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Abstract 

Explainable machine learning is increasingly used in drug discovery to help rationalize compound property predic‑
tions. Feature attribution techniques are popular choices to identify which molecular substructures are responsible 
for a predicted property change. However, established molecular feature attribution methods have so far displayed 
low performance for popular deep learning algorithms such as graph neural networks (GNNs), especially when com‑
pared with simpler modeling alternatives such as random forests coupled with atom masking. To mitigate this 
problem, a modification of the regression objective for GNNs is proposed to specifically account for common core 
structures between pairs of molecules. The presented approach shows higher accuracy on a recently‑proposed 
explainability benchmark. This methodology has the potential to assist with model explainability in drug discovery 
pipelines, particularly in lead optimization efforts where specific chemical series are investigated.

Keywords Explainable AI, Model interpretation, Graph neural networks, Benchmark, Activity predictions, QSAR, Lead 
optimization, Drug discovery

Introduction
Drug discovery is one of the many fields where deep 
learning techniques have found extensive applicability in 
the last few years [1]. While the history behind traditional 
machine learning (ML) in cheminformatics can be traced 
as far back to the 1960  s [2, 3], some recently-adopted 
deep learning paradigms have become increasingly pop-
ular across many tasks (e.g., de novo molecular design, 
synthesis prediction). Specifically, in silico molecular 

property prediction (also commonly referred to as quan-
titative structure–property relationship modeling) is 
a central challenge in drug discovery where graph neu-
ral networks (GNNs) [4] have shown promising perfor-
mance. Among the many factors that contributed to the 
popularity of GNNs in chemistry and other areas, we can 
highlight their suitability to naturally perform automatic 
feature extraction on arbitrarily-sized graphs and their 
scalability to existing commodity hardware. In chemis-
try, GNNs can take advantage of the natural description 
of molecules as graphs, where atoms and bonds can be 
represented as nodes and edges, respectively. Recent 
applications of GNN for molecular property prediction 
include in vivo brain penetration [5], in vitro intrinsic 
clearance [6], among others [7–9].

However, the popularity of GNNs has also been accom-
panied by an increasing need for explainability [10–18], 
as these models have been notoriously known for their 
black-box character. Towards this goal, explainable 
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artificial intelligence techniques, such as feature attribu-
tion analyses, have become relevant tools. These analy-
ses provide an importance value for every input feature, 
atom or bond in a molecular graph. Such importance 
values are often visualized through atom or bond color-
ing, where the structural patterns that drive a prediction 
are highlighted on top of the two-dimensional molecular 
representation of the compound of interest [19].

Towards disentangling what structural patterns are 
exploited by GNNs in compound property predictions, a 
variety of feature attribution techniques have been pre-
viously reported in the literature [20]. Importantly, many 
research efforts have focused on benchmarking feature 
attribution techniques, exploring their consistency and 
quality in atom coloring, and providing recommenda-
tions [21–24]. In particular, one such study proposed 
a quantitative benchmark based on publicly-available 
activity data for congeneric series and evaluated the per-
formance of several GNN architectures and feature attri-
bution techniques [25]. Therein, it was shown that GNNs 
did exhibit some degree of accordance with the prede-
fined colors of the benchmark, but their explainability 
performance fell markedly behind simpler techniques 
such as atom masking [26] in combination with more tra-
ditional machine learning methods such as random for-
ests (RF).

In order to mitigate this issue, in this paper we pro-
pose a training loss modification for GNNs that improves 
explainability performance on the aforementioned 
benchmark. Our method takes advantage of the fact that 
lead optimization efforts focus on specific compound 
series, where molecules share structural cores (i.e., scaf-
folds). The explicit consideration of the molecular scaf-
fold formalism can be leveraged to appropriately assign 
importance of the uncommon substructures responsible 
for a property change during model training. We show 
that the proposed approach is beneficial towards closing 
the explainability performance gap previously reported 
between GNNs and other classical methods. The archi-
tecture is inspired by recent work on molecular repre-
sentation learning based on reaction data that explicitly 
encourage the similarity of reactants and reagents in 
embedding space [27]. To foster reproducibility, all code 
and data are made available through a permissive open-
source license.

Materials and methods
Benchmark data

Molecular scaffolds
A scaffold is defined as the core of the molecule where 
one or several functional groups can be attached. Molec-
ular scaffolds constitute the basis of structure-activity 

relationships (SAR) analyses. Even though ligand-based 
drug discovery does not explicitly cover the study of spe-
cific interactions with the protein target, it is well-suited 
for human interpretability. In fact, numerous ligand-
based drug discovery efforts focus on these SAR analy-
ses e.g., matched molecular pairs (MMPs), specially in 
lead optimization [28, 29]. Herein, the maximum com-
mon substructure (MCS) formalism was used to define 
a molecular scaffold [30] between pairs of compounds 
binding to a specific target. To consider that two com-
pounds share a molecular scaffold, such common part 
should encompass a minimum fraction of their structure. 
Taking this into consideration and in line with previous 
work, different thresholds of minimum shared substruc-
tures were examined [25]. For the development and eval-
uation of our methodology, MCS pairs were computed 
using the FMCS [31] algorithm, as available in the RDKit 
rdFMCS module [32].

Data preparation
The benchmark data from a recently proposed study on 
feature attribution [25] was used, which consisted of 723 
protein targets with associated small molecule activ-
ity data (half maximal inhibitory concentration, IC50 ). A 
negative logarithmic transformation was applied to  IC50 
concentrations to obtain pIC50 values.  The dataset was 
initially constructed using the BindingDB protein-ligand 
validation sets [33], which contains binding affinities for 
a large number of targets and across different molecular 
scaffolds. In said data set, ground-truth atom-level fea-
ture attribution labels were determined via the concept of 
activity cliffs [34–39]. Specifically, these were defined as 
pairs of compounds in one or multiple congeneric series 
sharing a molecular scaffold and with at least 1 log unit 
activity difference. Compounds for each protein target 
were randomly divided into training (80%) and test (20%) 
sets. Only protein targets with at least 50 compound 
pairs in the training set were kept. To avoid data leakage, 
the same compound was not allowed to be present in dif-
ferent pairs in training and test sets, resulting in a final 
selection of 350 protein targets. Figure 1 shows the dis-
tribution of the number of pairs and compounds per tar-
get at the minimum considered MCS threshold of 50%, as 
well as the number of pairs sharing molecular scaffolds at 
different minimum thresholds.

Models and feature attribution techniques
Models
Message-passing GNN [40] models were trained to 
predict compound activity against all available protein 
targets. In most molecular property prediction sce-
narios, these are models f ∈ F  that map molecular 
graphs to real values f : G(V , E) → R , with v ∈ V , e ∈ E 
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representing atoms and bonds, respectively. They do so 
by iteratively learning and updating internal node latent 
representations using the information from neighboring 
atom and bond latent spaces (for a more comprehensive 
description a canonical reference is provided in Gilmer 
et  al. [4]). In this work GNNs were optimized to mini-
mize at least one of the following loss functions: (i) mean 
squared error (MSE) between observed and predicted 
binding affinities (in logarithmic scale), (ii) a relative 
potency loss computed on pairs of related compounds, 
hereby referred to as activity cliff (AC) loss, and (iii) the 
proposed uncommon node loss (UCN). Both AC and 
UCN losses were considered on top of the standard MSE 
loss with a fixed weighting term (see "Substructure-aware 
loss" section). As a control, random forest (RF) models 
trained with extended-connectivity fingerprints (ECFP4) 
were also considered. Additional details regarding neural 
network hyperparameters, featurization, and optimiza-
tion details are provided in Additional file 1: Section 5.

Feature attribution techniques
In the context of this work, feature attribution techniques 
are functions that take a molecular graph and a trained 
property model and produce a real number (i.e., a color-
ing) for each atom in the graph. Such values represent 
atomic importance for the prediction. e : (G,F) → R

V . 
Following previous benchmarking work [20, 25], a vari-
ety of feature attribution methods that enable the esti-
mation of positive and negative atom contributions were 
investigated. Class Activation Maps (CAM) [41] and 

gradient-based methods, namely GradInput [42], Inte-
grated Gradients [43], and Grad-CAM [44] were utilized. 
Additionally, other perturbation-based approaches such 
as node masking, where the contribution of each atom is 
determined as the difference in prediction upon its arti-
ficial modification, were considered. For the presented 
GNN models, node masking iteratively set node features 
to zero. For RF models, each atom was assigned an atom 
type that was not present in the benchmark sets, and 
molecular features re-calculated [26]. Section 6 in Addi-
tional file 1 reports additional technical details and expla-
nations on each of the feature attribution methods used 
as well as their chosen hyperparameters.

Substructure‑aware loss
A supervised learning problem was considered where a 
GNN model was trained to predict compound activity 
against a specific protein target. Motivated by the fact 
that several drug discovery efforts tend to focus on con-
generic series (e.g., lead optimization), we propose a loss 
that focuses on the uncommon structural motifs between 
ligand pairs. A schematic representation of this proce-
dure is provided in Fig.  2. During training, compound 
pairs with a common scaffold are sampled and the dif-
ference in predicted activity is attributed to the uncom-
mon node latent spaces. For each pair k of compounds 
i,  j, with corresponding molecular graphs ci, cj ∈ C and 
experimental activities yi, yj ∈ R , the proposed uncom-
mon node loss is computed as:
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Fig. 1 Benchmark descriptive analyses. Reported are a the distribution of number of pairs per protein target, b the number of compounds 
per protein target, and c the number of compound pairs considered at varying scaffold size (different thresholds of minimum shared MCS 
among pairs)
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where hi ∈ R
Ni×d is the latent node representation of 

compound ci , Mk
i : RNi×d → R

ni×d is a masking func-
tion over nodes that retrieves those uncommon for com-
pound i in the context of pair k, φ : Rn×d → R

d is a mean 
readout function over nodes, ξ : Rd → R is a multilayer 
perceptron with linear activation, and �·� is the vector 
Frobenius norm. During model training, the UCN term 
was used alongside of a standard mean squared error 
(MSE) loss on the absolute predicted versus experimental 
binding affinities of pair k:

where ŷi is an absolute activity prediction output that 
aggregates over all available nodes in each pair (i.e., both 
common and uncommon). Since sampling compound 
pairs results in an augmented data set that could artifi-
cially boost performance, additional models were trained 
to minimize a relative potency loss:

Specifically, the models considered in this study 
were trained to minimize either LMSE or one of 
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the two combinations LMSE+AC := LMSE + �LAC , 
LMSE+UCN := LMSE + �LUCN . For all training and test-
ing purposes in this study we fix � = 1.

This loss function is specifically-designed to put more 
emphasis on the uncommon nodes causing the activity 
change during training. However, at inference time, the 
scaffold does not need to be predefined, i.e., the model 
does not receive any information about common nodes. 
Therefore, the proposed architecture can be applied to 
compounds that do not have any analog in the training 
set (i.e., a new chemical series).

Evaluation metrics
Predictive performance
Regression model performance against individual targets 
was evaluated with the root mean squared error (RMSE) 
and Pearson’s correlation coefficient (PCC)  metrics. To 
aggregate results across all targets in the data set, both 
the unweighted (simple) and weighted average values 
were calculated. For the weighted average calculation, 
RMSE or PCC values were weighted by the number of 
compounds pairs in the test set of each target.

Fig. 2 Schema of the proposed UCN loss. Two compounds sharing a scaffold are sampled from the training set, and their atom latent spaces 
computed via a forward pass of a GNN model. The uncommon latent nodes are used for the loss computation, targeting the activity difference 
between the compound pairs. In the illustrated example, the compound pair is composed by ci and cj , with a large MCS and two substitution 
sites, highlighted in red for ci and green for cj . Substituents (or decorations) differ for both compounds, and correspond to the uncommon nodes 
in the latent space
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Explainability
The performance of the feature attribution methods was 
evaluated using global direction and atom-level accuracy 
metrics [25]. Global direction is a binary metric assessing 
whether average feature attribution across the uncom-
mon nodes in a pair k of compounds preserves the direc-
tion of the activity difference. Assuming ψ : C → R

N×d 
is a feature attribution function that assigns a score to 
each node feature in an input graph, the metric for a sin-
gle pair is computed as:

where � : RN×d → R is a mean aggregator over nodes 
and features. The score is averaged over all pairs in the 
benchmark test sets.

Atom-level accuracy, also hereby referred to as color 
agreement, measures whether the feature attribution 
assigned to a node has the same sign as the experimen-
tal activity difference of the compound pair (ground 
truth). In previous work, ground-truth atom attribution 
labels were obtained by assuming that the structural 
changes between a pair of compounds were responsible 
for the observed potency changes [25]. Therefore, struc-
tural parts in the most potent compound of the pair were 
assigned a positive feature attribution, and vice versa. For 
every atom in a compound with corresponding molecu-
lar graph ci with mi common atoms in pair k, and with 
ground truth atom color tki ∈ {−1, 1}mi , the (vector-val-
ued) metric is defined as:

where η : C → R
N is a mean aggregation function over 

features and 1mi is an indicator vector with mi binary 
entries. The mean value ḡatom is then used as a summary 
of the color accuracy for compound ci.

Jiménez-Luna et  al. [25] noted that the ground-truth 
colors assigned by gatom can be ill-defined for a com-
pound, since they are dependent on the other compound 
in the pair (i.e., the assigned colors to one compound 
could either be positive or negative depending on the 
specific comparison). In contrast, gdir does not suffer 
from this problem. For this reason, the analyses reported 
here focus on the gdir evaluation metric and, for com-
pleteness, gatom results are reported in Section 4 of Addi-
tional file 1.
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Results and discussion
ML models were generated to predict compound potency 
against 350 protein targets. Message-passing GNNs were 
trained to minimize different loss functions, including 
the standard MSE, its linear combination with relative 
(AC), and the uncommon node (UCN) losses. Moreover, 
RF models were built for comparison. First, prediction 
performance was assessed for all GNN and RF models. 
Next, model explainability was benchmarked and the 
influence of the UCN loss analyzed for individual targets. 

Potential factors influencing explainability were analyzed. 
Finally, potential applications of the proposed UCN loss 
and feature attribution methods are shown.

Predictive performance
There is a known trade-off between model interpret-
ability and accuracy [45]. Model explanations could be 
incorrect (feature attributions could be inaccurate) even 
if the ML model predicts the correct direction of potency 
change. Moreover, only explanations from well-perform-
ing methods can be used to assist in drug design. There-
fore, prediction performance was evaluated for all GNN 
and RF models. Table 1 reports the simple and weighted 
average values for root mean squared error (RMSE) and 
Pearson’s correlation coefficient (PCC) metrics. Results 
are shown for GNNs built with different loss functions, 
i.e., solely MSE loss ( LMSE ), MSE in combination with AC 
( LMSE+AC ) or UCN losses ( LMSE+UCN ), and RF. Average 
RMSE values across all targets ranged from 0.31 (GNN 
with LMSE+AC ) to 0.47 (GNN with LMSE+UCN ). Aver-
age correlation between predicted and experimental 

Table 1 Test set predictive performance

Reported are the average (Avg.) and weighted average (W. Avg., over number 
of compounds per target) of root mean squared error (RMSE) and Pearson’s 
correlation coefficient (PCC) values (± 1 standard deviation)

Avg. RMSE W. Avg. 
RMSE

Avg. PCC W. Avg. PCC

RF 0.35 (±0.11) 0.30 (±0.08) 0.95 (±0.07) 0.96 (±0.04)

GNN LMSE 0.34 (±0.23) 0.25 (±0.13) 0.89 (±0.23) 0.96 (±0.08)

GNN LMSE+AC 0.31 (±0.24) 0.24 (±0.13) 0.89 (±0.23) 0.96 (±0.07)

GNN 
LMSE+UCN

0.47 (±0.28) 0.37 (±0.14) 0.84 (±0.24) 0.93 (±0.08)
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potency values ranged from 0.84 (GNN with LMSE+UCN ) 
to 0.95 (RF). Weighted average RMSE and PCC values 
were also calculated, where the results for each target 
were weighted by the number of compounds in the test 
set. The smallest and largest weighted average RMSE 
were 0.24 (GNN with LMSE+AC ) and 0.37 ( LMSE+UCN ). 
In addition, weighted average correlation values were 
between 0.93 (GNN with LMSE+UCN ) and 0.96 (rest of the 
methods). Only minor differences favouring the LMSE+AC 
loss for RMSE values were observed, with most results 
lying within one standard deviation of each other. Inter-
estingly, the simple and the weighted average version of 
the metrics differed more for GNN models. These results 
suggest that GNN predictive ability might be more 
affected by the size of the training data set (which in this 
case was correlated with the test set size) than RF mod-
els. To complement these analyses, relative performance 

between RF and GNN models at different training set 
sizes are reported in Additional file 1:  Section 1.

Even though the UCN loss function utilizes the infor-
mation of scaffolds and uncommon nodes (substitution 
sites) during model training, scaffolds do not need to be 
defined at inference time. This makes the UCN loss also 
applicable to explain compound predictions for new 
chemical series, which is the application shown herein. 
Higher performance values would be expected if com-
pound analogs were present in the training set [46].

Explainability evaluation at varying scaffold size
Explainability was primarily evaluated using the global 
direction score, which focuses on the uncommon nodes 
for a compound pair and assesses whether the direc-
tion of the activity difference is preserved. Global direc-
tion values were calculated at varying MCS thresholds 
among compound pairs. Figure  3 shows the global 

50 60 70 80 90

50

60

70

80

90

G
lo
ba
ld

ire
ct
io
n
(%

)

LMSE

50 60 70 80 90

LMSE+AC

50 60 70 80 90

LMSE+UCN

Feature Attribution
Masking (RF)
Masking (GNN)
GradInput
IntegratedGrads
CAM
Grad-CAM
Random

Minimum shared MCS atoms among testing pairs (%)

(a)

50 60 70 80 90

50

60

70

80

90

W
ei
gh
te
d
gl
ob
al
di
re
ct
io
n
(%

)

LMSE

50 60 70 80 90

LMSE+AC

50 60 70 80 90

LMSE+UCN

Minimum shared MCS atoms among testing pairs (%)

(b)
Fig. 3 Global direction at varying scaffold size and across feature attribution methods. a Global direction and b, weighted global direction values 
are reported at different thresholds of minimum shared MACS among testing pairs (%). In b, global direction is weighted by the number of pairs 
per each target. Results are shown for three loss functions, i.e. LMSE (left panel), LMSE+AC (middle panel), and LMSE+UCN (right panel). Colors report 
different feature attribution methods, five for GNN models and atom masking for RF models. Since the three losses functions are only applied 
to GNN models, RF results are equivalent in the three panels. An additional random feature attribution line is included as a baseline
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direction values for all test pairs and targets consid-
ered in the study. Many feature attribution methods 
applied to GNNs with the proposed UCN objective 
( LMSE+UCN ) exhibited larger global direction values over 
the absolute MSE ( LMSE ) and relative MSE ( LMSE+AC ) 
losses. Improvements were observed for most meth-
ods, but were more pronounced for CAM, Grad-CAM, 
and GradInput. Additionally, the GNN-based masking 
method also exhibited a slight performance increase. 
Most importantly, this explainability improvement held 
across different thresholds of minimum MCS between 
pairs. Figure  3b reports the results with the weighted 
color direction metric, where similar conclusions can be 
drawn. In this case, Integrated Gradients showed larger 
improvements compared to the non-weighted analyses. 
Despite the global direction improvement for GNNs 
with LMSE+UCN loss, RF models with an atom mask-
ing approach achieved larger values. Among the GNN 
methods, CAM and masking approaches provided top-
performing global direction results. Global direction 
values were overall stable across different scaffold size. 
Only when the uncommon structural parts in compound 
pairs were small (MCS thresholds > 85–90%), global 

direction values significantly decreased for all methods. 
Additional file 1: Section 2 reports absolute differences in 
global direction across the different GNN loss functions 
considered.

Explainablity for individual protein targets
In the previous section, explainability methods were 
benchmarked using the average global direction across 
all targets. Nevertheless, for specific protein targets, 
the best explainability method might differ. To evaluate 
how often this is the case, global direction with LMSE 
and LMSE+UCN loss functions were compared on a per-
target basis (Fig. 4). Global direction values were higher 
for 60–66% of the targets when including the UCN 
loss. Additionally, most feature attribution methods 
showed improvements with the UCN loss, with CAM 
exhibiting the largest improvements ( 66% ). Additional 
plots and analyses can be found in Additional file  1: 
Section  3, where CAM approached the performance 
of RF masking when evaluated on the training sets. 
Additional file  1: Section  4 reports results with color 
agreement as an alternative metric. In that case, the 
UCN loss produced an improvement for several of the 
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feature attribution methods in both training and test 
sets, albeit the advantage was less pronounced than 
with the global direction metric.

Figure 5 reports the number of targets for which the 
addition of the UCN loss term led to a negligible ( ≤5%), 
small (between 5% and 10%), medium (between 10% 
and 20%), or large ( ≥20%) global direction improve-
ment. Results indicate that GNNs with LMSE+UCN loss 

led to larger global direction values for the same or 
higher number of targets than GNNs with the standard 
LMSE loss. Interestingly, differences across loss func-
tions became larger when considering targets with 
medium to large global direction improvements in 
their explanations. CAM, GradInput, and Grad-CAM 
showed the largest benefit of UCN loss inclusion, with 
many targets having global direction improvements 
higher than 20% (133 for Grad-CAM, 138 for GradIn-
put, and 81 for CAM).

Potential factors influencing explainability
As a way of elucidating which factors contribute to a suc-
cessful feature attribution assignment, the benchmark 
was extended to evaluate whether gdir is affected by (i) the 
number of substituent sites in the compound pair [37], or 
(ii) the chemical diversity within the ligands for each tar-
get. Figure 6 reports the global direction values for com-
pound pairs that differ by one or at least two substitution 
sites. Results suggested that feature attribution meth-
ods did not showcase an overall higher performance for 
compounds pairs that differ in a single substitution site. 
Additionally, chemical diversity was estimated via the 
Bemis-Murcko scaffold [47] formalism (Fig.  7). In more 
detail, chemical diversity was defined as the total number 
of scaffolds divided by the number of compounds avail-
able for each target. Apart from a slightly higher concen-
tration of targets around areas where both the number of 
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scaffolds is low and gdir is high, no significant correlation 
between these values was observed.

Exemplary applications
The current set-up with compound analogs that differ at 
a single or multiple substitution sites facilitates a system-
atic explainability method benchmark due to the defi-
nition of a ‘ground truth’ based on potency differences. 
Nevertheless, when using this method in practice, more 
opportunities and potential applications exist. Actually, 
this GNN explainability method can be applied to any 
molecule to obtain attributions for all atoms. Therefore, 
it is possible to estimate which substitution site is more 
responsible for predicted activity.

As a way of exemplifying how the proposed meth-
odology can be used in practice, Fig.  8 reports feature 
attributions for two active compounds against human 
dihydroorotate deydrogenase (PDB Id. 1D3G) and 
coagulation factor Xa (PDB Id. 1F0R). The first column 
(a) reports the ground-truth atomic attribution labels, 
assigned from the comparison to other analog pairs, 
while (b) and (c) contain attributions computed via the 

Integrated Gradients method with either the MSE or the 
UCN loss, respectively. Interestingly, the proposed UCN 
loss function yielded better explanations than the simpler 
MSE loss. For instance, for the ligand binding to protein 
1F0R, the ground-truth attribution labels were marked as 
positive, whereas the average attributions obtained with 
the MSE and MSE+UCN losses were −0.27 and +0.39 , 
respectively. These results indicate that UCN loss cor-
rectly assessed the direction of the attribution.

As also shown in Fig. 8, compounds with differences in 
multiple substitution sites can be compared. One ligand 
of nuclear receptor RORγ (PDB Id. 4XT9) and one of 
Tyrosine-protein kinase JAK2 (PDB Id. 5CF4) are shown. 
In these examples, attributions assigned to the specific 
uncommon motifs are similar, but the UCN loss dis-
tinguishes one of those as responsible for the predicted 
activity change. Therefore, the method can also help 
generating hypotheses about which substitution sites 
are driving activity predictions. Computed attributions 
for all molecules and methods considered in this study 
are also made available through the accompanying code 
repository to this work.
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While only the ligand-based paradigm is considered in 
this study, structural motifs that have been assigned a high 
importance by the GNN explainability method could be 
examined after docking. Figure  9 shows feature attribu-
tions for two compounds in the context of their binding 
receptors (PDB Ids. 2YDK and 1D3G, with pIC50 values of 
7 and 7.74 units, in the top and bottom rows respectively). 

Poses were computed using the Vina software pack-
age [48]. In these examples, GNN models trained with 
the UCN loss (right column) gave higher attribution to 
structures that are responsible for key interactions. In the 
case for the ligand selected for Serine/Threonine-protein 
kinase CHK1 (PDB Id. 2YDK), only the model trained with 
the additional UCN loss was able to identify some of the 

Fig. 8 Exemplary explanations for test set molecules. a Ground‑truth feature attributions from the benchmark, b Integrated Gradients with MSE 
loss, and c with MSE+UCN loss results are reported with a coloring scheme. In the first two examples (PDB Ids. 1D3G, 1F0R), compounds had 
a single substitution site. The model trained with the simpler MSE loss failed to correctly capture the direction of the activity change (indicated 
by the ground‑truth). The third and fourth examples (PDB Ids. 4XT9, 5CF4) constitute compounds from pairs that differed in multiple substitution 
sites. Feature attribution methods are also be applicable. Both the UCN and the simple MSE loss provide similar colors for all but one site
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key interactions, namely hydrogen bonds with residues 
SER193, ILE131 and THR170 and a π-cation interaction 
with ARG129. As for the ligand selected for Dihydrooro-
tate dehydrogenase (PDB Id. 1D3G), one of the central 
aromatic rings was correctly identified as engaging in a 
parallel π-stacking interaction with TYR208. The ring on 
the right-hand side leads to better coverage of the bind-
ing pocket through additional hydrophobic interactions, 
which is contradictorily predicted as a negative contribu-
tion by the model with MSE loss.

Conclusions
In this study, we explored and quantitatively evaluated 
how the explainability of GNNs can be improved in 
the context of drug discovery. Specifically, a novel sub-
structure-aware loss was proposed to improve GNNs’ 

explainability for congeneric series data. This modified 
loss function was evaluated on a previously-reported 
benchmark for molecular ML explainability and it was 
observed that most GNN-based feature attribution 
techniques markedly benefited from its usage. Global 
direction values were used to evaluate compound expla-
nations. Our results showed that the average global 
direction as well as the percentage of targets with global 
direction improvements were superior with the consider-
ation of the UCN loss during GNN training. Specifically, 
a 66% and 63% of the targets improved global direction 
scores for CAM and GNN masking, respectively, which 
were identified as the best-performing GNN feature 
attribution methods. Moreover, when explaining activ-
ity predictions for a specific target protein, large global 
direction improvements were more likely with the newly 

Fig. 9 Mapping of feature attributions for visualizations after docking. Feature attribution values were mapped to two compound structures 
in the context of their binding receptors (PDB Ids. 2YDK and 1D3G). Attributions computed using Integrated Gradients (top row, PDB Id. 2YDK) 
and GradInput (bottom row, PDB Id. 1D3G), and using the LMSE (left column) to LMSE+UCN (right column) losses, are reported
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proposed loss function. However, despite the observed 
superiority of the substructure-aware loss in GNN-
based feature attribution methods, the RF models cou-
pled with an atom masking approach still remained the 
best approach for explainability in the benchmark [26]. 
Nevertheless, the feature attribution performance gap 
between RF and GNNs was reduced with the inclusion of 
the proposed loss. Therefore, results on this benchmark 
data set support the use of the new loss function for more 
consistent explanations in cases where GNN is the pre-
ferred modeling approach, e.g. for data sets where GNNs’ 
predictive performance is superior to RF.

Along those lines, and as a potential caveat, during 
our experiments we had noticed that the explainability 
improvement provided by the UCN loss seemed to be 
dependent on the choice of GNN architecture and its 
associated predictive performance, albeit the reasons 
for this dependency remain a topic for further study. 
As a general rule of thumb, we recommend that care-
ful predictive benchmarking is performed on a case-by-
case scenario before using the proposed UCN loss for 
interpretability.

The requirement of precomputed common substruc-
tures between pairs of compounds might be consid-
ered a limitation of the presented method. Exact MCS 
algorithms are computationally expensive, but the issue 
may be bypassed using approximations or matched 
molecular pair analyses [49, 50]. As ventures for future 
research, the exploration of additional GNN architec-
tures and the effect on explainability might be benefi-
cial. Herein, UCN loss has shown to be successful for a 
specific architecture which has become standard in the 
field [4]. Moreover, feature attribution approaches may 
be hindered by some of the current GNN training limi-
tations. Other promising topics for future investigations 
might include exploring architectures that avoid the 
Weisfeler-Lehman graph isomorphism issue, or tack-
ling the oversmoothing effect on GNNs [51] by applying 
regularization [52, 53], self-supervised learning [54, 55], 
or pretraining techniques [56]. All in all, a new strat-
egy for GNN explainability was introduced, inspired by 
the lead optimization efforts in drug discovery, which 
are centered on specific chemical series. The presented 
explainability approach has to potential to help rational-
izing GNN-based model decisions in that context.
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