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Abstract 

The identification of human proteins that are amenable to pharmacologic modulation without significant off-target 
effects remains an important unsolved challenge. Computational methods have been devised to identify features 
which distinguish between “druggable” and “undruggable” proteins, finding that protein sequence, tissue and cellular 
localization, biological role, and position in the protein–protein interaction network are all important discriminant 
factors. However, many prior efforts to automate the assessment of protein druggability suffer from low performance 
or poor interpretability. We developed a neural network-based machine learning model capable of generating 
druggability sub-scores based on each of four distinct categories, combining them to form an overall druggability 
score. The model achieves an excellent performance in separating drugged and undrugged proteins in the human 
proteome, with an area under the receiver operating characteristic (AUC) of 0.95. Our use of multiple sub-scores 
allows the assessment of potential protein targets of interest based on distinct contributors to druggability, leading 
to a more interpretable and holistic model to identify novel targets.
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Introduction
The cost of developing new therapeutic drugs has risen 
significantly in recent years, with the average R&D 
(Research & Development) cost per new drug ranging 

between $314 million and $2.8 billion [41]. Most of this 
expense is incurred in the clinical phase, where trial 
compounds primarily fail due to a poor understanding 
of the disease process leading to lack of efficacy or toxic-
ity caused either intrinsically by the actual protein being 
targeted or extrinsically by off-target effects on other 
proteins [19]. Determining whether a prospective target 
protein is “druggable,” however, is a complex problem 
without a clearly understood solution. This can lead to a 
considerable amount of trial and error in the drug devel-
opment process. A successful method for pre-screening 
prospective target proteins for druggability could save 
billions of dollars per year and increase the number of 
lifesaving drugs reaching the market.

Druggability is a poorly defined term; it can be used 
narrowly to refer only to a protein’s ability to bind an 
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activity-modifying small molecule ligand, or more 
broadly to refer to a protein’s relevance as a therapeutic 
target in human disease. For this paper’s purposes, drug-
gability encompasses the ability of a protein’s activity to 
be modulated for pharmacologic effect by a drug which 
gains regulatory approval. Undruggable proteins are 
those that cannot be influenced for therapeutic benefit, 
either because they lack disease relevance, are biologi-
cally essential, or cannot be targeted through any known 
drug modality. Throughout our work we will use these 
definitions.

Recent advances in machine learning offer the poten-
tial for in silico feature identification of druggable pro-
teins. This can facilitate computational evaluation of 
prospective targets prior to the initiation of expensive 
clinical trials. A variety of efforts in this area have taken 
different approaches, incorporating different predictors 
of druggability into their feature sets. Several groups 
have sought to solely use properties derived from the pri-
mary protein sequence, achieving impressive results in 
distinguishing drugged proteins from a select subset of 
difficult-to-drug proteins [17, 21, 26, 28, 35]. However, 
it is unclear how these models can effectively generalize 
the entire proteome. Others have analyzed the position 
of drugged proteins in the protein–protein interaction 
network to identify common features [14, 27, 29, 40, 
43, 46]. Although these models successfully extracted 
network properties of drugged proteins, their effective-
ness is undermined by the lack of information about 
the protein’s properties, which may be difficult to target 
chemically.

Given the wide variety of features which may deter-
mine whether a protein can be categorized as druggable, 
it is likely that the most successful approach will incor-
porate a comprehensive range of properties, including 
physical and chemical attributes, expression profile, bio-
logical functions, and protein–protein interactions. Suc-
cessful machine learning efforts in this area have utilized 
features from several of these domains [3, 5, 10, 15, 43]. 
A 2020 study by Dezső and Ceccarelli focused exclusively 
on proteins that were targeted by oncology drugs, gener-
ating a feature set including a wide variety of chemical, 
expression, biological function, and network properties. 
Using a random forest-based model, cancer drug targets 
were capable of being distinguished from the remainder 
of the proteome with an AUC of 0.89 [13]. We utilized 
this feature set and augmented it with additional protein 
attributes to build a classifier for property identification 
of drugged human proteins.

To our knowledge, all previously published machine 
learning models are trained to discriminate drugga-
ble from undruggable proteins with a single druggabil-
ity score or binary classification. This approach lacks 

interpretability and wholeness, particularly when many 
distinct types of features are specifically and uniquely 
contributing to druggability. For example, a protein’s 
position in the protein–protein interaction network may 
have major implications for potential off-target effects 
during clinical trials but does not demonstrate its struc-
tural amenability to small molecule modulation. A clas-
sifier that separates distinct features into sub-scores 
prior to obtaining a total druggability score could output 
multiple types of pertinent information about whether 
a protein is druggable or undruggable. We created the 
Predictive Interpretable Neural Network for Druggabil-
ity (PINNED), a deep learning model which divides its 
inputs into four distinct groups—sequence and structure, 
localization, biological functions, and network informa-
tion—and generates interpretable sub-scores that con-
tribute to a final druggability score.

Results
Many factors influence a protein’s druggability, includ-
ing its effectiveness as a disease-modifying target and 
its propensity for causing undesired side-effects. A pro-
tein’s physical and chemical properties, such as amino 
acid composition, secondary structure, post-translational 
modification, and others, can determine whether it can 
be readily liganded by a drug-like molecule. Its position 
in the complex network of protein–protein interactions 
which occur within the human body can influence its 
role in disease and its potential for off-target effects. The 
biological function of a protein plays a significant role in 
whether it is a useful drug target; however, many proteins 
are involved in multiple different processes, disturbance 
of any can lead to unanticipated consequences for home-
ostasis and thus leading to off-target effects. Additionally, 
a protein’s expression profile across target and non-target 
tissues can have implications for its efficacy and safety.

To incorporate all these contributions to druggabil-
ity, we generated a feature set that contains a variety of 
data for 20,404 human proteins, including properties 
extracted from the protein sequence, tissue specificity, 
subcellular localization, biological functions, and posi-
tion in the protein–protein interaction network [13]. The 
features were divided into four feature groups: sequence 
and structure, localization, biological functions, and net-
work information. Each category was then augmented 
with additional features obtained from the protein 
sequence, Gene Ontology (GO) knowledgebase [1], and 
the protein’s 3-dimensional structure as estimated by the 
artificial intelligence system AlphaFold [23] (Table 1).

Sequence and structure properties
Sequence and structure properties included informa-
tion about 52 physiochemical features, such as protein 
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molecular weight and amino acid residues, charge and 
isoelectric points, extinction coefficients, predicted 
post-translational modifications, secondary structure, 
and solvent accessibility. Previous works indicate that 
the grouped dipeptide composition (GDPC) and pseudo 
amino acid composition (PAAC) of a protein may be use-
ful characteristics in determining its druggability [17, 
28, 35]. GDPC represents the relative composition of all 
the amino acid 2-mers in a protein’s sequence, with the 
20 amino acids being reduced to five groups according to 
their physical properties. PAAC is an algorithm designed 
to reduce the sequence characteristics of a protein to a 
defined-length vector while incorporating information 
about their sequence order [9]. GDPC and PAAC were 
generated for each of the proteins in our dataset and 
included in the sequence and structural properties.

AlphaFold is a deep learning network developed by 
DeepMind that can predict a protein’s structure from its 
three-dimensional amino acid sequence. The AlphaFold 
Protein Structure Database was established between 
AlphaFold and EMBL-EBI [11]. This database contains 
the predicted protein structure models of accessible Uni-
Prot human proteome. It is available as an open-source 
database. Fpocket is an open-source software package 
able to automatically detect and provide pocket descrip-
tors in a protein’s 3-dimensional structure [25]. It enables 
the identification of potential drug binding sites and pro-
vides relevant properties based on each pocket detected. 
The pockets are ranked according to their ability to bind 
to small molecules as a cavity prediction algorithm. 
Fpocket was utilized to identify druggable and undrugga-
ble protein cavities based on the trajectories produced by 
the simulation. AlphaFold models of each protein were 
collected from the AlphaFold database and pocket infor-
mation was generated using Fpocket.

Localization
The Subcellular Localization Predictive System (CELLO) 
was used to predict subcellular localization for each 

protein in the dataset [44]. We included this prediction, 
in addition to tissue specificity data obtained from the 
Genotype-Tissue Expression (GTEx) and the Human 
Protein Atlas (HPA) [18, 38]. The GO Knowledgebase 
was used to retrieve Cellular Component annotations for 
each protein. These labels are manually assigned based 
on published literature and represent the cellular struc-
tures in which the protein performs its functions.

Biological functions
Gene essentiality, assessed by lethality of mouse homozy-
gous loss-of-function mutations [16] and enzyme clas-
sifications obtained from the Swiss-prot database [2], 
were included in the biological functions score. Scores 
were generated by Dezső et al. for each gene ontology in 
the MetaCore database based on their 102-protein tar-
get enrichment set of cancer drugs. The highest three 
ontology scores in the categories—“Biological Functions,” 
“Molecular Process,” and “Maps” (signaling pathways)—
were included in that protein’s feature set. “Biological 
Functions” and “Molecular Process” were used as inputs 
to the “biological functions” sub-score, while “Maps” was 
included in the “network information” sub-score (see 
below). It should be noted that the Biological Functions 
score generated by Dezső et al. represents only one fea-
ture input into the biological functions network.

Network information
The signaling pathways (“Maps”) score generated by 
Dezső et  al. was included in the network information 
features. Degree, closeness, betweenness, eigen central-
ity, and PageRank of each protein in the protein–protein 
interaction network were calculated using information 
from the STRING database [37]. These features were 
incorporated into the network information input.

Protein set
The National Center for Biotechnology Information 
(NCBI) Pharos database, a data repository of human 

Table 1  All features used to train the model, divided into the four feature groups

Sequence and structure Localization Biological functions Network information

52 physiochemical features Predicted subcellular localization Enzyme classification Signaling maps

Grouped Dipeptide Composition 
(GDPC)

Tissue specificity Essentiality of mouse homolog Network features

Pseudo Amino Acid Composition (PAAC) Gene Ontology (GO) cellular compo-
nents

Biological processes (MetaCore)

fpocket data from AlphaFold models Molecular functions (MetaCore)

Biological processes (Gene Ontology)

Gene Ontology (GO) molecular func-
tions
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protein properties and drugged status, identifies proteins 
as confirmed drug targets if they are “protein drug tar-
gets via which approved drugs act” (“Tclin”) [34]. As of 
October 2022, 704 of the 20,412 proteins in Pharos are 
categorized as Tclin.

All other proteins are classified as one of three other 
categories: undrugged proteins which bind small mol-
ecules with high potency (“Tchem”), proteins with well-
studied biology (“Tbio”), and proteins not meeting the 
criteria for any of the other categories (“Tdark”) [34]. Of 
these proteins, 19,873 were represented in both Dezso 
et al.’s dataset and the AlphaFold database, including 696 
of the 704 Tclin proteins in Pharos. We used the 696 Tclin 

proteins as our positive “drugged” set, and the remaining 
19,177 proteins in the other categories as our negative 
“undrugged” set (Fig. 1A). It is likely that the undrugged 
set contains many potentially druggable proteins which 
have not yet been targeted by approved therapeutics.

PINNED model
The model architecture consisted of four separate deep 
neural networks, designated “sequence and structure,” 
“localization,” “biological functions,” and “network infor-
mation.” Each network contained an input layer, a hidden 
layer with ReLU activation, and a single output neuron 
representing the network sub-score. The four sub-scores 

Fig. 1  Design of the PINNED model and dataset. A Division of the data into training, validation, and test sets. B PINNED architecture 
including the four constituent subnetworks
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were summed, producing a logit which was passed 
through a sigmoid function to generate the final prob-
ability of druggability (Fig. 1B).

Prior to model tuning, 20% of the dataset was held 
out to form a separate test set, which was used to evalu-
ate the model after the optimal architecture had been 
determined. The remaining data was divided into five 
equal groups, one of which was held out as a valida-
tion set, while the remaining four were combined to 
form the training set (5-fold cross-validation) (Fig.  1A). 
It was necessary to oversample the positive set to pre-
vent the model from converging towards a naïve nega-
tive classifier due to the significant imbalance between 
drugged and undrugged proteins. Within the training set, 

drugged proteins were separated from the validation set, 
then randomly oversampled with replacement until the 
number of drugged and undrugged proteins was equal. 
The feature matrix was then divided into sequence and 
structure, localization, biological functions, and network 
information matrices. These matrices served as inputs to 
their respective networks.

After hyperparameter optimization, a model was 
trained on the full training/validation set, with the 
held-out test data used as the final validation set. The 
complete model achieved an excellent AUC of 0.950 on 
the test set (Fig. 2A), with the scores from each subnet-
work attaining a lower AUC. Although the biological 
functions sub-score performed by far the best with an 

Fig. 2  Performance of PINNED on the test set. A AUC curve of the model and each subnetwork for distinguishing between drugged 
and undrugged proteins. B Histogram showing the distribution of druggability probabilities for undrugged proteins in the test set. C Histogram 
showing the distribution of druggability probabilities for drugged proteins in the test set
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AUC of 0.924, the other networks successfully classi-
fied proteins as drugged or undrugged with reason-
able discriminatory power. The full model consistently 
scored undrugged proteins in the test set as hav-
ing low druggability due to the substantial number of 
negative examples (undrugged proteins) to learn from 
(Fig. 2B). Druggability scores were more variable for the 
drugged proteins, reflecting the difficulty of identifying 
a consistent “druggable” profile from a small number of 
positives (Fig. 2C). However, PINNED’s high AUC dem-
onstrates its ability to successfully distinguish between 
proteins with high and low druggability potential.

To determine if the scores could predict success in 
clinical trials, we tested them against a dataset of suc-
cessful and failed phase III clinical targets [33]. We 
found that the overall druggability score achieved an 
AUC superior to that of the original publication (Addi-
tional file 5). Although this may reflect bias in the data, 
in which more GO annotations or protein–protein 
interactions have been identified for targets which were 
successful in clinical trials  it indicates that PINNED 
may be a useful resource for informing not just target 
selection, but later-stage clinical trials.

Reducing the druggability score required to con-
sider a protein “druggable” can increase the sensitiv-
ity of the predictor. By default, this value was set as 0.5 
during training, but may be changed to any arbitrary 
value during inference. At a threshold of 0.5, PINNED 
achieves excellent specificity but low sensitivity, with 
many drugged proteins in the test set being mistak-
enly classed as undruggable (Fig.  3A; Table  2). At a 
reduced threshold of 0.03, chosen to balance sensitiv-
ity and specificity, all the drugged proteins are prop-
erly classed, while many undrugged proteins are now 
considered “druggable” (Fig.  3B; Table  2). This cohort 
of undrugged proteins with high druggability scores 
represents potential opportunities for pharmaceutical 
targeting.

Comparing PINNED’s performance to prior machine 
learning efforts to assess protein druggability is challeng-
ing due to the wide variety of datasets used and metrics 
reported. Many previous works exclude proteins with 
significant homology to drugged proteins from their 
undrugged sets [3, 14], even though there may be sig-
nificant differences between these proteins’ properties 
which alter their utility as drug targets. Similarly, some 
construct an idealized set of “undruggable” proteins, 
making it difficult to generalize to the whole proteome [6, 
17, 21, 26, 28, 35, 36, 46]. Others only focus on a specific 
target or indication, such as oncology [4, 12, 13, 22], or 
ion channels [20]. Restricting our focus to models which 
seek to assess the druggability of the entire proteome, we 
find that PINNED comfortably outperforms much of the 
prior literature in sensitivity, specificity, and AUC [5, 10, 
15, 43] (Additional file 1). A recent publication by Raies 
et al. achieved a higher AUC, but without the constituent 
sub-scores PINNED generates [32]. The interpretability 
of our model is a unique advantage which enhances its 
value to the target selection process.

Of the 696 drugged proteins in our dataset, 294 were 
affiliated with three protein families: ion channels (124 
proteins), G-protein-coupled receptors, or GPCRs (102 
proteins), and kinases (68 proteins). The PINNED archi-
tecture model of four subnetworks determines which 
individual members of protein families represent the 
most promising targets, not just a druggability assess-
ment of entire families. To test the feature learning abil-
ity indicating druggability across the whole proteome and 
apply it to identify targets within unseen protein families, 
we excluded ion channels, GPCRs, or kinases, respec-
tively, from the training data, and tested the models’ 
performance on these held-out families. In each case, a 
training and validation set was constructed consisting of 
the entire proteome except for the members of the held-
out family and used to train five models applying cross-
validation. Each model was then implemented to score all 
proteins within the held-out family, and the scores aver-
aged to generate an ensemble score. The ensemble score 
AUC in distinguishing drugged and undrugged members 
of the held-out family was assessed for the overall drug-
gability score and all four constituent sub-scores. This 
process was repeated for each of the three main drugged 

Fig. 3  Confusion matrices of PINNED on the test set. A Confusion 
matrix with threshold for druggability set at 0.5. B Confusion matrix 
with threshold set at 0.03 to balance sensitivity and specificity

Table 2  Comparison of PINNED’s test performance at different 
druggability thresholds

A threshold of 0.5 is used for training, while requiring a lower score of 0.03 
allows a closer balance between sensitivity and specificity

Sensitivity Specificity Accuracy AUC​

  0.5 threshold 0.420 0.996 0.975 0.950

  0.03 threshold 0.888 0.871 0.871
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families. The PINNED framework maintained the ability 
to distinguish between drugged and undrugged proteins 
within each family with reasonable discriminatory power 
(Table 3). Although the performance of the overall drug-
gability score and each of the sub-networks was reduced 
relative to a fully heterogeneous training set, the net-
work retained a notable ability to separate drugged from 
undrugged targets despite not having seen any members 
of the family in the training data. The sequence and struc-
ture sub-score consistently performed poorly, consistent 
with the same protein family being highly homologous in 
sequence and in signature structural motifs, and there-
fore difficult to distinguish. The other three networks 
incorporate information on each proteins’ known locali-
zation, functions, and interactions, respectively, they are 
more capable of capturing differentiating features which 
impact druggability, and their performance is corre-
spondingly higher. These results indicate that PINNED 
can generalize properties of druggable proteins to entire 
unseen families.

After training the model and assessing it on the test set, 
we ablated each feature by randomly shuffling (permut-
ing) the values among the protein test set and assessed 
the increase in test loss induced by the change. As loss 
is inversely related to the network’s performance, more 
prominent features will result in a higher increase in loss 
after being permuted. We found that features belonging 

to the biological function’s subnetwork comprised seven 
of the top 10 (Table  4), consistent both with the sub-
stantial number of features in that network and the fact 
that it was by far the most significant in contributing to 
PINNED’s performance. Many of the features, including 
essentiality, degree, transmembrane helices, and PageR-
ank, overlapped with the most notable features selected 
by Dezső et  al. [13]. This indicates a similarity between 
the properties of oncology targets and other drugged 
proteins. Additionally, several of the top features derived 
from GO annotations—ATP binding, voltage-gated 
potassium channel activity, and potassium ion trans-
membrane transport—are known to be relevant factors 
in druggability [8, 42].

To generate druggability scores for the entire pro-
teome, we split our entire dataset, including the training/
validation and test sets into five parts. Each part was held 
out and the remaining four were used to train a classifier 
model. The scores for the held-out set were designated 
as the final druggability scores for the protein set. This 
process was repeated with each of the sets being held 
out once to generate scores for the proteins in the entire 
proteome. Of the 10 highest-scoring undrugged pro-
teins in the proteome, all except TNFRSF11A are listed 
by Pharos as Tchem, having validated high-potency small 
molecule ligands (Table 5). The mechanism of action for 
many drugs is not entirely clear, as they may interact with 

Table 3  PINNED performance in distinguishing drugged from undrugged members of major drug target families, as measured by 
AUC​

Total members 
(drugged
/undrugged)

Overall druggability Sequence and 
structure

Localization Biological 
functions

Network 
information

  GPCR 400 (102/298) 0.810 0.624 0.662 0.740 0.760

  Ion channel 333 (124/209) 0.752 0.544 0.626 0.734 0.662

  Kinase 625 (68/557) 0.723 0.518 0.701 0.604 0.845

Table 4  Most notable features, as ranked by change in test loss after random permutation of the feature

Feature Category Change in test loss

  1 MetaCore Molecular Function 3 Biological functions 0.00560

  2 Enzyme classification—non-enzyme Biological functions 0.00292

  3 Essentiality—unknown Biological functions 0.00277

  4 Degree (STRING interactions) Network information 0.00232

  5 Mitochondrial respiratory chain complex I assembly Biological functions 0.00208

  6 ATP binding Biological functions 0.00181

  7 Transmembrane helices Sequence and structure 0.00171

  8 Voltage-gated potassium channel activity Biological functions 0.00133

  9 PageRank (STRING interactions) Network information 0.00125

  10 Potassium ion transmembrane transport Biological functions 0.00121
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multiple proteins in the same family, making conclusive 
classification of proteins as targets or non-targets chal-
lenging. We cross-referenced all top 10 scoring proteins 
with the Therapeutic Targets Database (TTD) and the 
Open Targets platform, two other databases of drug–
target interaction [30, 45]. Of these, five were listed by 
TTD and two by Open Targets as already being the tar-
gets of approved therapeutics, while two were listed by 
TTD and two by Open Targets as clinical trial targets 
(Additional file  2). This discrepancy between databases 
reflects the difficulty of conclusively classifying proteins 
as mechanism of action drug targets. However, the high 
prevalence of likely interactors of approved drugs dem-
onstrates that PINNED successfully generalizes the prop-
erties of drugged proteins to previously unseen data.

Of the 20,412 proteins in the Pharos database, 5679 
(28%) are designated as “Tdark”—having extremely lim-
ited data about their properties and functions. Consider-
able interest exists in exploring these understudied parts 
of the genome, particularly to discover novel therapeutic 
targets which have previously been overlooked [31]. At 
least one of the top scoring Tdark proteins in our model 

has been investigated as a drug target (Table  6). Trans-
membrane protease serine 11B (TMPRSS11B) was iden-
tified as upregulated in lung squamous cell carcinomas, 
serving as a poor prognostic marker. Inhibition of the 
protein in vitro reduced transformation and proliferation 
[39].

TMPRSS11B’s sub-scores for sequence and struc-
ture, localization, biological functions, and network 
information, compared to the Tclin (drugged) proteins, 
were respectively in the 84th, 97th, 29th, and 1st per-
centiles (Additional file  3). The high score for sequence 
and structure is consistent with the observation that 
transmembrane helices are highly indicative of drug-
gability (Table  4). Similarly, for the localization subnet-
work, permutation importance suggests three of the 
five most notable features are GO annotations related 
to localization to the plasma membrane (Additional 
file  4). Although TMPRSS11B attains a lower score in 
the biological functions network, it is higher than 95% 
of undrugged proteins. Its network information score, 
however, is low even among undrugged proteins, at the 
7th percentile. This may indicate that TMPRSS11B lacks 

Table 5  Highest scoring undrugged proteins

UniProt ID Gene name Protein Pharos class Score

  1 P21917 DRD4 D (4) dopamine receptor Tchem 0.9994

  2 P50052 AGTR2 Type-2 angiotensin II receptor Tchem 0.9991

  3 Q9Y6Q6 TNFRSF11A Tumor necrosis factor receptor superfamily member 11 A Tbio 0.9970

  4 P34972 CNR2 Cannabinoid receptor 2 Tchem 0.9969

  5 P33032 MC5R Melanocortin receptor 5 Tchem 0.9967

  6 P32241 VIPR1 Vasoactive intestinal polypeptide receptor 1 Tchem 0.9953

  7 Q9HCR9 PDE11A Dual 3′,5′-cyclic-AMP and -GMP phosphodiesterase 11 A Tchem 0.9953

  8 P21918 DRD5 D(1B) dopamine receptor Tchem 0.9952

  9 P23416 GLRA2 Glycine receptor subunit alpha-2 Tchem 0.9927

  10 P41968 MC3R Melanocortin receptor 3 Tchem 0.9925

Table 6  Highest scoring Tdark proteins

UniProt ID Gene name Protein Score

  1 Q8TAA3 PSMA8 Proteasome subunit alpha-type 8 0.9277

  2 A6NHL2 TUBAL3 Tubulin alpha chain-like 3 0.7725

  3 P01880 IGHD Immunoglobulin heavy constant delta 0.6276

  4 Q86T26 TMPRSS11B Transmembrane protease serine 11B 0.6195

  5 Q5TAH2 SLC9C2 Sodium/hydrogen exchanger 11 0.6038

  6 Q9Y2U2 KCNK7 Potassium channel subfamily K member 7 0.5257

  7 A6NNS2 DHRS7C Dehydrogenase/reductase SDR family member 7 C 0.4923

  8 P0DPH8 TUBA3D Tubulin alpha-3D chain 0.4891

  9 Q5I0G3 MDH1B Putative malate dehydrogenase 1B 0.4547

  10 P01780 IGHV3-7 Immunoglobulin heavy variable 3–7 0.4105
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the network centrality to have a significant impact on 
cellular homeostasis. Overall, our results indicate that 
TMPRSS11B may be structurally amenable to drugging 
and demonstrates localization and biological activity 
consistent with other drug targets but may not be indica-
tive of the protein–protein interaction network relative 
to successfully drugged proteins. The use of multiple sub-
scores to characterize a protein’s druggability profile ena-
bles a more detailed analysis of its potential strengths and 
weaknesses rather than a single unified score.

Discussion
The implementation of a pre-screening methodology that 
differentiates druggable and undruggable targets can help 
ameliorate the difficulty of target selection in pharma-
ceutical development and aid in allocating R&D invest-
ments to promising targetable proteins. Consequently, it 
is imperative that an interpretable model can accurately 
identify novel druggable targets. We developed a neural 
network-based machine learning model able to produce 
druggability sub-scores based on separate feature catego-
ries spanning multiple factors in druggability. These allow 
the analysis of each category individually and its contri-
bution to an overall druggability score.

PINNED attained excellent results in its ability to dis-
tinguish drugged from undrugged proteins with an AUC 
of 0.95. Importantly, this was achieved on the entire pro-
teome, indicating that the model can handle cases gen-
erated by family members of drugged proteins. Notably, 
PINNED was far better at assigning low druggability 
scores to undrugged proteins than assigning high scores 
to drugged proteins (Fig.  2), consistent with the large 
imbalance between the two classes. By reducing the score 
required to designate a protein as “druggable,” it is possi-
ble to increase the sensitivity of the classifier in positively 
labeling drugged proteins at the expense of also desig-
nating as druggable many currently undrugged proteins 
(Fig. 3). However, these may represent proteins which are 
already the targets of approved drugs but have not been 
formally labeled due to insufficient evidence, or potential 
new targets which merit further investigation (Table 5).

Among our sub-scores, the biological functions net-
work achieved the best performance with a standalone 
AUC of 0.924. This is potentially due to it being the larg-
est subnetwork, with 3,464 inputs, allowing it to incor-
porate a large amount of information about protein 
function. The network information sub-score attained 
the second-highest performance at 0.810, despite being 
by far the smallest network, suggesting that the relation-
ship between number of inputs and classification value 
is complex. Sequence and structure was the lowest-per-
forming subnetwork, achieving an AUC of 0.777 and 
0.729. However, these scores are still competitive with 

previous efforts at using machine learning to assess pro-
tein druggability (Additional file 1). This result indicates 
that our druggability sub-scores are useful not just as 
inputs to the overall score, but as standalone estimates of 
each protein’s druggability within that subdomain. Fur-
thermore, we found that PINNED’s overall druggability 
score exceeds prior publications in predicting success 
in phase III clinical trials, despite not being trained to 
directly predict clinical success (Additional file 5).

The 10 most relevant features fed into PINNED, in 
terms of impact on accuracy, span three of the four sub-
networks, with the majority coming from biological 
functions, but none from localization (Table  4). While 
this finding is consistent with the fact that the localiza-
tion subnetwork achieves the lowest standalone AUC, 
the “transmembrane helices” feature in the sequence 
and structure network can be assumed to be a strong 
indicator of whether a protein is localized to the plasma 
membrane, which dominates the most important locali-
zation features (Additional file  4). Some collinearity 
exists between the feature inputs between the different 
networks. This is an inevitable result of the proteins’ 
functions, structures, and interactions being closely 
interrelated. However, the observation that many pro-
teins score highly on some subnetworks but poorly on 
others demonstrates that they capture distinct infor-
mation about a protein’s druggability. Many of the top 
features overlap with those identified in previous publica-
tions [5, 12, 13, 24]. This suggests that machine learning 
models trained to predict protein druggability converge 
on a common set of important contributors.

The “dark genome” encompasses the proteins in the 
human proteome which have not been extensively stud-
ied, especially as prospective drug targets, and has thus 
become of particular interest to the pharmaceutical 
industry [31]. Our work indicates that a substantial num-
ber of proteins in the dark genome may have drug-like 
properties. For instance, we found transmembrane serine 
protease TMPRSS11B, a dark genome protein, is similar 
in structure, localization, and function to many success-
fully drugged targets. Our model enables dark genome 
proteins with disease associations to be investigated for 
druggability potential.

Conclusions
We established a neural network-based machine learn-
ing model, termed PINNED, able to assess proteins’ 
druggability based on their sub-scores across four dis-
tinct categories. We have demonstrated that our pro-
posed methodology is a highly predictive network (test 
AUC 0.95) with the ability to estimate the druggability 
of over 20,000 proteins spanning the entire human pro-
teome. PINNED can be used as a pre-screening tool to 
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determine a protein’s amenability to drugging prior to 
the initiation of pre-clinical programs and identify weak-
nesses in the form of low sub-scores of top targets that 
do not necessarily score high in all four areas, providing 
room for insight and early remediation. This methodol-
ogy enables the exploration of novel targets cost-effec-
tively while improving the clinical phase success rate.

Materials and methods
Drug targets
Drugged and undrugged proteins and sequences were 
obtained from the Pharos database on October 12, 2022. 
Proteins categorized as Tclin were labeled as drugged, 
while proteins categorized as Tchem, Tbio, or Tdark were 
labeled as undrugged. Protein features were obtained 
from Dezső et al.’s features [13] and the AlphaFold data-
base [11]. A protein list was generated from the intersec-
tion of these three databases. Proteins not found in all 
the databases were removed, leaving the final protein set 
used to train the model as the intersection of the three 
sets. Labels identifying proteins as GPCRs, ion channels, 
or kinases were obtained from the Knowledge Manage-
ment Center for Illuminating the Druggable Genome via 
Pharos on May 20, 2023.

All features generated by Dezső et  al. were incorpo-
rated into our feature set and divided between the four 
subnetworks. These include characteristics calculated or 
predicted from the amino acid sequence, such as post-
translational modifications, enzyme classification, locali-
zation, secondary structure, and sequence motifs. Details 
on the generation of these features can be found in Dezső 
et  al. [13]. All numeric features were standardized to a 
mean of 0 and standard deviation of 1 (“standard scaled”), 
while all categorical features were one-hot encoded.

Sequence and structure properties sub‑score
Information about protein molecular weight and amino 
acid residues, charge and isoelectric points, extinction 
coefficients, predicted post-translational modifications, 
secondary structure, and solvent accessibility from Dezső 
et  al.’s feature set were included as sequence and struc-
ture properties.

Grouped dipeptide composition (GDPC) and pseudo 
amino acid composition (PAAC) were calculated using 
the iFeature toolkit [7]. All selenocysteine (U) residues in 
the protein sequences were converted to cysteine (C) for 
the calculations. A lambda of 3 was chosen for PAAC.

Human protein structure predictions were acquired 
from AlphaFold (last modification on 05/05/2022). The 
structures were curated to run through Fpocket. Fpocket 
is an open-source protein prediction algorithm based on 
the Voronoi tessellation and the alpha sphere theory [25]. 
Fpocket begins by filtering the vertices and finding the 

correlated alpha spheres dependent on their minimum 
and maximum size. Alpha spheres that are clustered 
together equate to a recognized pocket. The pockets are 
further reduced based on the zones of compacted atom 
packing. The alpha spheres are labeled based on their 
contact to atoms, then ranked based on their prospective 
binding capabilities towards small molecules. All features 
were standard scaled.

Localization sub‑score
Protein localization and tissue specificity data obtained 
from Dezső et al. was included in the localization data.

GO terms were downloaded from the Target Central 
Resource Database (TCRD) on July 29, 2022, and sepa-
rated into GO terms categorized as Components, Func-
tions, or Processes. They were used to generate a one-hot 
encoded GO terms matrix that mapped each protein in 
the dataset. Terms mapped to less than 10 proteins were 
excluded. GO Components were included in the localiza-
tion data, while Functions and Processes were included 
in the biological functions data (see below).

Biological functions sub‑score
Scores generated for each protein by Dezső et  al. from 
the MetaCore database for “Biological Function,” and 
“Molecular Process” were standard-scaled and included 
in the “biological functions” sub-score. The enzyme clas-
sification and gene essentiality feature from Dezső et al. 
were included in the biological functions data.

GO Functions and Processes were obtained and pro-
cessed as described above and included in biological 
functions.

Network information sub‑score
The “Maps” (signaling pathways) scores from Dezső et al. 
and calculated protein–protein interaction network fea-
tures were used as the input to the network information 
subnetwork.

Model
Features for all four sub-scores were combined into a 
single feature matrix. 20% of the proteins were selected 
at random prior to model development and held out 
as a test set. Prior to training, the drugged proteins 
in the training set were randomly oversampled with 
replacement until the quantity was equal to the quan-
tity of undrugged proteins. Oversampling by SMOTE, 
ADASYN, or applying different weights to positive and 
negative samples were evaluated, but performance was 
not improved.

Our model was implemented in Python 3.7.13 using 
TensorFlow 2.11.0 and consisted of four densely con-
nected neural networks, corresponding to the four 
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sub-scores. Each consisted of a single input layer of size 
n inputs, a hidden layer with size 2i, where i is the larg-
est integer such that 2i ≤ n, and an output layer of size 1, 
representing that network’s sub-score. ReLU activation 
was applied to the hidden layers, and an L2 penalty of 
0.001 was applied to both the hidden and output lay-
ers. The four subnetwork output layers were summed to 
generate the logits of the overall druggability score. Dif-
ferent numbers of hidden layers, dropout for the input 
and hidden layers, learning rates, and L2 coefficients 
were tested, and the above values were found to lead to 
optimal AUC scores on validation sets.

Support vector machine, logistic regression, XGBoost, 
and random forest models were also evaluated and 
found to deliver performance comparable or inferior to 
neural network.

The model was trained using the Adam optimizer 
with TensorFlow default parameters at a learning rate 
of 10− 3.5, with a batch size of 32 and the binary cross 
entropy loss function.
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