reaction data were obtained.

For more details about the experiments, please see part 
1 in supplementary materials.

Results
Performance on public datasets
Four models, including Graph-concat, Graph-sum, Yield-
BERT and DeepReac + , were built on three public data-
sets. Dataset 1 and 2 are collections of reaction yield 
from coupling reactions, while Dataset 3 is a collection of 
stereo-selectivity from asymmetric reactions. The aver-
age  R2, MAE and RMSE values for the respective test 
set throughout the tenfold CV procedure are listed in 
Table 2.

For Dataset 1, the performance of GraphRXN-con-
cat model  (R2 of 0.951) was similar to the baseline 
method Yield-BERT  (R2 of 0.951), but better than the 

(2)ratioUV =
Aproduct × c

AIS
× 100%

GraphRXN-sum  (R2 of 0.937) and DeepReact +  (R2 of 
0.922) models. For Dataset 2, both GraphRXN-concat 
 (R2 of 0.844) and GraphRXN-sum  (R2 of 0.838) out-
performed the Yield-BERT  (R2 of 0.815) and Deep-
React +  (R2 of 0.827) method. For Dataset 3, the  R2 of 
GraphRXN-concat was 0.892, which was better than 
GraphRXN-sum (0.881), Yield-BERT (0.886) and Deep-
Reac + (0.853). Among these three metrics, we believe 
that MAE is more meaningful for chemists, as it gives a 
possible error between the observed and predicted val-
ues. MAE/RMSE may better serve as a reference value 
for chemists to decide whether to conduct the experi-
ment or not. Our GraphRXN-concat model gave better 
MAE and RMSE values than Yield-BERT and Deep-
Reac + , which demonstrated that GraphRXN model 
can provide on-par or slightly better performance 
over the baseline models. Details of model prediction 

Fig. 3 Reaction scheme and substrate scope

Table 2 Comparison of model performance on public dataset 
1–3. The values of  R2, MAE, RMSE refers to the mean and standard 
deviation across the folds

Dataset Methods R2 MAE RMSE

Dataset 1 GraphRXN-concat 0.951 ± 0.004 4.3 ± 0.1 6.0 ± 0.2

GraphRXN-sum 0.938 ± 0.006 4.9 ± 0.2 6.8 ± 0.3

Yield-BERT 0.951 ± 0.005 4.0 ± 0.2 6.0 ± 0.3

DeepReac + 0.922 ± 0.019 5.2 ± 0.6 7.5 ± 0.9

Dataset 2 GraphRXN-concat 0.844 ± 0.007 7.9 ± 0.1 11.1 ± 0.3

GraphRXN-sum 0.838 ± 0.009 8.1 ± 0.2 11.3 ± 0.4

Yield-BERT 0.815 ± 0.013 8.1 ± 0.4 12.1 ± 0.5

DeepReac + 0.827 ± 0.017 8.1 ± 0.4 11.7 ± 0.6

Dataset 3 GraphRXN-concat 0.892 ± 0.008 0.16 ± 0.01 0.23 ± 0.01

GraphRXN-sum 0.881 ± 0.013 0.18 ± 0.01 0.24 ± 0.02

Yield-BERT 0.886 ± 0.010 0.16 ± 0.01 0.24 ± 0.01

DeepReac + 0.853 ± 0.024 0.18 ± 0.01 0.25 ± 0.02
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on each fold were included in Additional file 2: Tables 
S6–S8.

HTE results
Wet-lab experiment was conducted in this study, and 
1558 data points were collected into the ultimate data-
set (See Additional file  1). According to the substituted 
aromatic amines/bromides of reactants, reactions can 
be grouped into four groups (G1-G4), i.e. dipheny-
lamines derivatives (reactions between Ph-NH2 and 
Ph-Br, G1), phenylpyridine amine derivatives (reactions 
between Ph-NH2 and Py-Br, G2), phenylpyridine amine 
derivatives (reactions between Py-NH2 and Ph-Br, G3) 
and 2,2ʹ-dipyridylamide derivatives (reactions between 
Py-NH2 and Py-Br, G4). G1 contains 317 reaction points, 
while G2, G3 and G4 group have 419, 401 and 421 reac-
tions respectively. Hereby shows the ratioUV  distribu-
tion for all four groups, where the light color represents 

low value, and the dark color corresponds to high value, 
ranging from 0 to 1 (Fig.  4). The grey grids represent 
failed reactions or discarded data and the data filtering 
policy were supplemented in part 1.6 of supplementary 
materials.

For the entire dataset, half of the reaction ratio lies in 
the range from 0 to 0.2. The ratioUV  distribution was not 
balanced with heavy condense on low value which would 
be a challenging task for modelling. Among these, 13% of 
reactions in G1 gave ratio ≥ 0.5, while only 0.7%, 8% and 
5% for G2, G3 and G4 respectively, which indicates the 
chosen reaction condition in HTE may be more suitable 
for reactions between Ph-NH2 and Ph-Br.

Performance on in‑house HTE dataset
An in-house dataset of 1558 data points was used 
for modelling and five-fold CV without replacement 
was done for train-test split. Results of GraphRXN 

Fig. 4 Heatmap of RatioUV distribution for the in-house reaction dataset, where the prefix “A” in X-axis represents amine, and the prefix “B” in Y-axis 
represents bromide
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and other baseline model are shown in Fig.  5. Our 
GraphRXN model obtained better performance on the 
entire dataset comparing with other baseline meth-
ods  (R2 of 0.712, MAE of 0.06, and RMSE of 0.09 in 
GraphRXN-concat). Besides, GraphRXN-concat per-
formed slightly better than GraphRXN-sum model on 
this regression task. Results of each CV fold on test set 
see Additional file 2: Table S9.

Performance on scarce data
It is well known that deep learning relies on large 
amounts of data to discover the relationship between 
variables and outcomes, data scarcity remains a chal-
lenging problem in modelling processes in certain areas, 
especially in the field of reaction prediction. Here, we dis-
cussed the stability on these four aforementioned deep 
learning methods when handling scarce data.

Four groups of the in-house dataset (G1-G4), which 
hold smaller size than other published datasets, were 
evaluated respectively. The performances of GraphRXN 
and other baseline models are listed in Table 3 and results 
of each CV fold on test set see Additional file  2: Tables 
S10–S13. The performances of GraphRXN-concat were 

Fig. 5 Results of GraphRXN and other baseline models on in-house HTE dataset. A evaluation metrics over five-fold CV on test set. B test set plots 
over five-folds CV of GraphRXN-concat and GraphRXN-sum

Table 3 Comparison of model performance over four separate 
reaction groups of our in-house dataset. The values of R, MAE, 
RMSE refers to the mean and standard deviation across the folds

Bold emphasis represents the best model performance in each group

Group Size Methods R2 MAE RMSE

G1 317 GraphRXN-concat 0.653 ± 0.085 0.08 ± 0.01 0.11 ± 0.01

GraphRXN-sum 0.453 ± 0.145 0.11 ± 0.01 0.14 ± 0.02

Yield‑BERT 0.712 ± 0.070 0.07 ± 0 0.10 ± 0.01

DeepReac + 0.544 ± 0.128 0.09 ± 0.01 0.13 ± 0.02

G2 419 GraphRXN‑
concat

0.628 ± 0.048 0.05 ± 0 0.07 ± 0.01

GraphRXN-sum 0.590 ± 0.034 0.06 ± 0 0.07 ± 0

Yield-BERT 0.512 ± 0.046 0.06 ± 0 0.08 ± 0.01

DeepReac + 0.523 ± 0.059 0.06 ± 0 0.08 ± 0

G3 401 GraphRXN‑
concat

0.800 ± 0.030 0.06 ± 0 0.08 ± 0

GraphRXN-sum 0.773 ± 0.020 0.06 ± 0 0.08 ± 0

Yield-BERT 0.783 ± 0.012 0.06 ± 0 0.08 ± 0

DeepReac + 0.744 ± 0.032 0.07 ± 0.01 0.09 ± 0.01

G4 421 GraphRXN-concat 0.445 ± 0.088 0.08 ± 0.01 0.12 ± 0.01

GraphRXN-sum 0.405 ± 0.091 0.09 ± 0.01 0.12 ± 0.01

Yield‑BERT 0.490 ± 0.055 0.08 ± 0.01 0.11 ± 0.01

DeepReac + 0.208 ± 0.17 0.10 ± 0.01 0.14 ± 0.02
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superior than other models on G2, G3 and but slightly 
worse on G1 and G4. It seems that  R2 on small-size data-
set can fluctuate considerably, e.g.  R2 of four groups are 
rather different from each other, while values of MAE 
and RMSE are similar across all four groups. The results 
indicate that the smaller dataset with limited structural 
diversity that might deteriorate the prediction accuracy, 
while a larger dataset with diverse structures can allow 
to learn a better model from a larger reaction space. In 
general, GraphRXN-concat showed superior or on-par 
performance on handling scarce data, compared to other 
deep learning methods.

Variable‑length graph representation
Our GraphRXN algorithm can provide the variable-
length representation that are relevant to each task at 
hand. Usually, a good representation should be small 
but dense enough to contain a wealth of information 
for downstream modelling [69]. Thus, we compared the 
model accuracy over different size of learned feature, 
regardless of other aspects of modelling (Fig.  6A). As 
the vector size climbs from 100 to 900 bits, the results 
of GraphRXN-concat and GraphRXN-sum remain 
steady at around 0.7 points. This diagram points out 
that vector size only caused subtle changes in model 
performance. Additionally, GraphRXN-concat still pro-
vided the higher accuracy in different vector size. The 
curves reached a peak at the size of 300, which may 
indicate that the number of 300 should be a suitable 
size for representation in the molecule level. Detailed 
values of evaluation metrics were supplemented in 
Additional file 2: Table S14.

Aggregation methods for reaction vector
Model processing was sensitive to the ordering of vectors 
[69], and different order of vectors would render different 
results, although all else being equal. In this study, two 
aggregation methods were utilized to encode the reac-
tion vector when graph representation was ready. Spe-
cific order must be set in concatenating reaction vectors, 
and for example, in this study, we used the vector order 
as aromatic amines, bromides and products. In this way, 
we assumed it would be a possible way to sum all com-
ponents’ vectors together, to eliminate the effect of the 
input order. We then compared two aggregation meth-
ods in the same total length (Fig. 6B). When downstream 
model took over the same length of reaction vectors, 
GraphRXN-concat still provided the higher accuracy, 
except when 100-bit vector is unable for molecules to 
contain complete information. The explanation of this 
issue is that summing all the vectors up may weaken the 
ability of representation bit-wisely, and neglect the rela-
tionship between reaction components. According to the 
existing results, concatenation would be more suitable 
for characterizing chemical reactions.

Conclusion
In this work, GraphRXN, a novel computational frame-
work, is proposed to assist automation of chemical syn-
thesis. Regardless of the reaction mechanism, GraphRXN 
directly takes the 2D molecular structures of organic 
components as input and learn the task-related represen-
tations of chemical reaction automatically during train-
ing and achieves on-par or slightly better performance 
over the baseline models. In addition, we used HTE plat-
form to build standardized dataset, and GraphRXN also 

Fig. 6 A Variance of model performance with different vector size. Vector size ranges from 100 to 900 bit, where 100 bit as the interval. B Model 
performance when using either concatenation or summation to construct reaction vectors
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delivered good correlations. Although a chemical reac-
tion goes through certain transitional states, it seems that 
the model can directly predict reaction outcome using 
structural features of reaction components without the 
guidance of mechanism. This study has demonstrated 
that deep learning model could yield moderate to good 
accuracy in reaction prediction regardless of limited size 
of the datasets and many complex influencing variables. 
These results have motivated us to apply this HTE + AI 
strategy to enable cost reduction and liberate the scien-
tific workforce from repetitive tasks in the future. The 
source code of GraphRXN and our in-house reaction 
dataset are available online.
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