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Abstract 

Machine learning has great potential in predicting chemical information with greater precision than traditional 
methods. Graph neural networks (GNNs) have become increasingly popular in recent years, as they can automatically 
learn the features of the molecule from the graph, significantly reducing the time needed to find and build molecular 
descriptors. However, the application of machine learning to energetic materials property prediction is still in the ini‑
tial stage due to insufficient data. In this work, we first curated a dataset of 12,072 compounds containing CHON 
elements, which are traditionally regarded as main composition elements of energetic materials, from the Cam‑
bridge Structural Database, then we implemented a refinement to our force field‑inspired neural network (FFiNet), 
through the adoption of a Transformer encoder, resulting in force field‑inspired Transformer network (FFiTrNet). After 
the improvement, our model outperforms other machine learning‑based and GNNs‑based models and shows its 
powerful predictive capabilities especially for high‑density materials. Our model also shows its capability in predicting 
the crystal density of potential energetic materials dataset (i.e. Huang & Massa dataset), which will be helpful in practi‑
cal high‑throughput screening of energetic materials.
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Introduction
Machine Learning (ML) is a data-driven method that 
has gained widespread attention in various fields over 
the last few decades and shows great potential to predict 

chemical information with greater precision than tradi-
tional methods [1–5]. Supervised ML methods facilitate 
numerous data to learn the pattern between the molecule 
and the certain property we need, which is often difficult 
to give a theoretical or empirical formula. This powerful 
tool makes it possible to perform high-throughput virtual 
screening (HTVC), which will significantly accelerate the 
process of discovering new materials or new drugs [6–8].

Traditionally, the search for novel materials involved 
conducting a series of time-consuming and labor-inten-
sive experiments and theoretical studies, leading to a very 
long period of material screening [9]. For example, the 
development of energetic materials often takes a decade 
or even more [10]. With the development of computer 
science, computational simulation was applied to the 
prediction of molecular properties, such as molecular 
dynamics (MD) [11] and density functional theory (DFT) 
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[12]. These methods significantly reduce the experimen-
tal time and costs of material selection by pre-screening 
materials based on in silico calculated properties, which 
could quickly eliminate poor-performing materials with-
out further experimentation. But these molecular simula-
tion methods also have their problems. For example, they 
are often computationally consuming [13] and require 
computer clusters; Additionally, these methods need to 
recalculate all data every time a new environment or tar-
get molecule is introduced, even if it is similar to a pre-
vious one, meaning that they cannot make use of prior 
knowledge [9]. To overcome these weaknesses, a variety 
of methods have been developed. One of the most pow-
erful and popular is the ML method.

Over the past decades, different ML approaches, such 
as support vector machine (SVM) [14, 15], random forest 
(RF) [16, 17], and artificial neural network (ANN) [18–
20], have been broadly applied in predicting molecular 
properties and have shown great applicability. These ML 
methods all use the quantitative structure–property rela-
tionships (QSPR) [21] which depends on a large number 
of molecular descriptors or fingerprints: Coulomb matri-
ces [22], bag of bonds [23], etc., to give a rather accurate 
prediction about the molecular property, while these 
molecular descriptors are sometimes hard to obtain. 
Hence, in order to circumvent the challenge of locating 
or creating these complex descriptors, it is imperative 
to identify a simple yet precise representation for the 
molecules.

In the last few years, a new ML method called graph 
neural networks (GNNs) [24, 25] has gained more and 
more attention and become increasingly popular. Since 
molecules can be represented as graphs (the atoms as 
nodes and the bonds as edges), by aggregating and updat-
ing the features of all the atoms and bonds, GNNs can 
automatically learn the features of the molecule from the 
graph, which significantly reduces the time we find and 
build the molecular descriptors. However, despite the 
convenience and promising expectations of the ML, the 
application to energetic materials property prediction is 
still at the initial stage, due to an insufficient amount of 
data [26, 27].

Energetic materials represent a class of materials capa-
ble of releasing large amounts of chemical energy stored 
inside the molecular structure. Typical energetic mate-
rials include explosives, propellants, fuels, pyrotechnic 
compositions, etc. which are widely used not only in mili-
tary applications but also in civil engineering and space 
exploration (e.g., mining and rocket propellant) [28]. 
Crystal density is an important property of energetic 
materials, which is highly related to other detonation 
performance characteristics. e.g., the detonation pressure 
is approximately proportional to the square of the density 

[29]. One of the main criteria for the evaluation of prom-
ising energetic materials is ‘high’ density, which typically 
refers to a density greater than 1.8 g/cm3 [30].

Traditionally, group additivity [31, 32] and some empir-
ical methods [33, 34] were performed to predict the 
crystal density of energetic materials. While in recent 
years, ML-based methods have emerged as a promising 
approach for predicting crystal density with enhanced 
accuracy and reliability. Fathollahi et al. [35] conducted a 
study on 26 energetic cocrystals, in which they extracted 
three molecular descriptors from the optimized chemical 
structures. They predicted the densities of these cocrys-
tals using an ANN with a test precision up to 0.9918. 
Despite the small amount of data, this still shows the 
great potential of ML-assisted methods in the crystal 
density prediction of energetic material. Casey et al. [36] 
raised a 3D convolution neural network (CNN) using 
charge density and electrostatic potential as the repre-
sented feature, which got a high accuracy prediction in 
the dataset screening the possible energetic materials 
from the GDB database [37–39]. Yang et al. [40] noticed 
the difficulty and cumbersomeness of extracting these 
molecular descriptors and started to use GNNs to learn 
these descriptors merely from its topology. They found 
that GNNs-based model could achieve higher accuracy 
and lower computational resource with respect to other 
traditional ML methods. Recently, more and more ML 
methods have been used in the prediction of crystal den-
sity. Then, Nguyen et  al. [41] use an improved GNNs 
model called Directed Message Passing Neural Networks 
(D-MPNNs), which is raised by Yang et  al. [42], which 
utilizes the directed graph, rather than the traditional 
undirected graph, to represent the molecule and update 
nodes and edges feature using message passing algo-
rithm. This model outperforms other ordinary models, 
SVM, RF, and Partial Least Squares Regression (PLSR), 
achieving a more accurate result.

From the example above, GNNs uses none of a priori 
knowledge, only the topology structure of each molecule, 
but can achieve a higher predicting accuracy. Thus, it 
could be the most promising method for predicting the 
crystal density of energetic materials. A typical process of 
density prediction using GNNs is shown in Fig. 1. How-
ever, most available GNNs model utilizes only 2D molec-
ular descriptors to present the molecule, leading to large 
biases in describing the 3D caged molecules like CL-20 
family molecules (e.g. Hexanitrohexaazaisowurtzitane) 
or cubane family molecules (e.g. Octanitrocubane).

Therefore, in this work, the main aim is to further 
improve the prediction accuracy of the density of 3D 
molecules, and minimize errors, particularly in the high-
density region of interest, i.e. the density higher than 
1.8 g/cm3. We adopt force field-inspired neural network 
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(FFiNet) [43], a 3D-aware GNNs developed by our group 
using force fields to calculate the energy of bonds, angles, 
dihedral, and non-bonded interaction as attention scores, 
which is able to give more accurate molecular informa-
tion when dealing with 3D molecules having the spatial 
caged structures. Moreover, the self-attention mecha-
nism from Transformer is used to replace the axial atten-
tion in original model, to give a global representation of 
the force fields terms, showing a great accuracy improve 
in the crystal density prediction task. This modified 
model is called force field-inspired Transformer networks 
(FFiTrNet), and the detailed information of FFiTrNet will 
be illustrated later.

Methodologies
Data set
One of the biggest problems between ML and ener-
getic materials is the lack of sufficiently large datasets. 
In order to get a prediction with high accuracy, a large, 
diverse, and accurate dataset is needed so that the model 
learns the pattern in the data set properly. In other pre-
diction tasks, the common size of other public datasets 
is over 1000, for example, BBBP (N = 2039), Lipophilicity 
(N = 4200), QM7 (N = 7160) in MoleculeNet [44]. This is 

much bigger than the current accessible energetic mate-
rial datasets, making it hard to give a reasonable pre-
diction and may lead to overfitting in the given datasets 
[26, 27]. In order to generalize our prediction model, we 
need to find a larger dataset containing molecules with 
the same molecular frameworks and functional groups 
as the energetic materials. In this work, we curated the 
dataset from the Cambridge Structural Database (CSD) 
[45], which contains more than 1.1 M organic and metal–
organic crystal structure data, allowing big-data search-
ing and screening. Moreover, each structure within the 
CSD undergoes extensive validation and cross-checking 
via automated workflows and through manual curation 
by expert chemists and crystallographers. This guaran-
tees data accuracy, consistency, and high quality within 
the CSD, making the ML model more trustful.

The candidates are curated through the following cri-
teria: (1) those only consist of carbon (C), hydrogen (H), 
oxygen (O), and nitrogen (N) atoms; (2) those have at 
least one of any carbon–nitrogen bonds; (3) those don’t 
belong to ionic or co-crystal compounds; (4) those are 
able to make 3D conformation in further operation. By 
initially screening the data using the steps above, we 
established a dataset with 12,072 compounds containing 
CHON elements with their Simplified Molecular-Input 

Fig. 1 Flowchart for predictive screening process of energetic material density using GNNs

Table 1 The atom features used in the  FFiTrNeta

a All features are one-hot encodings except for atomic mass

Feature Description Size

Atom type The type of the atom 38

Atom degree The number of directly‑bonded neighbors 6

Chiral type The chiral type of the atom: unspecified, tetrahedral CW, tetrahedral CCW, or other 4

Hs number The total number of hydrogens attached to the atom 6

Hybridization The hybridization type of the atom: unspecified, s, sp, sp2d, sp3, sp3d, sp3d2, or other 8

Aromatic Whether an atom belongs to the aromatic ring 1

Atomic mass The mass of the atom 1

Hydrogen bond Whether an atom accepts electrons or donates electrons 2
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Line-Entry System (SMILES) strings and crystal density. 
This will satisfy our need for a large enough dataset and 
can be used to train our model efficiently.

Data preprocessing and featurization
First, we grab the 3D conformation of the molecules 
that contain atoms’ position information using RDkit 
toolkit [46] from SMILES strings of data. RDkit toolkit 
is a widely used open-source machine-learning software 
providing a collection of cheminformatics for descriptor 
and fingerprint generation, 2D and 3D molecular opera-
tions, etc. The fast ETKDG method [47] from RDkit is 
applied to generate atom positions. After obtaining the 
3D molecular graph and its positional information, we 
extract atom features foreach atom in molecules, and the 
atom feature was listed in Table 1.

Model framework
In this work, we adapt FFiNet as the main framework of 
the model to learn the feature from molecular topology. 
The position information in the 3D conformer of each 
molecule is fed into the model. This information is then 
used to calculate the distance, angle, and dihedral infor-
mation from all the neighbors or 2-hop, and 3-hop neigh-
bors of each atom. According to the traditional force field 
theory [48], the potential energy could be written as:

By expanding the bond term of energy in empirical 
model:

where Kr , Kθ , Vφ,n(n = 1, 2, 3) , fij , ǫij are all force con-
stants; fφ,n(n = 1, 2, 3) are dihedral phase; l , θ , φ and r 
represent the bond length, angle, dihedral angle, and the 
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Fig. 2 a Structure diagram of the FFiTrNet model. Transformer encoder is used to replace the axial attention in the origin FFiNet. b The detailed 
structure of the Transformer encoder in FFiTrNet. A special output token is introduced as one of its inputs to aggregate all the information of three 
k‑hop outputs
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distance between non-bonded atoms respectively; leq , 
θeq , and σij are the value of bond, angle, or non-bonded 
atomic distance when the corresponding energy term is 
considered zero as the reference value; qi and qj are the 
atomic charges and f (·) is a general linear function. The 
detailed information can be found in the Additional file 1 
and our previous work [43].

In this model, we only calculate the non-bonded term 
for the 2-hop and 3-hop neighbors of each atom and add 
it to the corresponding angle and torsion terms as a part 
of energy. Then a one-layer linear transformation is used 
as the linear function f (·) also as an embedding layer to 
facilitate the next operation. These energy embedding 
terms are treated separately after attention operation and 
then combined through axial attention to give an output 
embedding.

Because the axial attention treats its inputs separately, 
and simply sums up the output to further operation, 
there’s no information interaction between different 
energy terms. This doesn’t match the reality for each 
energy term is highly affected by each other. So, we 
further improve the performance by introducing the 
encoder layer from Transformer to replace the axial 
attention, to help us mix these energy terms’ information 
together.

Transformer was first introduced in 2017 by Vaswani 
et al. [49] to solve natural language processing but quickly 
show great potential in a wide field of ML. Its encoder 
layer adopts the self-attention mechanism that allows the 
model to attend to different parts of the input sequence 
while processing each position. After using the k-hop 
(k = 1, 2, 3) attention to update the embedding feature, 
we got 1-hop, 2-hop, and 3-hop outputs, stacked with a 
special output token as the learnable parameter, which 
is inspired by the same concept in vision Transform-
ers (ViTs) [50]. Then they are fed into the Transformer 
encoding layer to get the same amount of output repre-
sentations of the same length, and one of the representa-
tions corresponding to the special output token is picked 
as the final output to go through further operation. The 
detailed structure of the FFiTrNet is shown in Fig. 2. In 

there, positional encoder is considered optional because 
there’s no obvious positional relation in these four out-
puts, and one layer of Transformer encoding layer is good 
enough for this case.

Model evaluation
We adopt three different metrics to evaluate the regres-
sion model, like mean absolute error (MAE), root mean 
square error (RMSE), and coefficient of determination 
(R2):

where ρtrue is the true density value of the sample, ρpred is 
the predicted density value of the sample, ρ is the average 
density value of the true density.

Results and discussion
There is a widely accepted standard for evaluating pre-
dictions of crystal density: a prediction with an absolute 
error less than 0.03  g/cm3 is considered an “excellent” 
prediction; the absolute error between 0.03 and 0.05  g/
cm3 is considered “informative”; the absolute error 
between 0.05 and 0.10  g/cm3 is considered “barely use-
ful”; and the absolute error greater than 0.10  g/cm3 is 
considered “deceptive” [51, 52]. In this work, as our 
improved FFiTrNet model is based on the GNNs which 
only uses the molecules’ topology, we mainly compare it 
to other GNNs like graph attention networks (GATv2) 
and D-MPNNs, which have been proven to be highly 
accurate in predicting the crystal density of energetic 
materials by Nguyen et al. [41]. Also, we adapt RF which 
uses molecular descriptors of QSPR as the input to show 
that the GNNs-learnt descriptor could outperform the 
man-made molecule descriptors. Moreover, in order to 
validate the effects of Transformer encoder, the result of 
the original FFiNet is also listed.

Overall testing evaluation
We first use the dataset (N = 12,072) that was curated 
from CSD database, randomly splitting the data into 
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Table 2 The test MAE, RMSE and R2 for each model

The best results are marked in bold, and the second-best results are italicized

Models MAE (g/cm3) RMSE (g/cm3) R2

RF 0.0367 ± 0.0010 0.0514 ± 0.0019 0.8886 ± 0.0094

GATv2 0.0330 ± 0.0005 0.0466 ± 0.0041 0.9101 ± 0.0162

D‑MPNNs 0.0313 ± 0.0008 0.0463 ± 0.0049 0.9113 ± 0.0146

FFiNet 0.0330 ± 0.0013 0.0479 ± 0.0037 0.9005 ± 0.0127

FFiTrNet 0.0313 ± 0.0004 0.0448 ± 0.0022 0.9170 ± 0.0141
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training, validation, and test dataset with a ratio of 
0.8:0.1:0.1. We performed three independent runs with 
different random seeds for each model. The result is 

shown in Table 2, presented in the form of “mean ± stand-
ard deviation” of the three runs after the hyperparameter 

Fig. 3 The parity plot of true density versus predicted density of each model. All the data in the graph is from the test dataset. a Random Forest; b 
GATv2 c D‑MPNNs; d FFiNet; e FFiTrNet
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optimization. Moreover, all the models are using the 
same training strategy for a fair comparison.

Based on the results from Table  2 and Fig.  3, we 
can see that RF which employs descriptors created by 
humans, exhibits the poorest performance in this pre-
diction task. The number of feature used in RF is 208, 
which is rather easy to obtain, so this finding demon-
strates that GNNs have already developed descriptive 
features that possess more expressive power than these 
easily obtainable RDkit molecular descriptors. For the 
GNNs model, our original FFiNet performs worse than 
the GATv2 and D-MPNNs when dealing with crystal 
density. But after introducing the Transformer encoder 
into the FFiNet model, FFiTrNet’s performance has 
been improved considerably, reaching a slightly bet-
ter result than the D-MPNNs. This shows that Trans-
former encoder does make the k-hop information more 
expressive and the prediction more accurate.

However, because of the distribution of our CSD 
curated dataset, in which only 322 out of 12,072 data 
points’ density are within our interested region, i.e. 
over 1.8  g/cm3, most of the prediction errors do not 
affect the final decision of screening. This is to say that 
if the true crystal density of one molecule is pretty 
much lower than 1.8 g/cm3, the higher prediction accu-
racy is not much important because it will be quickly 

screened out of the promising candidates’ list. Thus the 
prediction accuracy in different density regions should 
be treated differently, especially those within and near 
our interested density region.

In order to evaluate the performance of our model, 
we split the test dataset of each model above into 4 
regions: (1) density higher than 1.8  g/cm3, our inter-
ested high-density region. A bunch of modern ener-
getic materials, 1,3,5-Trinitro-1,3,5-triazinane (RDX, 
1.806  g/cm3), 1,3,5,7-Tetranitro-1,3,5,7-tetrazocane 
(HMX, 1.91  g/cm3), hexanitrohexaazaisowurtzitane 
(CL-20, 2.044  g/cm3), etc. fall in this region, there-
fore accurate prediction is highly desirable; (2) density 
between 1.6 and 1.8 g/cm3, near the interested region. 
Conventional energetic materials such as 2,4,6-trinitro-
toluene (TNT, 1.654  g/cm3) fall in it, and should have 
a certain level of accuracy; (3) density between 1.4  g/
cm3 and 1.6 g/cm3, not that much important; (4) den-
sity lower than 1.4  g/cm3, out of consideration. Then, 
we list out the test MAE, RMSE, and R2 of each region, 
as shown in Table  3 and Fig.  4. Because of the small 
amount of data in regions 1 and 2, R2 is pretty small in 
these regions, making it meaningless and not compara-
ble between each model.

From the results above, FFiTrNet outperforms the 
other models in regions 1 and 2, having the lowest MAE, 
RMSE and highest R2. For regions 3 and 4, which make 
up most of the CSD curated dataset, as shown in Fig. 5, 
FFiTrNet performs worse than the D-MPNNs but is still 
in second place. This suggests our model could give a bet-
ter prediction dealing with the high-density materials, 
and D-MPNNs having quite the same overall accuracy as 
FFiTrNet though, has less ability to handle the data point 
out of main dataset part, indicating overfitting in the 
main part of the dataset.

Crystal density predicting task for potential energetic 
materials dataset
As said before, the main problem with using ML in pre-
dicting the energetic materials’ crystal density is the 
lack of large datasets. But after enlarger the dataset to 
the CHNO molecules, it is possible to use the curated-
dataset-trained model to predict a small energetic mate-
rial dataset. In there, we use another small dataset from 
Huang & Massa [53], who obtain explosive properties 
against 109 putative energetic materials and thereby pro-
duce their energetic characteristics, including the crys-
talline density, using quantum chemical calculations. In 
Huang & Massa dataset, most of the data (87 out of 109, 
with a ratio of 0.798) have a density greater than 1.8  g/
cm3, the ratio of the interested data is much higher than 
that of the CSD curated dataset (318 out of 12,072, with a 
ratio of 0.0263). The data distribution of the two datasets 

Table 3 The test MAE and RMSE for each model in different 
density region

The best results are marked in bold, and the second-best results are italicized

Density region Models MAE (g/cm3) RMSE (g/cm3)

1) ρ ≥ 1.8 g/cm3 RF 0.0818 ± 0.0107 0.1169 ± 0.0219

GATv2 0.0522 ± 0.0032 0.0681 ± 0.0057

D‑MPNNs 0.0476 ± 0.0033 0.0564 ± 0.0020

FFiNet 0.0573 ± 0.0034 0.0739 ± 0.0056

FFiTrNet 0.0446 ± 0.0045 0.0556 ± 0.0036
2) 1.6 g/
cm3 ≤ ρ < 1.8 g/cm3

RF 0.0544 ± 0.0024 0.0710 ± 0.0060

GATv2 0.0482 ± 0.0064 0.0631 ± 0.0112

D‑MPNNs 0.0436 ± 0.0059 0.0604 ± 0.0113

FFiNet 0.0439 ± 0.0037 0.0631 ± 0.0081

FFiTrNet 0.0422 ± 0.0021 0.0567 ± 0.0068
3) 1.4 g/
cm3 ≤ ρ < 1.6 g/cm3

RF 0.0380 ± 0.0008 0.0479 ± 0.0006

GATv2 0.0326 ± 0.0012 0.0404 ± 0.0018

D‑MPNNs 0.0316 ± 0.0015 0.0387 ± 0.0016
FFiNet 0.0331 ± 0.0003 0.0412 ± 0.0002

FFiTrNet 0.0325 ± 0.0003 0.0407 ± 0.0004

4) ρ < 1.4 g/cm3 RF 0.0321 ± 0.0014 0.0449 ± 0.0040

GATv2 0.0308 ± 0.0003 0.0459 ± 0.0047

D‑MPNNs 0.0287 ± 0.0006 0.0443 ± 0.0067

FFiNet 0.0309 ± 0.0018 0.0473 ± 0.0069

FFiTrNet 0.0297 ± 0.0011 0.0443 ± 0.0029
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is shown in Fig.  5. Due to the high-density distribution 
of Huang & Massa dataset, the prediction error for this 
dataset will be more practical, without error distortion 
from the low-density data. So the prediction accuracy 
for Huang & Massa dataset should be considered more 
important for the real screening process. Before using 
Huang & Massa dataset as the test data, we first removed 

Fig. 4 Comparison of each model’s performance in different density regions. a MAE; b RMSE. Our model outperforms other models in high‑density 
regions and is second only to the D‑MPNNs in low‑density regions in which high accuracy is not important. The unit of crystal density in graph is g/
cm3

Fig. 5 The relative distribution of two datasets. Crystal density higher 
than 1.8 g/cm3 is our interested region. The ratio of the interested 
data is 0.0263 (318 out of 12,072) for CSD curated dataset and 0.798 
(87 out of 109) for Huang & Mass dataset, showing a great bias 
of these two datasets

Table 4 The test MAE, RMSE and R2 for each model using Huang 
& Massa dataset as test dataset

The best results are marked in bold, and the second-best results are italicized

Models MAE (g/cm3) RMSE (g/cm3) R2

RF 0.0620 ± 0.0004 0.0964 ± 0.0006 0.5144 ± 0.0058

GATv2 0.0515 ± 0.0024 0.0631 ± 0.0022 0.7915 ± 0.0145

D‑MPNNs 0.0602 ± 0.0013 0.0794 ± 0.0010 0.6704 ± 0.0085

FFiNet 0.0561 ± 0.0020 0.0712 ± 0.0023 0.7346 ± 0.0172

FFiTrNet 0.0489 ± 0.0012 0.0604 ± 0.0012 0.8092 ± 0.0077
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Fig. 6 The parity plot of true density versus predicted density of each model using Huang & Massa dataset as test dataset a Random Forest; b 
GATv2; c D‑MPNN d FFiNet; e FFiTrNet
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the training data points that appear in both two datasets, 
to make sure all the test data are unseen, so the test result 
will be comparable and reliable.

All the results, in the form of mean ± standard devia-
tion of three independent runs, are shown in Table 4.

It can be seen from Table  4 and Fig.  6, our FFiTrNet 
model outperforms other models. Although there’s an 
accuracy drop compared to Table  3, where the MAE is 
0.0489  g/cm3 compared to 0.0446  g/cm3 for the region 
that the density is higher than 1.8  g/cm3, FFiTrNet still 
has a relatively good prediction, which is considered 
“informative” as it’s lower than 0.05  g/cm3. This accu-
racy drop may be caused by the different molecule types 
in Huang & Massa dataset. Different from CSD curated 
dataset that only contains the CHNO compound, 23 mol-
ecules in Huang & Massa dataset contain fluorine atoms, 
which is completely unseen in the training process, thus 
the effect of fluorine atoms on the crystal density is not 

learned, making the FFiTrNet less accurate. Interest-
ingly, D-MPNNs’ performance on the Huang & Massa 
dataset is relatively poor, though its overall test error for 
CSD curated dataset is close to FFiTrNet. It might be that 
D-MPNNs overfit in the main part of CSD curated data-
set, whose density is mostly below 1.6  g/cm3, as shown 
in the discussion of Table 3. For the model with simpler 
structures, like GATv2 and RF, the overfitting is not sig-
nificant, so they don’t suffer from this accuracy drop and 
even perform better.

Model interpolation through the molecular structure
In Huang & Massa dataset, all 109 energetic materials are 
divided into 10 distinct compound families (or groups). 
The families are labeled according to some characteris-
tic chemical like CL-20 and HMX, or structural feature 
uniting members of the families. By listing out the MAE 
of each group, we can further investigate the relationship 
between molecular structure and model accuracy.

In Table 5, all the mean absolute errors of each mole-
cule family are listed, and Fig. 7 gives the 3D molecular 
structure of one example from each family to help better 
understand the structural difference between each family.

From Table  5, comparing FFiNet and FFiTrNet mod-
els, we can see that after adding Transformer encoder, 
FFiTrNet model shows performance improvement in 
most of the families. When compared to other models, 
FFiTrNet also has the lowest prediction error in most of 
the molecular families, especially those molecules with 
complex 3D structures, such as cubane and CL-20 fami-
lies. Also, because the cage structure usually has a higher 
crystal density and energy density, having attracted much 
attention in the energetic materials field [54], the predic-
tion accuracy for caged structures should be high on the 

Table 5 The Mean Absolute Errors (g/cm3) of Each Molecule 
Family Using Huang & Massa Dataset as Testing

The best results are marked in bold, and the second-best results are italicized

All data in the table are the average of three independent runs

Molecule families RF GATv2 D-MPNN FFiNet FFiTrNet

Cubane 0.1013 0.0548 0.0662 0.0620 0.0449
CL‑20 0.0694 0.0616 0.0673 0.0850 0.0601
Linear 0.0994 0.0494 0.0684 0.0513 0.0480
Pyrazole 0.0573 0.0505 0.0481 0.0466 0.0470

Butterfly 0.1146 0.0736 0.0874 0.0699 0.0693
Ketone 0.1108 0.0521 0.0517 0.0653 0.0464
HMX 0.0871 0.0420 0.0671 0.0475 0.0399
TNT 0.0666 0.0422 0.0498 0.0410 0.0475

RDX 0.0930 0.0502 0.0641 0.0644 0.0572

Ring 0.0744 0.0620 0.0475 0.0680 0.0593

Fig. 7 The instance of each family in Huang & Massa dataset, shown in 3D form. The carbon atom (C) is shown in grey color; the oxygen atom (O) 
is shown in red color; the nitrogen atom (N) is shown in blue color and the fluorine atom (F) is shown in yellow color
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list of priorities. This could also explain why our model 
performs better in the high-density region, because they 
have a higher ratio of these caged molecules. And the 
higher accuracy in the unseen data shows our model gets 
less overfit in the training dataset, learning the more fun-
damental pattern inside the molecule graph. The prom-
ising result in the high-density and out-of-distribution 
dataset makes our model is powerful tool to predicting 
and screening for the potential energetic materials.

Conclusions
Crystal density is an important property of energetic 
materials, but applying ML methods to predict energetic 
materials’ crystal density still face the problem of insuffi-
cient data. In this work, we curate a relatively big dataset 
from CSD containing 12,072 data of CHON compounds 
with merely SMILES string and crystal density to over-
come this problem. New 3D-aware GNNs models FFiNet 
and its upgraded version FFiTrNet are then trained and 
tested in this CSD curated dataset. Our FFiTrNet model 
outperforms other ML models, RF, GATv2 and D-MPNN, 
especially in the high-density region, which has more 
importance in the practical screening process, showing 
FFiTrNet overfits less in the low-density region and has 
more generalizability. After training the models on the 
CSD curated dataset, we use this pretrained model to 
predict the potential energetic materials dataset: Huang 
& Massa dataset, showing great performance in this out-
of-distribution dataset. Finally, we further investigate the 
effect of some certain molecular structure on the models, 
FFiTrNet using 3D conformation of molecules could give 
a more accurate prediction for cage structure, which is 
the promising searching area of the energetic materials. 
But also, the deeper interpolation of the model is needed 
for a better understanding of how force field terms work 
in predicting the crystal density of different molecule 
structures, which would be a tough and tricky task, due 
to the complexity of our model.

All of these results prove that FFiTrNet will be an 
effective model in predicting the crystal density and 
screening for new energetic materials. Our model 
could also be applied to other properties of the ener-
getic materials, such as explosive energy and impact 
sensitivity, which will be used in the further screening 
process. Moreover, because our model uses only the 
SMILES strings of the molecules as the inputs and no 
a priori knowledge is needed to predict the crystal den-
sity, it can be easy to incorporate new molecules into 
this model, even if we have limited knowledge about 
them. This helps us to apply this model more simply to 
the next screening stage, like molecular generation [55, 
56] of energetic materials, in which most of the gener-
ated molecules will be completely new and unknown. 

Therefore, our FFiTrNet sets a strong foundation for 
accelerating the screening of effective energetic materi-
als and for in silico design of new energetic materials, 
utilizing the molecular generation technique.
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